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Abstract—The research computing ecosystem is increasingly
heterogeneous and diverse. Democratizing access to these es-
sential resources is critical for accelerating research progress.
However, the gap between a high-level workload, such as Python
in a Jupyter notebook, and the resources and interfaces exposed
by HPC systems is significant. Users must securely authenticate,
manage network connections, deploy and manage software,
provision and configure nodes, and manage workload execution.
Globus Compute reduces these barriers by providing a managed,
fire-and-forget model that enables execution of Python functions
across any resource to which a user has access. However, while
Globus Compute has relieved users from many of the challenges
of remote computing, we have observed some inefficiencies that
remain in terms of use. For example, many users wrap external
applications, such as C/C++, Fortran, and even MPI applications,
in Python functions and users must deploy many endpoints
on a single computer to exploit different configurations. In
this paper we describe enhancements to Globus Compute to
address these barriers: an asynchronous, future-based executor
interface for submitting and monitoring tasks, shell and MPI-
based function types, and a multi-user endpoint that can be
deployed by administrators and used by authorized users.

I. INTRODUCTION

High-performance computing (HPC) systems are powerful
tools for tackling complex scientific and engineering prob-
lems. However, the expertise required to use HPC systems
places barriers to adoption. These challenges are magnified
when users need to deploy applications and workflows across
multiple HPC systems. For example, users must securely au-
thenticate with each resource, establish and maintain network
connections, deploy and manage workflow software, provision
nodes from heterogeneous resources, configure environments
for execution, transfer input data, and monitor and manage ex-
ecution of their tasks. Here we describe how Globus Compute,
previously known as funcX [1], and its recent advancements,
reduce these barriers and simplify use of advanced, distributed
computing resources.

Globus Compute is a federated Function-as-a-Service
(FaaS) platform that enables managed execution of Python
functions across distributed computing endpoints. It imple-
ments a hybrid model, much like other Globus services [2],
in which users or administrators first deploy Globus Compute
Agent software on their resources, effectively exposing these

resources to the Globus ecosystem, before they, or others,
can execute functions on those endpoints. Users interact via
a cloud service that provides a managed, fire-and-forget inter-
face, i.e., a single highly-available user interface, while also
buffering submission of tasks and retrieval of results.

Unlike other FaaS platforms, Globus Compute layers a
federated model across existing computing resources, from
laptops to supercomputers. Thus, it is distinct from other work
that federates only Cloud FaaS providers (e.g., AWS Lambda
and Google Cloud Functions) [3]. Globus Compute presents a
unique, highly usable and productive platform for researchers
to make use of distributed computing resources, significantly
lowering barriers to adoption. It removes the need to manage
and maintain network connections, embraces the web-standard
OAuth 2 protocol for authentication and authorization, caches
function submission and results in the cloud, and manages
execution of functions on remote resources, optionally using
containers. Building on the Parsl library [4], Globus Compute
supports dynamic provisioning of nodes from batch schedulers
(e.g., Slurm, PBS, and Flux) and Kubernetes.

Over the past several years, Globus Compute adoption has
grown rapidly. More than 1000 users have executed functions
and more than 4000 have accessed the web interface. Users
have deployed over 12,000 endpoints and used these endpoints
to run 44 million tasks. However, analysis of usage [5] and dis-
cussion with users highlighted several potential opportunities
to improve the platform to further reduce barriers to use. For
example, many users use Python functions to wrap execution
of external applications and codes, such as C/C++ or Fortran
codes, and in some cases to invoke MPI programs. While
not antithetical to the Globus Compute model per se, these
usages present opportunities for greater efficiency if Globus
Compute was aware of the resources and task constraints.
Second, users are deploying many endpoints on a single
computer to exploit different configurations (e.g., queues, node
types, number of nodes) and that for well-used resources, there
are many endpoints running concurrently on behalf of many
users. This presents challenges in terms of overheads and for
administrators managing the many users on their machines.

In this paper, we describe enhancements to Globus Compute
to support these use cases and further simplify adoption of



HPC resources. The Globus Compute SDK and Endpoint
software are available on GitHub [6] and PyPI [7], [8]. Our
contributions are:

• A future-based executor interface for asynchronous work-
load execution.

• A programmatic interface to run Shell commands and
MPI applications as functions in a FaaS platform.

• A new runtime engine that supports dynamic partitioning
of a batch job to run MPI applications concurrently.

• Multi-user endpoints that can be deployed by system
administrators and then accessed by authorized users.

