
Accelerating Communications in High-
Performance Scientific Workflows

J. Gregory Pauloski

Kyle Chard & Ian Foster (Advisors)

 jgpauloski@uchicago.edu

Motivation: Data Flow Challenges & Opportunities in FaaS & Workflow Systems
What are the limitations of existing solutions?

How to decouple data flow w/o rewriting apps?

What high-level patterns can the proxy model enable?

Can stateless frameworks support stateful apps?

What mediated communication channels are best?

How can learnings accelerate large-scale science?

ProxyStore: Wide-Area Pass-by-Reference /proxystore/proxystore SC ‘23 Paper

Applications of ProxyStore
� Workflow systems: Reduce communication overhead�
� Federated FaaS platforms: Bypass cloud data transfe�
� Edge computing: Enable P2P transfer over diverse networks

Proxy Model

Object Proxy: Transparent reference to object in global store

→ Transparent: Proxy behaves as target object (forwards ops)

→ Lazy: Factory invoked when proxy first accessed (resolving)

→ Factory: A callable (e.g., func) that returns the target object

→ Pass-by-Ref: Eventual user of proxy receives data copy

→ Pass-by-Value: No copies when proxy is not used

import from import

lambda

assert and
assert
assert

 numpy; proxystore.proxy Proxy

x = numpy.array([, ,])
p = Proxy(: x)

 (p, Proxy) (p, numpy.ndarray) 
 numpy.array_equal(p, [, ,]) 
 numpy.sum(p) ==

1 2 3

1 2 3
6

Lambda function is simple factory 
Proxy can do everything numpy array can 

isinstance isinstance

ProxyStore Design

Store: High-level abstraction of an
object store for creating proxies
→ Store.proxy() methods

→ Interfaces with connector

→ Object/propery caching

→ Custom serialization

→ Asynchronous resolution

→ Performance monitoring

Connector: Low-level
interface to a mediated
storage
→ Can be any mediated
communication channel
(e.g., object store, etc.)

→ Many implementations

→ Easy to extend

Mediated Communication Channels

Endpoints

daos Storage Stack

File Systems UCX-Py

Proxy Model Benefits
� Efficiency: Proxies are lightweight to communicat�
� Compatibility: Proxies are interoperable with existing cod�
� Optimization: Amortizes costs/partial object resolutio�
� Security: Ensure data are only resolved where permitted

P2P Apps with NAT Hole Punching

Circumvent
expensive

cloud transfer
with easy P2P
data transfer!

Easy-to-Use Python API
Try out ProxyStore! $ pip install proxystore[all]

from import
from import
from import

with as
with as

 concurrent.futures ProcessPoolExecutor 
 proxystore.connectors.redis RedisConnector 
 proxystore.store Store  

 Store(, RedisConnector(,)) store: 
 ProcessPoolExecutor() pool: 
 proxy = store.proxy(((,)))  
 future = pool.submit(, proxy) 
 (future.result())

'demo' 'localhost' 6379

1 100000list range
sum

print

PSBench /proxystore/benchmarks

Evaluate mediated communication channels and data flow performance

Distributed in-memory connectors use RDMA for
low-latency and high-bandwidth transfers.

Benchmarks: Round trip task time, P2P
transfer, data flow optimization, streaming
throughput, memory usage

Executors: Dask, Globus Compute, Parsl,
ProcessPoolExecutor

Data management: Baseline, Proxystore, IPFS

GET SET

PS Endpoint P2P performance is competitive with
Redis+SSH tunnels without complex setup.

Automatic proxy ownership manages memory as
well as manually implemented approaches.

TaPS /proxystore/taps eScience ‘24

Task Performance Suite
→ Reference real science apps for
benchmarking workloads

→ Compare task execution engines
and data management systems

Plugin System

Apps
Cholesky

Docking

Failures

Fed. Learning

MapReduce

Moldesign

Montage

Synthetic

Execution Frameworks

Globus

Compute

Data Management
Files

Performance Insights
→ Apps highlight strengths/weaknesses across frameworks

→ Pass-by-ref. key to reduce overheads (ObjectRef or Proxy)

Proxy Patterns Preprint

High-level patterns make the low-level proxy
paradigm easier to use, simplifying the

creation of sophisticated task-based apps.

Distributed ProxyFutures
→ Implicit and explicit usage

→ Data flow dependencies

→ Execution engine agnostic

→ Any comm. channel

Proxy Ownership
→ Rust-inspired borrowing and
ownership semantics

→ DAG-based task structures

→ Tasks can mutably or
immutably borrow proxies

→ Auto dereferencing and
memory management

→ Object lifetimes

ProxyStream

→ Stream-by-proxy model

→ Low-latency + high-bandwidth

Stateful Actors Work-in-Progress

ProxyStore Actors
→ Compatible with any task-based
execution engine (Dask, Globus
Compute, Ray, etc.)

→ P2P/wide-area deployment with
ProxyStore Endpoints

→ Temporal decoupling with actors
mailbox model

Have an interesting use case? Reach out and let us know!

Better Science App Papers

Multi-site Molecular Design

Colmena + Parsl + Proxystore

Hierarchical Fed. Learning

github.com/h-flox/flox

Other Apps
1000 Genomes: Enable implicit task dependencies
and reduce makespans with ProxyFutures

GenSLM: Improve scaling in Parsl apps

DeepDriveMD: Reduce ML inference latency in AI-
steered ensemble simulations with proxy streaming

MOF Generation: Optimize memory usage

Conclusions & Future Work
→ Proxy is powerful abstraction for performant/portable science apps

→ Reduces key performance bottlenecks in task execution frameworks

→ Proxy model can enable high-level application patterns

→ TaPS can enable reliable/reproducible benchmarking for community

→ Future Work: Stateful actors, better P2P transfer, new comm. tools

→ Future Work: Enable future exascale science apps with ProxyStore

Code + Documentation

github.com/proxystore

Papers + Portfolio

gregpauloski.com

