
Accelerating Communications in Federated
Applications with Transparent Object Proxies
J. Gregory Pauloski 1 Valerie Hayot-Sasson 1 LoganWard 2 Kyle Chard 1 2 Ian Foster 1 2

1University of Chicago 2Argonne National Laboratory

Abstract

Advances in networks, accelerators, and cloud services encour-

age programmers to reconsider where to compute—such as

when fast networks make it cost-effective to compute on re-

mote accelerators despite added latency. Workflow and cloud-

hosted serverless computing frameworks can manage multi-step

computations spanning federated collections of cloud, high-

performance computing (HPC), and edge systems, but passing

data among computational steps via cloud storage can incur high

costs. Here, we overcome this obstacle with a new program-

ming paradigm that decouples control flow from data flow by

extending the pass-by-reference model to distributed applica-

tions. We describe ProxyStore, a system that implements this

paradigm by providing object proxies that act as wide-area object

references with just-in-time resolution. This proxy model enables

data producers to communicate data unilaterally, transparently,

and efficiently to both local and remote consumers.

Applications of ProxyStore

Workflow systems: reduce overheads in the workflow

controller by moving proxies rather than objects.

FaaS platforms: move data directly between clients and

executors, bypassing FaaS management systems.

Edge computing: enable peer-to-peer communication

across diverse networks.

Proxy Model

Apparent Data Path

True 
Data 
Path

Object 
Store

obj

True Data Path

Proxy
obj

Consumer
obj

Producer

External
Services,

Cloud, etc.

obj

ProxyStore

Figure 1. ProxyStore decouples the communication of object data from

control flow transparently to the application. Data consumers receive

lightweight proxies that act like the true object when used, while the heavy

lifting of object communication is handled separately.

Lazy, transparent object proxies act as wide-area object refer-

ences, giving the illusion that data is moved across processes,

while in reality, data is moved via more optimal mechanisms trans-

parently (Figure 1). Key properties of proxies:

Transparency: The proxy behaves identically to its target object

by forwarding all operations on itself to the target.

Laziness: The proxy is initialized with a factory, an object that

is callable like a function and returns the target object. The

proxy is lazy in that it does not call the factory to retrieve the

target until it is first accessed—a process that is referred to as

resolving the proxy.

Functionally, proxies have both pass-by-reference and pass-by-

value attributes. The eventual user of the proxied data gets a

copy, but unnecessary copies are avoided when the proxy is

passed among multiple functions.

References

[1] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard, J. M. Wozniak, I. Foster,

M. Wilde, and K. Chard. Parsl: Pervasive Parallel Programming in Python. In 28th ACM International

Symposium on High-Performance Parallel and Distributed Computing, 2019.

[2] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster, and K. Chard. funcX: A Federated

Function Serving Fabric for Science. In 29th International Symposium on High-Performance Parallel and

Distributed Computing. ACM, 2020.

[3] Real-Time Defect Identification. https://github.com/ivem-argonne/real-time-defect-analysis. Accessed

Mar 2023.

[4] L.Ward, J. G. Pauloski, V. Hayot-Sasson, R. Chard, Y. Babuji, G. Sivaraman, S. Choudhury, K. Chard, R. Thakur,

and I. Foster. Cloud services enable efficient ai-guided simulation workflows across heterogeneous

resources, 2023. https://arxiv.org/abs/2303.08803.

[5] L. Ward, G. Sivaraman, J. G. Pauloski, Y. Babuji, R. Chard, N. Dandu, P. C. Redfern, R. S. Assary, K. Chard,

L. A. Curtiss, R. Thakur, and I. Foster. Colmena: Scalable machine-learning-based steering of ensemble

simulations for high performance computing. In IEEE/ACMWorkshop onMachine Learning in High Performance

Computing Environments. IEEE, 2021.

Proxy Model Benefits

Efficiency: Proxies are lightweight to communicate.

Compatibility: Proxies behave like their target so are interop-

erable with existing code. The factory contains all logic for

data retrieval and manipulation (no more shims/wrappers).

Optimization: Lazy resolution can amortize costs and enable

partial resolution of large, nested objects.

Security: Proxies can be moved in place of confidential data

while ensuring data are only resolved where permitted.