• Discussion of use of the proxy pass-by-reference model
for out-of-band data transfer.

The remainder of the paper is as follows. Section II de-
scribes the Globus Compute model. Section III presents the
Python SDK and the executor interface, ShellFunctions, and
MPIFunctions. Section IV presents the multi-user endpoint.
Section V describes how Globus Transfer and ProxyStore can
be used to deal with large datasets. Section VI discusses use of
Globus Compute in applications. Finally, Section VII presents
related work and Section VIII summarizes our contributions.

II. BACKGROUND

Globus Compute exposes a FaaS interface to users. Users
define functions that they can then execute on remote end-
points. The cloud-hosted Globus Compute web service brokers
user-endpoint communications to transmit functions and input
arguments, and return results, reliably and securely.

Functions: Globus Compute decouples the two tasks of
defining and executing functions. Users write Python functions
that encapsulate the desired computation and can then be
invoked one or more times from different locations and on dif-
ferent resources. These functions can perform data processing,
simulations, or any other logic. While the functions themselves
are written in Python, they may act as an interface to call
programs written in other languages, applications, or scripts.
However, this requires using standard Python libraries to fork
processes, and leaves management of those processes to users.

Function execution is asynchronous. Functions are sent to
the Globus Compute service, which buffers them until the
requested endpoint is online. At that point, tasks are sent to
the endpoint for execution. When the task is complete, the
endpoint returns the results or exception back to the Globus
Compute service. Users can retrieve results asynchronously as
they are stored in the cloud for up to two weeks.

Endpoints: An endpoint is the logical representation of a re-
mote computing resource. Endpoints are created by deploying
the Globus Compute Agent—a pip installable Python code—
on a specific computational resource. When a user invokes
a function through Globus Compute, the system directs the
request to the specified endpoint. The Agent listens for incom-
ing tasks, executes the task on the local resource, monitors
execution, captures errors, and returns results or exceptions
back to the cloud service.

The Globus Compute Agent communicates with cloud-
hosted Globus Compute RabbitMQ message queues via the

AMQPS protocol (TLS/SSL encrypted Advanced Message
Queuing Protocol). The Agent uses Parsl [4] to provision
computing resources and to execute functions. Specifically, it
relies on two abstractions: the Provider to provision resources,
and the Engine to execute functions on those resource.

The Provider abstracts different computing resources, en-
abling Globus Compute endpoints to provision resources
from different resource managers. The abstraction exposes an
interface to obtain resources, check the status of requests,
and to release resources. Globus Compute includes Provider
implementations for many batch schedulers (e.g., Slurm, PBS,
Flux), Kubernetes, and for use of local processes.

The GlobusComputeEngine wraps Parsl’s
HighThroughputExecutor. It uses a pilot job model to
execute tasks on provisioned resources. Specifically, when
started it creates an interchange locally to manage execution
of functions, and deploys a manager on each provisioned
resource. For each manager, it will deploy a set of worker
processes, following the configuration supplied by the user
(e.g., one worker per node, one worker per GPU, or one
worker per core). When a task is ready to be executed, it is
sent by the interchange to an available manager (one that is
online and with available capacity). The workers then retrieve
these tasks, execute them on the provisioned resources, and
return results back to the interchange via the manager. All
communication is with ZeroMQ, optionally using ZMQ
Curve for authentication and encryption. Communication
with nodes is multiplexed via managers to reduce the number
of ports and connections.

Web service: The Globus Compute web service is operated
as a hosted service and provides a single, highly-available
interface for managing endpoints, functions, and tasks. The
service is responsible for buffering tasks and results, ensuring
they are not lost and are transmitted when the appropriate
resources become available. Deployed in Amazon’s Elas-
tic Container Service (ECS), and leveraging various AWS
services (e.g., Relational Database Service, Simple Storage
Service, and Amazon MQ) the architecture is both reliable
and highly scalable through automated scaling, replication, and
geographic distribution. The service is also monitored such
that administrators are notified when there are failures.

The web service is implemented as a FastAPI REST service.
The REST API is deployed in containers on ECS. A relational
database manages state (e.g., registered functions, endpoints,
and tasks). When an endpoint is connected, the web service
creates a pair of RabbitMQ queues for tasks and results.
When a task is submitted, the web service places the task
in the task queue for the specified endpoint. Large task inputs
are stored in S3. The endpoint retrieves tasks from the task
queue, executes them, and returns results to the result queue
for that endpoint. A result processor, a Python application
deployed in containers, monitors the queues and processes
results. Processed results are stored in S3 until they are
retrieved by the user.

