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Abstract
Agentic systems are exploding in popularity in the AI 
community; however, existing frameworks do not 
integrate well with research infrastructure (RI). 
Academy is a middleware for deploying autonomous 
agents across federated RI (HPC clusters, experimental 
facilities, and data repositories). Academy provides 
abstractions for expressing stateful agents, managing 
asynchronous agent coordination, and distributed 
deployment across heterogeneous resources.

Agentic Discovery: Closing the Loop with Cooperative Agents
Federations of cooperative agents—deliberative, reactive, embodied, and more—

will augment, and often replace, the human-in-the-loop in scientific endeavors. 
This prediction originates from two observations: human decision making tasks 
limit the rate of discovery and advancements in agentic systems are converging 
to a point where the complete scientific method (described above in the center 

loop) can be carried out autonomously by specialized agents.

Background
An agent is a program that can 
perform actions independently 
or semi-autonomously on 
behalf of a client or other agent.


Extension of actor model: local 
state and communication via 
asynchronous message passing.


Agent defined by actions it can 
perform, control loops that 
define autonomous behavior, 
and local state.


Agents come in many forms: 
deliberative/intelligent, reactive/ 
observer, service, resource, 
embodied, learning, composite.


Multi-agent systems enable 
complex problem solving and 
emergent behavior through the 
cooperation of simple, 
specialized agents.

Academy: Build & Deploy Stateful Agents  
What is the goal? A modular and extensible middleware 
providing primitives necessary to build and deploy arbitrary 
autonomous agents across federated research infrastructure.
How do I write agents? Python classes (below) with methods 
decorated as actions that other agents can request and control 
loops that enable autonomous behavior and interaction.
How do I launch agents? In a local thread- or process-pool, 
distributed across a cluster with Parsl, or on federated 
resources with Globus Compute.
How do clients and agents communicate? Handles are 
references to remote agents that translate method calls into 
messages that are asynchronously communicated via 
mailboxes (unique per agent) managed by an exchange.
How is this different from AutoGen/LangChain/etc?

Academy supports scientific applications (async & long-
running execution, heterogeneous resources, high-throughput 
data flow, dynamic resource availability) whereas existing 
frameworks focus on improving reasoning capabilites of LLMs.

Academy Architecture

Agents and clients interact via handles to invoke actions (async). 
Agent behaviors defined by actions, control loops, and state. 

Academy decouples control and data planes through the 
launcher and exchange, which manage spawning agents and 

communication, respectively.
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from import
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         value**

    
     ( , shutdown: threading. ) -> :

        while not shutdown. ():

            .count += 
            time. ( )
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←
Example agent 
behavior definition. 
Decorators mark 
special methods as 
agents or loops.

→
Create and manage 

agents via the 
Exchange, Launcher, 

and Manager 
interfaces.

from import
from import
from import

with

as

 academy.exchange.thread  ThreadExchange

 academy.launcher.thread  ThreadLauncher

 academy.manager  Manager



 (

    exchange= (),  
    launcher= (),  
)  manager:

    behavior = ()  
    handle = manager. (behavior)

    

    future = handle. ( )

    assert future. () == 

    handle. ()  
    manager. (handle. , blocking= )

Manager
ThreadExchange
ThreadLauncher

Example
launch

square
result

shutdown
shutdown agent_id

# Can be swapped with

# other implementations


# From Listing 1


# Or via the manager
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Academy Benchmarks

Academy scales to thousands of agents. Individual agents 
can handle thousands of requests per second—faster than 
Dask and competitive with Ray. (Weak scaling; 30 actions/

agent; 1s sleeps)

Academy’s distributed exchange is optimized for HPC and 
federated deployments. Pass-by-ref. with ProxyStore 

optimizes wide-area data transfer and direct messaging 
reduces latency between local agents.

Academy handles large data more efficiently than 
AutoGen’s distributed gRPC runtime (limit 4MB messages).

MOFA: GenAI Materials Discovery
Metal organic framework (MOF): porous polymers for gas storage 

Goal: Discover high-performing MOFs for carbon capture apps

Methods: Combine generative AI and simulation to efficiently 
navigates the intractable combinatorial space of MOF structures
 A generative AI model produces candidate ligand
 Ligands are combined with metal clusters to assemble MOF
 MOFs are screened/validated using many MD simulation
 CO2 adsorption is simulated and recorded to a databas
 GenAI model is periodically retrained on the accumulated results

Benefits of Agentic MOFA
 Agents deployed on the resource best-

suited for the agent’s responsibilitie
 Agents scale resources in or out based 

on local state (i.e., workload
 Loose coupling == easy to swap agent 

implementations w/ same behavio
 Easier integration of new agents. E.g., 

embodied agent in self-driving labs that 
synthesizes and evaluates best MOFs

Agents deployed using

Globus Compute

Execution trace over three hours. (Top) Active tasks per agent. The y-axis 
height represents the maximum size of the resource pool allocated by 

each agent (i.e., CPUs or GPUs). Assembler tasks are short and 
infrequent. (Middle) Cumulative tasks submitted per agent. (Bottom) 

Active workers allocated in each agent's resource pool. Worker 
allocations vary with demand (as in Assembler and Estimator) or batch 

job wall times (as in Generator, Validator, and Optimizer).

Estimate CO2 of optimized MOFs

Optimizer scales out after first validated MOF

Validator scales out to start processing MOFs

MOF buffer fills and Assembler scales down

Enough diverse ligands generated for assembly 

Batch job walltime expires

Assembler and Estimator auto-scale
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