
Introduction

Deep learning methods, primarily

convolutional neural networks (CNNs),

have proven very effective at image

classification. CNNs are able to learn

complex patterns to identify anatomical

structures with high accuracy from

medical images. Development of auto-

segmentation networks is important to

reduce the inherent time requirements

and variability of manual segmentation.

However, current research is impeded

by the computational time required to

train and tune the CNNs.

Training a CNN requires significant

floating point operations given their

approximated 𝑂(𝑛6) time-complexity1.

While graphics processing units (GPUs)

are highly optimized for floating point

operations, they have limited RAM

capacities and performance scaling

beyond a few GPUs. High performance

computing environments such as the

Stampede2 supercomputer at the Texas

Advanced Computing Center allow

researchers to execute programs across

hundreds of compute nodes with

considerably more RAM than a GPU.

Conclusions

Distributed learning using multiple CPU

nodes in high performance computing

environments scales well at low node

counts. As CNNs used in research

become larger and more complex, the

need for computing environments with

large amounts of RAM become more

important. The initial results presented are

promising for optimizing the training of

CNNs in high performance computing

environments.

To outperform GPUs, further work needs

to be done to understand the balance

between the positive and negative

impacts of increase batch size.

Furthermore, network complexity and

parameter optimization such as learning

rate reduction schemes could have

notable impacts on the performance.

Careful consideration should also be

given to the complexity of implementing

these optimization strategies in existing

neural networks to ensure researchers

can take advantage of the benefits.

References

1) He, K., & Sun, J. (2015). Convolutional neural networks at

constrained time cost. 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 5353-5360.

2) https://github.com/gpauloski/livermask

3) https://portal.tacc.utexas.edu/user-guides/stampede2

4) Sergeev, A., & Balso, M.D. (2018). Horovod: fast and easy

distributed deep learning in TensorFlow. CoRR,

abs/1802.05799.

5) Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge

Nocedal, Mikhail Smelyanskiy & Ping Tak Peter Tang (2016).

On Large-Batch Training for Deep Learning: Generalization

Gap and Sharp Minima. CoRR, abs/1609.04836.

initialize workers (nodes)
...
setup model and import data
...
for each epoch {

broadcast variable states to all workers
create ImageDataGenerator(batch_size = n)
while ImageDataGenerator is not empty {

on each worker:
get batch from ImageDataGenerator
train worker on batch

}
average gradients across workers
update model

}

Results

Increasing the effective batch size by

providing each node a unique batch to

process reduced the average time per

epoch to process all of the training data

as seen in figure 2. Time per epoch

using 8 KNL nodes is comparable to the

P5000, and with 16 nodes, the time per

epoch improved by 60% over the GPU.

To understand the impact of averaging

gradients across the nodes, we plotted

the training loss over time in figure 3.

Performance gains are again clear

moving from 1 node up to 8 nodes. At 16

nodes, performance decreases in the

early stages of training. Furthermore, 32

nodes performed substantially worse

indicating the performance loss from

gradient communication between nodes

became greater than the performance

gain from increased batch size.

Optimizing Deep Learning Methods for Image Segmentation
with Distributed Training
J. Gregory Pauloski1, Zhao Zhang2, Evan Gates1, Dawid Schellingerhout1, John D. Hazle1, David Fuentes1

1Department of Imaging Physics, University of Texas MD Anderson Cancer Center
2Texas Advanced Computing Center

Methods

To test the training optimization across

multiple compute nodes, we used a 2D

CNN U-Net built with the Keras

Tensorflow API2. This CNN is designed

to segment liver lesions from CT scans.

The input is 240 x 240 CT scan slices

and it outputs images of the same size

where each pixel is given a

classification corresponding to the

segmentation.

The Stampede2 supercomputer has

4,200 Intel Knights Landing nodes each

with 68 cores (4 threads per core) and

96 GB of DDR4 RAM plus 16GB of

MCDRAM3. To take advantage of the

available nodes on Stampede2, each

node can be provided its own batch to

process each step during training. The

batch size can also be increased

substantially due to the available RAM

on each node. This results in a higher

effective batch size and decreases the

number of steps needed per epoch to

process all the training data.

1X
1.7X

3.2X

5.3X

8.6X

2.1X

5.4X

0

1

2

3

4

5

6

7

8

9

10

Sp
ee

d
u

p
 (n

o
rm

al
iz

ed
 t

o
 1

 K
N

L
N

o
d

e)

Training Configuration

Time per Training Epoch Speedup

Fig. 1: Modified CNN training routine. The ImageDataGenerator
Class from Keras controls the process of distributing unique
batches to each node. The source code for the CNN with
optimizations can be found at
https://github.com/gpauloski/livermask.

Fig. 2: Speedup of the time to complete one epoch during
training normalized to 1 KNL node. For small numbers of nodes
(<4), scaling is approximately linear but as the node count
increases, scaling performance diminishes. The largest batch
size possible given the available RAM was used on the KNL
nodes as well as the reference Nvidia GeForce Titan 6GB and
Quadro P5000 12GB.

After processing a batch, each node will

update its gradients. To communicate

gradients between nodes, we used the

Horovod Distributed Learning

Framework which implements a

wrapper for the CNN optimizer4.

Horovod averages gradients across

nodes with allreduce and then updates

the gradients globally. Figure 1 outlines

the modified training routine for

distributed learning.

Testing was performed with 1, 2, 4, 8,

16, and 32 allocated nodes until the

validation loss converged. As a

reference, training was also performed

on a Nvidia Kepler Titan 6GB and

Quadro P5000 12GB. A dataset of

14,909 images was used with 90% of

the images allocated for training and the

remaining 10% used for validation.

Fig. 4: Increasing variability at higher node counts is due to the
validation being done independently on each node before the
allreduce step.

Fig. 3: Training loss over time. Performance improve as node
count increases up to 8/16 nodes which perform on par with
the P5000. Beyond 16 nodes, performance decreases, and in
many cases the loss will not converge.

Node Count 1 2 4 8 16 P5000

Loss = -0.75

(hours)
12.01 7.45 4.65 3.50 4.91 3.47

Loss = -0.76

(hours)
22.66 12.40 7.60 7.00 6.83 5.42

Table 1: Hours required to reach training losses on -0.75 and -
0.76. 16 nodes performs worse than 8 nodes until later in
training. 32 nodes was excluded because it failed to converge.

Figure 4 depicts the Dice score on the

reserved data for validation throughout

the training session. While figure 2

shows time per epoch scaling well with

nodes, the efficiency of each epoch

decreases in terms of increasing the

validation dice score. Increasing the

effective batch size is known to reduce

a models ability to generalize and

converge5. This can often be

compensated for by scaling the learning

rate by the node count, however,

convergence issues were still present.