Security model: The Globus Compute security model is de-
signed to ensure that all interactions between users, the Globus



Compute service, and endpoints are secure and controlled.
Central to this model is the use of the OAuth2-based Globus
Auth [9] for authentication and authorization, which provides
a secure and flexible way to manage user identities and access
rights. This allows resource owners to control access based
on user roles, ensuring that sensitive resources are protected
from unauthorized access. Additionally, all communications
between the Globus Compute service, users, and endpoints
are encrypted using industry-standard protocols. Furthermore,
Globus Compute employs robust auditing and logging mech-
anisms. Every action performed within the system, such as
function invocation or resource allocation, is logged with de-
tailed metadata. This provides traceability and accountability,
allowing administrators to monitor usage patterns and ensure
compliance with organizational policies.

III. PYTHON SDK
The Globus Compute Python SDK provides a programmatic

interface to Globus Compute. It wraps the Globus Compute
REST API with a Pythonic interface supporting function
registration, function execution, task management (e.g., result
retrieval), and endpoint management.

A. Executor Interface

To better integrate with the Python ecosystem, and provide
a simpler experience for users, we have developed a new
asynchronous, future-based interface. Specifically, we extend
Python’s concurrent.futures.Executor interface by
defining a subclass, GlobusComputeExecutor. The ex-
ecutor interface provides a submit method that takes a
user-defined python function and its arguments and returns
a future for subsequent monitoring and retrieval of results.

The benefits of this interface include the Pythonic program-
ming model for executing tasks and also efficiency when com-
pared with the traditional method requiring repeated polling
for task status and to retrieve results. The Globus Compute Ex-
ecutor abstracts interactions with the Globus Compute REST
API, including registering functions “on-the-fly” and batching
of requests within a time period to avoid many individual
REST requests to run tasks. The executor also instantiates an
AMQPS connection with the Globus Compute web service
that streams results directly and immediately as they arrive
at the server back to the client. This is a far more efficient
paradigm in terms of bytes over the wire, time spent waiting
for results, and boilerplate code to check for results.

Listing 1 shows an example of using the executor to launch
a task and retrieve results.
1 from globus_compute_sdk import Executor
2
3 def some_task(*a, **k):
4 return 1
5
6 with Executor(endpoint_id="...") as ex:
7 fut = ex.submit(some_task)
8 print("Result:", fut.result())

Listing 1: Using the Globus Compute Executor interface to
execute a task.

B. Shell Functions

Many Globus Compute users employ Python functions as an
interface to execute applications, programs in other languages,
or other scripts and binaries. To better support these use
cases we implemented an abstraction for representing a new
type of function: ShellFunction. The ShellFunction allows
for the specification of a command line string, along with
runtime details such as run directory, per-task sandboxing,
and task walltime. A ShellFunction returns a ShellResult that
encapsulates the output from executing the command line
string, wrapping the return code and snippets from the standard
out and error streams.

Listing 2 presents an example ShellFunction that wraps
the Linux “echo” command, accepts a message as input, and
writes output to stdout. The command line string is formatted
at invocation time with the message argument.

1 from globus_compute_sdk import ShellFunction,
Executor

2
3 # Command is formatted with kwargs when invoked
4 sf = ShellFunction("echo '{message}'")
5
6 with Executor(endpoint_id="...") as ex:
7 for msg in ["hello", "hola", "bonjour"]:
8 future = ex.submit(sf, message=msg)
9 shell_result = future.result()
10 print(shell_result.stdout)

Listing 2: ShellFunction used to execute the echo command.

1) Shell results: The output from a ShellFunction is encap-
sulated in a ShellResult with the following fields: the return
code from the execution of the command line supplied, the
last N lines of the stdout stream and stderr stream, and the
formatted command line string that was executed. Globus
Compute will monitor and record the stdout and stderr streams.
By default, it will capture the last 1000 lines of these streams;
however, the number of lines can be configured.

2) Working directory: ShellFunctions executed on a remote
system may operate on files local to the remote system. By
default, the working directory of a ShellFunction is the Globus
Compute endpoint path. Thus, there is potential for ShellFunc-
tions to interfere with one another, for example, by overwriting
files. To mitigate function contention, ShellFunctions can be
configured to execute in a sandbox. When sandbox is enabled
(i.e., specified in the endpoint configuration), Globus Compute
will create a unique directory for each ShellFunction to
execute using the task’s UUID.

