
Empowering Scientific Workflows with

Federated Agents
J. Gregory Pauloski, Yadu Babuji, Ryan Chard, Kyle Chard & Ian Foster

Abstract
Agentic systems are exploding in popularity in the AI
community; however, existing frameworks do not
integrate well with research infrastructure (RI).
Academy is a middleware for deploying autonomous
agents across federated RI (HPC clusters, experimental
facilities, and data repositories). Academy provides
abstractions for expressing stateful agents, managing
asynchronous agent coordination, and distributed
deployment across heterogeneous resources.

Agentic Discovery: Closing the Loop with Cooperative Agents
Federations of cooperative agents—deliberative, reactive, embodied, and more—

will augment, and often replace, the human-in-the-loop in scientific endeavors.
This prediction originates from two observations: human decision making tasks
limit the rate of discovery and advancements in agentic systems are converging
to a point where the complete scientific method (described above in the center

loop) can be carried out autonomously by specialized agents.

Background
An agent is a program that can
perform actions independently
or semi-autonomously on
behalf of a client or other agent.

Extension of actor model: local
state and communication via
asynchronous message passing.

Agent defined by actions it can
perform, control loops that
define autonomous behavior,
and local state.

Agents come in many forms:
deliberative/intelligent, reactive/
observer, service, resource,
embodied, learning, composite.

Multi-agent systems enable
complex problem solving and
emergent behavior through the
cooperation of simple,
specialized agents.

Academy: Build & Deploy Stateful Agents
What is the goal? A modular and extensible middleware
providing primitives necessary to build and deploy arbitrary
autonomous agents across federated research infrastructure.
How do I write agents? Python classes (below) with methods
decorated as actions that other agents can request and control
loops that enable autonomous behavior and interaction.
How do I launch agents? In a local thread- or process-pool,
distributed across a cluster with Parsl, or on federated
resources with Globus Compute.
How do clients and agents communicate? Handles are
references to remote agents that translate method calls into
messages that are asynchronously communicated via
mailboxes (unique per agent) managed by an exchange.
How is this different from AutoGen/LangChain/etc?

Academy supports scientific applications (async & long-
running execution, heterogeneous resources, high-throughput
data flow, dynamic resource availability) whereas existing
frameworks focus on improving reasoning capabilites of LLMs.

Academy Architecture

Agents and clients interact via handles to invoke actions (async).
Agent behaviors defined by actions, control loops, and state.

Academy decouples control and data planes through the
launcher and exchange, which manage spawning agents and

communication, respectively.

import
from import

class
def

def
return

def

 time, threading

 academy.behavior Behavior, action, loop

 ():

 () -> :

 .count =

 (, value:) -> :

 value**

 (, shutdown: threading.) -> :

 while not shutdown. ():

 .count +=
 time. ()

Example Behavior

0

2

1

1

__init__

@action

square

@loop

count Event

is_set

sleep

self
self

self

self

self

None

float float

None

State stored as attributes

←
Example agent
behavior definition.
Decorators mark
special methods as
agents or loops.

→
Create and manage

agents via the
Exchange, Launcher,

and Manager
interfaces.

from import
from import
from import

with

as

 academy.exchange.thread ThreadExchange

 academy.launcher.thread ThreadLauncher

 academy.manager Manager

 (

 exchange= (),
 launcher= (),
) manager:

 behavior = ()
 handle = manager. (behavior)

 future = handle. ()

 assert future. () ==

 handle. ()
 manager. (handle. , blocking=)

Manager
ThreadExchange
ThreadLauncher

Example
launch

square
result

shutdown
shutdown agent_id

Can be swapped with

other implementations

From Listing 1

Or via the manager

2
4

True

Academy Benchmarks

Academy scales to thousands of agents. Individual agents
can handle thousands of requests per second—faster than
Dask and competitive with Ray. (Weak scaling; 30 actions/

agent; 1s sleeps)

Academy’s distributed exchange is optimized for HPC and
federated deployments. Pass-by-ref. with ProxyStore

optimizes wide-area data transfer and direct messaging
reduces latency between local agents.

Academy handles large data more efficiently than
AutoGen’s distributed gRPC runtime (limit 4MB messages).

MOFA: GenAI Materials Discovery
Metal organic framework (MOF): porous polymers for gas storage

Goal: Discover high-performing MOFs for carbon capture apps

Methods: Combine generative AI and simulation to efficiently
navigates the intractable combinatorial space of MOF structures
 A generative AI model produces candidate ligand
 Ligands are combined with metal clusters to assemble MOF
 MOFs are screened/validated using many MD simulation
 CO2 adsorption is simulated and recorded to a databas
 GenAI model is periodically retrained on the accumulated results

Benefits of Agentic MOFA
 Agents deployed on the resource best-

suited for the agent’s responsibilitie
 Agents scale resources in or out based

on local state (i.e., workload
 Loose coupling == easy to swap agent

implementations w/ same behavio
 Easier integration of new agents. E.g.,

embodied agent in self-driving labs that
synthesizes and evaluates best MOFs

Agents deployed using

Globus Compute

Execution trace over three hours. (Top) Active tasks per agent. The y-axis
height represents the maximum size of the resource pool allocated by

each agent (i.e., CPUs or GPUs). Assembler tasks are short and
infrequent. (Middle) Cumulative tasks submitted per agent. (Bottom)

Active workers allocated in each agent's resource pool. Worker
allocations vary with demand (as in Assembler and Estimator) or batch

job wall times (as in Generator, Validator, and Optimizer).

Estimate CO2 of optimized MOFs

Optimizer scales out after first validated MOF

Validator scales out to start processing MOFs

MOF buffer fills and Assembler scales down

Enough diverse ligands generated for assembly

Batch job walltime expires

Assembler and Estimator auto-scale

jgpauloski@uchicago.edu

github.com/proxystore/academy

