
Introduction

Deep learning methods, primarily 

convolutional neural networks (CNNs), 

have proven very effective at image 

classification. CNNs are able to learn 

complex patterns to identify anatomical 

structures with high accuracy from 

medical images. Development of auto-

segmentation networks is important to 

reduce the inherent time requirements 

and variability of manual segmentation. 

However, current research is impeded 

by the computational time required to 

train and tune the CNNs.

Training a CNN requires significant 

floating point operations given their 

approximated 𝑂(𝑛6) time-complexity1. 

While graphics processing units (GPUs) 

are highly optimized for floating point 

operations, they have limited RAM 

capacities and performance scaling 

beyond a few GPUs. High performance 

computing environments such as the

Stampede2 supercomputer at the Texas 

Advanced Computing Center allow 

researchers to execute programs across 

hundreds of compute nodes with 

considerably more RAM than a GPU.

Conclusions

Distributed learning using multiple CPU 

nodes in high performance computing 

environments scales well at low node 

counts. As CNNs used in research 

become larger and more complex, the 

need for computing environments with 

large amounts of RAM become more 

important. The initial results presented are 

promising for optimizing the training of 

CNNs in high performance computing 

environments.

To outperform GPUs, further work needs 

to be done to understand the balance 

between the positive and negative 

impacts of increase batch size. 

Furthermore, network complexity and 

parameter optimization such as learning 

rate reduction schemes could have 

notable impacts on the performance. 

Careful consideration should also be 

given to the complexity of implementing 

these optimization strategies in existing 

neural networks to ensure researchers 

can take advantage of the benefits.

References

1) He, K., & Sun, J. (2015). Convolutional neural networks at 

constrained time cost. 2015 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), 5353-5360.

2) https://github.com/gpauloski/livermask

3) https://portal.tacc.utexas.edu/user-guides/stampede2

4) Sergeev, A., & Balso, M.D. (2018). Horovod: fast and easy 

distributed deep learning in TensorFlow. CoRR, 

abs/1802.05799.

5) Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge 

Nocedal, Mikhail Smelyanskiy & Ping Tak Peter Tang (2016). 

On Large-Batch Training for Deep Learning: Generalization 

Gap and Sharp Minima. CoRR, abs/1609.04836.

initialize workers (nodes)
...
setup model and import data
...
for each epoch {

broadcast variable states to all workers
create ImageDataGenerator(batch_size = n)
while ImageDataGenerator is not empty {

on each worker:
get batch from ImageDataGenerator
train worker on batch

}
average gradients across workers
update model

}

Results

Increasing the effective batch size by 

providing each node a unique batch to 

process reduced the average time per 

epoch to process all of the training data 

as seen in figure 2. Time per epoch 

using 8 KNL nodes is comparable to the 

P5000, and with 16 nodes, the time per 

epoch improved by 60% over the GPU.

To understand the impact of averaging 

gradients across the nodes, we plotted 

the training loss over time in figure 3. 

Performance gains are again clear 

moving from 1 node up to 8 nodes. At 16 

nodes, performance decreases in the 

early stages of training. Furthermore, 32 

nodes performed substantially worse 

indicating the performance loss from 

gradient communication between nodes 

became greater than the performance 

gain from increased batch size.
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Methods

To test the training optimization across 

multiple compute nodes, we used a 2D 

CNN U-Net built with the Keras

Tensorflow API2. This CNN is designed 

to segment liver lesions from CT scans. 

The input is 240 x 240 CT scan slices 

and it outputs images of the same size 

where each pixel is given a 

classification corresponding to the 

segmentation. 

The Stampede2 supercomputer has 

4,200 Intel Knights Landing nodes each 

with 68 cores (4 threads per core) and 

96 GB of DDR4 RAM plus 16GB of 

MCDRAM3. To take advantage of the 

available nodes on Stampede2, each 

node can be provided its own batch to 

process each step during training. The 

batch size can also be increased 

substantially due to the available RAM 

on each node. This results in a higher 

effective batch size and decreases the 

number of steps needed per epoch to 

process all the training data.
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Fig. 1: Modified CNN training routine. The ImageDataGenerator
Class from Keras controls the process of distributing unique 
batches to each node. The source code for the CNN with 
optimizations can be found at 
https://github.com/gpauloski/livermask.

Fig. 2: Speedup of the time to complete one epoch during 
training normalized to 1 KNL node. For small numbers of nodes 
(<4), scaling is approximately linear but as the node count 
increases, scaling performance diminishes. The largest batch 
size possible given the available RAM was used on the KNL 
nodes as well as the reference Nvidia GeForce Titan 6GB and 
Quadro P5000 12GB.

After processing a batch, each node will 

update its gradients. To communicate 

gradients between nodes, we used the 

Horovod Distributed Learning 

Framework which implements a 

wrapper for the CNN optimizer4. 

Horovod averages gradients across 

nodes with allreduce and then updates 

the gradients globally. Figure 1 outlines 

the modified training routine for 

distributed learning.

Testing was performed with 1, 2, 4, 8, 

16, and 32 allocated nodes until the 

validation loss converged. As a 

reference, training was also performed 

on a Nvidia Kepler Titan 6GB and 

Quadro P5000 12GB. A dataset of 

14,909 images was used with 90% of 

the images allocated for training and the 

remaining 10% used for validation. 

Fig. 4: Increasing variability at higher node counts is due to the 
validation being done independently on each node before the 
allreduce step.

Fig. 3: Training loss over time. Performance improve as node 
count increases up to 8/16 nodes which perform on par with 
the P5000. Beyond 16 nodes, performance decreases, and in 
many cases the loss will not converge.

Node Count 1 2 4 8 16 P5000

Loss = -0.75 

(hours)
12.01 7.45 4.65 3.50 4.91 3.47

Loss = -0.76 

(hours)
22.66 12.40 7.60 7.00 6.83 5.42

Table 1: Hours required to reach training losses on -0.75 and -
0.76. 16 nodes performs worse than 8 nodes until later in 
training. 32 nodes was excluded because it failed to converge.

Figure 4 depicts the Dice score on the 

reserved data for validation throughout 

the training session. While figure 2 

shows time per epoch scaling well with 

nodes, the efficiency of each epoch  

decreases in terms of increasing the 

validation dice score. Increasing the 

effective batch size is known to reduce 

a models ability to generalize and 

converge5. This can often be

compensated for by scaling the learning 

rate by the node count, however, 

convergence issues were still present. 