3) Walltime: A common requirement when executing a
function remotely is to ensure that resources are not wasted
if a function fails during execution. Because a function may
run forever, oversight is required to potentially kill a process.
We define a walltime keyword argument to ShellFunction
that can be used to specify the maximum duration (in seconds)
after which execution should be terminated. If the execution
is terminated due to reaching the walltime, the return code
will be set to 124: the shell return code when a timeout is
exceeded.



Listing 3 shows an example ShellFunction in which the
walltime is set to one second. In this case, the ShellFunction
wraps the Linux “sleep” command and passes an argument of
two seconds. Globus Compute will interrupt execution and the
return code will be 124.
1 bf = ShellFunction("sleep 2", walltime=1)
2 future = executor.submit(bf)
3 print(future.returncode)

Listing 3: ShellFunction calls sleep with specified walltime.

C. MPI Functions
To better support HPC users, we seek to combine the power

of MPI with the simple FaaS interface for remote computing.
To achieve this goal, we define a new function type: MPI-
Function. MPIFunction is an extension to ShellFunction. It
supports the same interface for specifying the command to
invoke on the endpoint and leverages the same monitoring
support to capture output streams. However, rather than run
a shell command, it executes an MPI application using a
specified MPI launcher.

Given that MPI functions can be configured to use multiple
cores across multiple nodes, we define a resource specification
to describe the particular resources in a machine agnostic man-
ner using the same representation as Parsl [4]. The resource
specification is represented as a Python dictionary and can
be configured with the number of nodes, number of ranks
per node, and number of ranks. The specification is set when
creating the Globus Compute Executor on the client-side. The
resource specification can be configured as shown in Listing 4.
This specification is translated to a machine-specific MPI
launch command by the MPIFunction at runtime, for better
portability across HPC systems.
1 executor.resource_specification = {
2 # Nodes required for the application instance
3 'num_nodes': <int>,
4 # Ranks / app elements to launch per node
5 'ranks_per_node': <int>,
6 # Number of ranks in total
7 'num_ranks': <int>,
8 }

Listing 4: Resource specification template for common MPI
parameters.

1) MPIEngine: MPIFunctions must be executed in an envi-
ronment that supports MPI execution. Unlike Python functions
that are expected to run on a single node with some subset
of the on-node compute resources (CPU/memory), MPI ap-
plications have more complex requirements. Generally, MPI
applications require multiple MPI ranks (processes) launched
across multiple nodes, along with complex affinity needs due
to GPUs and NUMA environments. In a many-task paradigm,
as is the case with Globus Compute, the runtime backend must
be capable of executing multiple MPI applications with varied
requirements concurrently within a single batch job.

To address these requirements we implement a new end-
point engine type: GlobusMPIEngine. GlobusMPIEngine im-
plements advanced functionality to partition a batch job dy-
namically based on user-defined function requirements. It can

automatically discover the resource available within a batch
job on the Slurm and PBSPro batch systems.

When executing an MPIFunction, Globus Compute
automatically prefixes the supplied command with
$PARSL MPI PREFIX which resolves to an appropriate
MPI launcher prefix (e.g., mpiexec -n 4 -host
<NODE1, NODE2>). Listing 5 shows a configuration for a
GlobusMPIEngine using Slurm. In this case, MPI tasks will
be run over four nodes.

1 # Configuration for a Slurm based HPC system
2 display_name: SlurmHPC
3 engine:
4 type: GlobusMPIEngine
5 mpi_launcher: srun
6
7 provider:
8 type: SlurmProvider
9
10 launcher:
11 type: SimpleLauncher
12
13 # Specify # of nodes per batch job that
14 # will be shared by multiple MPIFunctions
15 nodes_per_block: 4

Listing 5: Configuration of a Globus Compute Endpoint to
support MPIFunction execution.

2) Running an MPIFunction: Listing 6 shows an example
MPIFunction that calls the Linux “hostname” command on
every rank it runs on. We supply a resource specification
requesting 2 nodes with a variable number of ranks per node
(from 1 to 2). MPIFunctions return the same ShellResult
described above and capture output streams in the same way.
The output from this example is shown in Listing 7.

1 from globus_compute_sdk import MPIFunction
2
3 func = MPIFunction("hostname")
4 for n in range(1, 2):
5 print(f'n={n}')
6 executor.resource_specification = {
7 "num_nodes": 2,
8 "ranks_per_node": n,
9 }
10 future = executor.submit(func)
11 mpi_result = future.result()
12 print(mpi_result.stdout)

Listing 6: Executing several MPIFunctions with different
resource specifications.