Design and Implementation

Process A Process B

True 
Data 
Path

Channel

Proxy
obj

Store

obj

Connector Cache

Store

ConnectorCache

01011011.. Proxy
obj

obj

Figure 2. Overview of ProxyStore’s design. ProxyStore provides the Store

interface for creating proxies and a suite of Connector implementations for

commonly used mediated communication channels.

ProxyStore provides four primary components: the Proxy and

Factory, described previously, the Store interface, and a set of

Connectors. The Store is the high level interface for creating

proxies, and Connectors enable the Store to interface with byte-

level communication channels (Figure 2).

UCX-Py

Shared
File systems

Endpoints

Figure 3. Communication technologies supported out-of-the-box third-party

code can easily provide new connectors.

A Store is initialized with a Connector instance and provides

additional functionality on top of the Connector. Store opera-

tions act on Python objects rather than byte strings, (de)serial-

izing objects before invoking the corresponding operation on

the Connector. The Store provides caching of operations to re-

duce communication costs, asynchronous resolving of proxies,

and auto-initialization. The proxy abstraction, provided by the

Store.proxy() enables a producer to unilaterally (without the

agreement of the receiver) choose the best communication chan-

nel. The provided Connectors support a mix of in-memory and

on-disk storage, intra- and inter-site transfer, and persistence

goals (Table 1 and Figure 3).

Connector Storage Intra-Site Inter-Site Persistence

File Disk X X
Redis Hybrid X X
Margo Memory X
UCX Memory X
ZMQ Memory X
Globus Disk X X
Endpoint Hybrid X X X

Table 1. Attributes of the provided Connector implementations. The

MultiConnector enables intelligent routing across multiple Connectors via

user-provided policies.

Cloud/
Workflow 
Engine

NAT NAT1

Apparent Data Path True Data PathData Requests

Object 
Store

Endpoint A

obj

Host 1
Producer

3

Object 
Store

Endpoint B

obj

Host 2
Consumer

6

2

5

4

Figure 4. ProxyStore endpoints facilitate direct data transfer between sites by

using WebRTC for peer-to-peer communication (NAT traversal via UDP

hole-punching and a public relay server).

Accelerating Applications

Here we demonstrate how ProxyStore can accelerate communi-

cations in distributed and federated applications by integrating

ProxyStore into three real-world scientific applications.

Real-time Defect Analysis

Figure 5. A microscopy facility uses FuncX [2] to invoke ML models to

quantify defects in acquired images, dispatching this computation to HPC

facilities for fast GPU inference. We modify the application [3] to create and

send proxies of images, rather than the actual images, to utilize superior

communication mediums.

Transfer Method Time (ms) Improvement

Cloud Baseline 3411 ± 389 —

FileConnector 2160 ± 46 36.6%

EndpointConnector 2280 ± 107 33.2%

Table 2. Round-trip task time improvement when images and inference

results are communicated via ProxyStore rather than via cloud services.

Federated Learning (FL)

Aggregator

Edge Devices

Figure 6. We demonstrate the benefit of ProxyStore for FL use cases and,

more generally, edge computing. ProxyStore enables direct communication

between central aggregator services and edge nodes, bypassing additional

overheads in the FaaS/cloud systems.

0 10 20 30 40 50
Model Size (# Hidden Blocks)

0.0

2.5

5.0

7.5

Tr
an

sf
er

 T
im

e 
(s

)

FuncX Limit Cloud Transfer EndpointStore

Figure 7. Average model weights transfer time between edge nodes.

ProxyStore both reduces transfer time and also enables use of larger models

by bypassing the FaaS system which enforces payload limits for data transfer.

Molecular Design

Colmena Thinker

Theta ClusterRemote GPUs

Figure 8. An AI-guided simulation workflow for electrolytes discovery

deployed across heterogenous systems at different sites [4].

128 256 512 1024
Allocated CPU Nodes

128

256

512

1024

Av
g.

 U
til

ize
d 

CP
Us

72%
51%

128 256 512 1024
Allocated CPU Nodes

0

5

10

15

Avg. Utilized GPUs

Baseline
ProxyStore
Ideal

Figure 9. ProxyStore removes data movement burdens from the workflow

system and improves scaling, particularly at 512 and 1024 nodes.

https://github.com/proxystore https://docs.proxystore.dev jgpauloski@uchicago.edu

https://github.com/ivem-argonne/real-time-defect-analysis
https://arxiv.org/abs/2303.08803
https://github.com/proxystore
https://docs.proxystore.dev
mailto:jgpauloski@uchicago.edu

	References

