Empowering Scientific Workflows with n

Federated Agents

J. Gregory Pauloski, Yadu Babuji, Ryan Chard, Kyle Chard & lan Foster

Abstract Publish Objective Background
Store and disseminate Given a high-level
i i i ity i results in the form of goal, derive questions i
Agentic systems are exploding in popularity in the Al owledge g e An agent is a program that can

community; however, existing frameworks do not
integrate well with research infrastructure (RI).
Academy is a middleware for deploying autonomous

perform actions independently
or semi-autonomously on
behalf of a client or other agent.

Planning
Manage trade offs & resources

i Analysis Knowledge .
agents across federated .RI (!—IPC clusters, experlmental it A Erforcement oo relegvant Extension of actor model: local
facilities, and data repositories). Academy provides improve models, & Ensure safety & validity information and state and communication via
i i i interpret results learn from results .
abstractions for expressing stateful agents, managing p xoloration asynchronous message passing.

asynchronous agent coordination, and distributed
deployment across heterogeneous resources.

I- f .l
Navigate avenues for discovery

Agent defined by actions it can
perform, control loops that
define autonomous behavior,
and local state.

Prediction
Generate testable
hypotheses from

current knowledge

Agentic Workflows Service
Perform simulations,

experiments and
make observations

Experiment Hypothesize

Agents come in many forms:
deliberative/intelligent, reactive/
observer, service, resource,
embodied, learning, composite.

Agentic Discovery: Closing the Loop with Cooperative Agents

Federations of cooperative agents—deliberative, reactive, embodied, and more—
will augment, and often replace, the human-in-the-loop in scientific endeavors.
This prediction originates from two observations: human decision making tasks
limit the rate of discovery and advancements in agentic systems are converging
to a point where the complete scientific method (described above in the center

loop) can be carried out autonomously by specialized agents.

E - Infrastructure a

a8e.03s eieq

Multi-agent systems enable
complex problem solving and
emergent behavior through the
cooperation of simple,
specialized agents.

Experimental Facilities

Academy: Build & Deploy Stateful Agents Academy Architecture

Academy Benchmarks

What is the goal? A modular and extensible middleware Exchange (Data Plane) _ 500 - - -
providing primitives necessary to build and deploy arbitrary | SR e STV =RV 0 3001 T ek S2workerspernode o
autonomous agents across federated research infrastructure.) BT boosooo_- LoiTooo- 5 1004 4 Ray x

How do | write agents? Python classes (below) with methods ** ** ** . : 5 J0l-e Idoeal oo o 0—o0_0—0—0—0-
decorated as actions that other agents can request and control Client Q Agent G Agent &) 1§ 2]

loops that enable autonomous behavior and interaction. I__: ___________________________________ : 1 2 4 8 16 32 52 104 208 416 832 1664 3328

J
@)
>
N
(ol
@]
-
n

%
@)
>
N
.
(@)
D}
"

Agents/Actors

How do | launch agents? In a local thread- or process-pool,
distributed across a cluster with Parsl, or on federated
resources with Globus Compute.

How do clients and agents communicate? Handles are
references to remote agents that translate method calls into

Academy scales to thousands of agents. Individual agents

can handle thousands of requests per second—faster than

Dask and competitive with Ray. (Weak scaling; 30 actions/
agent; 1s sleeps)

data flow, dynamic resource availability) whereas existing
frameworks focus on improving reasoning capabilites of LLMs.

10KB 100KB 1 MB 10 MB 100 MB 10KB 100KB 1 MB 10 MB 100 MB
Action Payload Size Action Payload Size

launcher and exchange, which manage spawning agents and
communication, respectively.

H EHEEEESEESESSESSESSESSESESSESSESSESSESSESSESSESSES S S S S S S S S EEEEEEEEN
r
I
I
I
I
1
1
I
I
I
I
I
I
1
1
1
I
I
L
r
I
1
I
I
I
I
I
I
1
1
1
I
I
I
I
I
1
[
-

messages that are asynchronously communicated via] h C P : Aurora - Aurora Workstation - Aurora
mailboxes (unique per agent) managed by an exchange. auncher(s) (Control Plane) 15 100 { @ Baseline 1 —
. i g 10 { ~%- +P&_’Ss-by-ref 2 R, G
How is this different from AutoGen/LangChain/etc? Agents and clients interact via handles to invoke actions (async).: : § 1 +Direct /o/,: | Q/g/"
1 1fi 1 1 8 v VX I Y S PO
Academy supports scientific applications (async & long- Agent behaviors defined by actions, control loops, and state. : : ¢ o1y ¥ T T %
running execution, heterogeneous resources, high-throughput Academy decouples control and data planes throughthe @ & & 03;31 i —— - : Errorlbanngv;:eiitt:je;t:J