1 n=1
2 exp-14-08
3 exp-14-20
4 n=2
5 exp-14-08
6 exp-14-20
7 exp-14-08
8 exp-14-20

Listing 7: Results from running the example code in Listing 6

IV. MULTI-USER ENDPOINTS

Globus Compute initially supported only single-user end-
points. Endpoints were installed in user space and could be



used exclusively by the user who installed them. Single-
user endpoints are statically configured, and must be restarted
to change their configuration, for example, to increase the
number of nodes allocated. As a result, it is common for
users to run several endpoints on an HPC resource. Further,
administrators have no visibility into the use of their resources
and are unable to easily help debug user problems (e.g.,
with configurations for their resources). To overcome these
challenges we have developed a new multi-user endpoint that
can be installed by administrators and that enables remote use
and dynamic endpoint configuration by users [10].

Fig. 1: Multi-user endpoint architecture. (1) Users specify a
user endpoint configuration when submitting a task to a multi-
user endpoint. (2) The Globus Compute service issues a Start
Endpoint request to the multi-user endpoint. The multi-user
endpoint determines whether an appropriate user endpoint is
currently operating; if not, it spawns a user endpoint on behalf
of the user to meet the task requirements. (3) The user endpoint
connects to the service and receives tasks to perform.

At its core, the multi-user endpoint is a process manager:
it starts user endpoint agents upon request from the Globus
Compute service. Importantly, a multi-user endpoint does not
run tasks for users. It starts child processes (fork()) on the host
(becoming the appropriate local user and dropping privileges),
and lets the user compute endpoint agent (exec()) process tasks
as normal.

We describe below the multi-user endpoint model from the
administrator and user perspective.

A. Administrator Perspective

Administrators can deploy a multi-user endpoint on a shared
resource. They can configure the endpoint with policies re-
garding how users are mapped to local accounts and define
templates controlling how endpoints are used by users.

1) Installation and configuration: Administrators can in-
stall the Globus Compute Agent for supported Linux Dis-
tributions from RPM and Deb repositories, or through pip.
Once installed, they can configure a multi-user endpoint con-
figuration using the same globus-compute-endpoint
configure subcommand as single user endpoints, with an
additional multi-user flag. The administrator must authen-
ticate using Globus Auth to register the multi-user endpoint

with Globus Compute. They can also define metadata used to
describe the endpoint for search and display on the Globus
web application.

2) Identity mapping: When the multi-user endpoint is asked
to start a local user endpoint, an important question is how to
map it to a valid local user and UID. To do so, we use the
identity mapping logic from Globus Connect Server, the agent
software used by Globus Transfer.

Every request from the Globus Compute service to start
a user endpoint includes the identity information of the user
who submitted the request. The multi-user endpoint retrieves
the identity information and compares it against the mapping
file to a) determine if the user is authorized to access the
endpoint; and b) determine the local user account in which to
spawn the user endpoint.

The identity mapping process supports several options: a
default mapping for cases where there is only one allowed
domain, pattern-based mappings, and callouts to external
programs for custom mapping algorithms. With expression-
based mapping, administrators can write rules that extract data
from fields in the Globus identity document to form local
usernames. This works well when there is a common rela-
tionship between user identity information and local account
names. Listing 8 shows a simple example where identities
from the “uchicago.edu” domain are mapped to the same
local username. To simplify mapping, we support a simple
regular expression matching language and provide functions
for common transformations (e.g., ignoring case).

To support more complicated mapping scenarios, we allow
administrators to use external programs (e.g., a Python or Bash
script) to perform the mapping. This allows administrators to
implement more complex mapping logic or consult external
sources of information such as databases or LDAP servers for
mappings. The Globus Compute Agent will make a call to the
specified program for each request.
1 [
2 {
3 "DATA_TYPE": "expression_identity_mapping

#1.0.0",
4 "mappings": [
5 {
6 "source": "{username}",
7 "match": "(.*)@uchicago\\.edu",
8 "output": "{0}"
9 }
10 ]
11 }
12 ]

Listing 8: Identity mapping configuration that will convert any
user with an @uchicago.edu identity to the same username on
the local system

3) Template configuration: One goal of the multi-user end-
point is to simplify use. Many endpoint configuration options
remain static for a single resource (e.g., scheduler type) while
others must adhere to site or HPC resource policies (e.g., node
limits, walltimes). To address this need to simplify use, we use
a template-based approach via which administrators can define
a template for configurable options that are exposed to users.



Administrators can optionally also define a schema for the
template configuration properties to protect against injections
and also (in the future) to help guide users when specifying
their configuration.

