Y Accelerating Communications in High- . Gregory Pauloski
@;ﬁ g g iyle Chardg&IarYFoster(Advisors) “\J &

Performance Scientific Workflows ‘pauloski@uchicago.edu

/

GA

Motivation: Data Flow Challenges & Opportunities in FaaS & Workflow Systems 20 Proxy Patterns Preprint £

O‘ What are the limitations of existing solutions? %I:I What high-level patterns can the proxy model enable? I.I.I What mediated communication channels are best? e Proxy Ownership

— Rust-inspired borrowing and
ownership semantics
[Consuner | [RefutProy] — DAG-based task structures

Distributed Futures Streaming Ownership
\

—— ’ — Tasks can mutably or
High-level patterns make the low-level proxy immutably borrow proxies

paradigm easier to use, simplifying the — Auto dereferencing and
creation of sophisticated task-based apps.
memory management

\\\ How to decouple data flow w/o rewriting apps? Can stateless frameworks support stateful apps? 5 How can learnings accelerate large-scale science?

N ProxyStore: Wide-Area Pass-by-Reference () /proxystore/proxystore SC 23 Paper |

Applications of ProxyStore ProxyStore Design Proxy Model Benefits Distributed ProxyFutures | |~ Object lifetimes

 Workflow systems: Reduce communication overheads St St - Efficiency: Proxies are lightweight to communicate ~ Implicit and explicit Hsage ProxyStream

- Federated Faa$S platforms: Bypass cloud data transfer ore ore - Compatibility: Proxies are interoperable with existing code — Data flow dependencies. -+ Stream-bv-broxy model

- Edge computing: Enable P2P transfer over diverse networks | Cache | Connector Connector | Cache | « Optimization: Amortizes costs/partial object resolution ~ Execution engine agnostic - Low-Iaterilcp + h); h-bandwidth

- Security: Ensure data are only resolved where permitted — Any comm. channel y+hg
Proxy Model o Proxy, eromient.. Proxy, " . .
0] %03 P2P Apps with NAT Hole Punching
ProxyStore Channel

& Stateful Actors Work-in-Progress

A 4
obj -
object | | | Consumer | = | Process A F= = = = & o o o o — — - — : ‘ -
Producer plec Consumer [Process A]- ->[Process B] Endpoint A / o \ Endpoint B

obj o ob] J .. @ f Circumvent ProxyStore Actors [] Client e Woriow Systom
Bl - Store: High-level abstraction of an Connector: Low-level o' lo expensive — Compatible with any task-based | |ictor 2 Handle * Worker Management
——————— NAT NAT - . .
) | obj | External object store for creating proxies interface to a mediated Cloud cloud transfer execution engine (Dask, Globus
-> gt J Services, —_ Host 1 W kfl/ Host 2 .
Apparent Data Path Cloud, etc. True Data Path — Store proxy() methods Storage Producer gr:ginzw Consumer with easy P2P Compute, Ray, etC.) I -
° . - ! - H _ H P S
— Interfaces with connector — Can be any mediated 7 - N ob3 data transfer P2P/wide-area deployment with |, sermusere - (A Re'“:t: w°:ker
o - — H + State M t ctor
Object Proxy: Transparent reference to object in global store — Object/propery caching communication channel - & ApparentDataPath - B DataRequests = True Data Path PFO_IZ(YS’IOTG ng POlntl'e? " + Bulk data transfer
. . . : — Temporal decoupling with actors | : Koy [Value
- Transparent: Proxy behaves as target object (forwards ops) Custom serialization (¢.g., object store, etc,) mailbox model o [
. - : — Asynchronous resolution — Many implementations N
— Lazy: Factory invoked when proxy first accessed (resolving) ot Easy to extend Easv-to-Use Pvthon API
— Factory: A callable (e.g., func) that returns the target object — Performance monitoring y y y

Have an interesting use case? Reach out and let us know!

— Pass-by-Ref: Eventual user of proxy receives data copy
— Pass-by-Value: No copies when proxy is not used

Try out ProxyStore! |$ pip install proxystore[all]

Mec"ated Communication ChannEIs from concurrent.futures import ProcessPoolExecutor

import numpy; from proxystore.proxy import Proxy PS from proxystore.connectors.redis import RedisConnector B B S M Lﬂgg"ﬁ
m & g[obug QMQ from proxystore.store import Store Etter CIence App Papers #milﬁ