Academy’s distributed exchange is optimized for HPC and

each agent (i.e., CPUs or GPUs). Assembler tasks are short and
infrequent. (Middle) Cumulative tasks submitted per agent. (Bottom)
Active workers allocated in each agent's resource pool. Worker
allocations vary with demand (as in Assembler and Estimator) or batch
job wall times (as in Generator, Validator, and Optimizer).

r
|
|
|

Generator

: : : . : federated deployments. Pass-by-ref. with ProxyStore
import time, threac'ilng‘ - . — from academy.exchange.thread ;mport ThreadExchange : optimizes wide-area data transfer and direct messaging
from academy.behavior import Behavior, action, loop from academy.launcher.thread import ThreadlLauncher .
Example agent from academy.manager import Manager : reduces latency between local agents.
class Example(Behavior): behavior definition. :
def __init__(Self) -> None: Decorators mark with Manager(. - . Fy—y— x
_ . _ . = -®- Academy T
self.count = @ # State stored as attributes special methods as exchange:ThreadExchange(), # Can be'swapped w1‘Fh 12 Y3 % AutoGen "
launcher=ThreadLauncher(), # other implementations = 1 e A
@action agents or loops.) as manager: s g o _—
def square(self, value: float) -> float: —_ behavior = Example() # From Listing 1 - R e /.
return value*#*2 handle = manager.launch(behavior) . £ 0-013 o— ® ® Lower is better
Create and manage "o . . . Error bancljs are std dlev
@loop agents via the future = handle.square(2) " 1KB 10 KB 100 KB 1 MB 4 MB
def count(self, shutdown: threading.Event) -> None: Exchange, Launcher, assert future.result() == 4 . Message Size
while not shutdown.is_set(): I : : Academy handles large data more efficiently than
self.count += 1 anq’Manager handle.shutdown() # Or via the manager AutoGen’ dyt buted REC fi i]'ZC4MB y
time.sleep(1) interfaces. manager .shutdown(handle.agent_id, blocking=True) " utoGens aistriouied g runtime (limi messages).
MOFA: GenAl Materials Discovery Benefits of Agentic MOFA © Estimator Z\Estimate CO2 of optimized MOFs|—
Metal organic framework (MOF): porous polymers for gas storage « Agents deployed on the resource best- ; Optimizer Py — :
Goal: Discover high-performing MOFs for carbon capture apps suited for the agent’s responsibilities : e =
Methods: Combine generative Al and simulation to efficiently « Agents scale resources in or out based : Validator %= Validator scales out to start processing MOFs :
navigates the intractable combinatorial space of MOF structures: on |ocal state (i.e., workload) : — MOF buffer fills and Assemblr scales down :
1. A generative Al model produces candidate ligands * Loose coupling == easy to swap agent * Assembler | . | :
2. Ligands are combined with metal clusters to assemble MOFs implementations w/ same behavior + Generator éEnough diverse ligands generated for assembly , :
3. MOFs are screened/validated using many MD simulations » Easier integration of new agents. E.g., CY r00 | — ;
4. CO2 adsorption is simulated and recorded to a database embodied agent in self-driving labs that - R I Assembler :
o 0 o 0 . . o . "
5. GenAl model is periodically retrained on the accumulated results synthesizes and evaluates best MOFs t & g | T Validator :
" e | Optimizer .
: § ----- Estimator .
e == ——— 1 . 0 0 . .
: ; Legend " :
' CPUs oiaoego Storage @ CPUs oiaoego ' g ;9 :
' S0 &) 1| o %201 :
| | d h [[
| | i i co, T | (@) Agent 2 :
| = apacities ! L N W |, :
| d) - h 1 h H | [] @) : e e g g B e H
| Assembler Database = Estimator | | # Resources] T R S A
: A i raining____& A : L e A 20 100 160
Ligand Lattice Optimized Data Flow + [Assembler and Estimator auto-scale| Runtime (minutes)
'ganas Strain : : : :
Stable MOFs Agents deployed using : E;;egufl;/on trace overh three hpurs. (Tpp) Acls/ve tasks per ag/en/tl. The)chXIs
———————————————————————————————— T MOFs | ———="F----"-"Globus Compute’ E eight represents the maximum size of the resource pool allocated by

L

O A
g o onNAUIC 0 390.e0)
AGO AIgC qlok Ak - - |
O v atic R ATOR 2 D.CQA olge ore/acade i