X = numpy.array([1, 2, 3]) # Lambda function is simple factory
Eo=1] ===
.« i
o —— ==
rsl =1

bay

assert isinstance(p, Proxy) and isinstance(p, numpy.ndarray) proxy = store.proxy(list(range(1, 100000))) ‘
9 [

assert numpy.array_equal(p, [1, 2, 3]) \) D . future = pool.submit(sum, proxy)
assert numpy.sum(p) == \ Endpomts File SYStems ucx Py print(future.result())

p = Proxy(lambda: x) # Proxy can do everything numpy array can)~ _ with Store('demo', RedisConnector('localhost', 6379)) as store: Multi-site Molecular Design
K@YDB daos Storage Stack MOCh' with ProcessPoolExecutor() as pool: Colmena + Parsl + Proxystore £ °
SN
{ /
\\\ProxyStore

-@®- Baseline
—»— ProxyStore

Avg. Utilized CPUs

SNdO Pa3ziin

T T
128 256 512 1024 128 256 512 1024

Allocated CPU Nodes Allocated CPU Nodes

il PSBench () /proxystore/benchmarks () /proxystore/taps eScience ‘24 =

Hierarchical Fed. Learning Other Apps

- — - Cholesky Docking edleam github.com/h-flox/flox 1000 Genomes: Enable implicit task dependencies
Evaluate mediated communication channels and data flow performance Task Performance Suite B g ’Q and reduce makespans with ProxyFutures
- -

Globus Compute —

ars| HOR . .
o ProcessPoolExecutor e ——— - =8 » X % — GenSLM: Improve Sca“n N PaI'S| appS
Polaris Login = Polaris Compute Chameleon Node - Chameleon Node 103 - - Reference real sclence apps for Task\?igg ﬁg" L& : Eg > ﬁ DeepDriveMD- Reduce Mg|_ inference |atency in Al-
102 4 benChmarklng WorkloadS I\legpreduzg 40 500 1000 1500 2000 2500 O 50 100 150 200 250 300 350 = ~ = .

3 —@— Cloud Transfer —%— MargoStore —— UCXStore Moldesign Montage

E - 10! Dack ‘\»\\\# 0 steered ensemble simulations with proxy streaming
1 —A— DataSpaces —+— RedisStore —#— ZMQStore i 1 obus Compute = =— g . L.

] Globus Compute Limit / F 100 - Redis GET — Compare task execution engines e - _ _ Proxystore o MOF Generation: Optimize memory usage

_ % A 10! {FEwPsEndpetis - (4 and data management systems oo

Frontera - Theta
Time (ms)

103 104 10° 106 107 103 104 10° 106 107 0 5 10 15 20 25 0 40 60 80 0 10 20 30 0 50
Makespan (s) Makespan (s) Makespan (s)

No-Op Task Time (s)

g T e B T . R R — =| — Payload Size (bytes) Payload Size (bytes)
10°10110210310%10510510710810° 10°10*1021031010510510710810° PS Endpoint P2P performance is competitive with Plugln System

Input Size (bytes) Input Size (bytes) Redis+SSH tunnels without complex setup. .
Distributed in-memory connectors use RDMA for Apps Execution Frameworks

low-latency and high-bandwidth transfers. Cholesky gdask & python
DOCklng g |-@- Baseline (None) -+- Pickle File == ProxyStore (Redis)

Benchmarks: Round trip task time, P2P 5 — Ownership Failures { Globus o%a RAY L L i

. X . Manual Proxy i Compute
transfer, data flow optimization, streaming Default Proxy Fed. Learning P

ouaSize e DataSie(ten | aaSe by bataszeGyeen | DataSie (e — Reduces key performance bottlenecks in task execution frameworks
throughput, memory usage No Proxy '\I’\'Aacf’lgggi‘é%e #*Parsl v TaskVine . — Proxy model can enable high-level application patterns
Executors: Dask, Globus Compute, Pars|, - . e n Montage Performance Insights — TaPS can enable reliable/reproducible benchmarking for community
ProcessPoolExecutor Automatic prOXyR(;f“:\'/”;j :;S hip manages memory as Synthetic D.“t“ M:"“geme"t — Apps highlight strengths/weaknesses across frameworks — Future Work: Stateful actors, better PZE transfer, new comm. tools
Data management: Baseline, Proxystore, IPFS well as manually implemented approaches. [Files N ProxyStore — Pass-by-ref. key to reduce overheads (ObjectRef or Proxy) — Future Work: Enable future exascale science apps with ProxyStore

Globus Compute Pars| ProcessPoolExecutor Ray

=
o
~

Conclusions & Future Work

/i&

Average Task
Time (ms)
=
S

?x x‘__...aux

=
o
=)

— Proxy is powerful abstraction for performant/portable science apps

THE UNIVERSITY OF

CHICACS Argonne s globus @@

NATIONAL LABORATORY