We adopt Jinja2 templates as they are commonly used in
Python programs. In the multi-user endpoint configuration, the
administrator can specify a template to use for that endpoint.
Most administrator-installed multi-user endpoints will likely
need at least one templatable field (e.g., account id), but
beyond that, this file can be configurable as required. Listing 9
shows an example template for a resource using Slurm. In
this case, common configurations for the resource are speci-
fied, such as using GlobusComputeEngine, SlurmProvider, and
SrunLauncher. The administrator also restricts users of the
multi-user endpoint to use the “cpu” partition. The configu-
ration defines three configurable properties: nodes per block,
account, and walltime. Each property is mapped to a Jinja
template option, denoted with double braces. Other Jinja
syntax is supported with the use of a default property.

1 engine:
2 type: GlobusComputeEngine
3 nodes_per_block: {{ NODES_PER_BLOCK }}
4
5 provider:
6 type: SlurmProvider
7 partition: cpu
8 account: {{ ACCOUNT_ID }}
9 walltime: {{ WALLTIME|default("00:30:00") }}
10
11 launcher:
12 type: SrunLauncher

Listing 9: Multi-user configuration template specifying fixed
provider type and partition, while enabling users to configure
account and walltime.

When a user passes a configuration to the multi-user
endpoint, the endpoint first validates that the configuration
document meets the specified schema. It then forks and drops
privileges, passing the user-provided configuration data to
the administrator-written template via a Jinja processor. This
configuration is then used to start the user endpoint.

Note that while we focus here on benefits to administrators,
non-administrators also benefit from this feature. Rather than
having to manage multiple endpoint configurations (for exam-
ple, charging different HPC accounts, changing provisioned
cluster size, or choosing different walltime limits), a user can
write a template to allow all of these items to be specified at
task submission time.

4) Allowed functions: Administrators may want to restrict
the functions that can be executed on the endpoint, for ex-
ample, when deploying portals or science gateways providing
compute capabilities for communities. The multi-user endpoint
can be configured with permitted functions by specifying a list
of function UUIDs. In early use of this feature, administrators
have implemented an out-of-band process in which they man-
ually review function code before adding the UUIDs to the
allowed function list. This feature relies on the fact that all
registered Globus Compute functions are immutable.

5) Authentication policies: The policies described above
are implemented at the compute endpoint. To provide more
flexible authentication and authorization policies, we also
support cloud-enforcement of particular policies. In these
cases, the Globus Compute service validates policies before
submitting a request to the endpoint. We support a small
set of policies, defined via Globus Auth and shareable with
other Globus services. These policies can express required
authentication domains or excluded domains, require that
users must have authenticated within the given session with
a particular identity provider, or have authenticated within a
particular period of time.

B. User Perspective

Users can submit tasks to a multi-user endpoint in the
same way as they currently do with single-user endpoints.
The general workflow is as follows. They first discover the
ID of a multi-user endpoint, for example via resource-specific
documentation or via search in the Globus Compute web
application or API. They then configure their client code to
submit tasks to that endpoint via the executor API. When
they submit the tasks, the multi-user endpoint spawns the user
endpoint, and subsequent communication is directly with the
single user endpoint. Note that users do not know that a user
endpoint process is spawned; nor do they need a new ID to
submit to the spawned endpoint. Once the submitted tasks are
completed, the user endpoint is destroyed.

One difference from a user’s perspective, in addition to
no longer needing to install or maintain their own endpoints,
is that users can now specify a resource configuration when
defining their executor. Listing 10 shows an example using
the executor interface with the resource configuration. The
resource configuration is defined as a Python dictionary and
passed to the executor before use. The user configuration must
specify all of the required attributes from the template file.

1 from globus_compute_sdk import Executor
2
3 uep_conf = {
4 "NODES_PER_BLOCK": 64
5 "ACCOUNT_ID": "314159265",
6 "WALLTIME": "00:20:00"
7 }
8
9 mep_ep_id = "..."
10
11 with Executor(endpoint_id=mep_ep_id) as gce:
12 gce.user_endpoint_config = uep_conf
13 fut = gce.submit(hello_world)
14 res = fut.result()

Listing 10: User configuration to make use of the multi-user
configuration template from Listing 9.

Listing 10 shows how users refer only to a single multi-
user endpoint ID when creating the executor and submitting
tasks. However, it is possible for users to define different
configurations that lead to creation of new user endpoints. To
handle this mapping, Globus Compute maintains a mapping
between a hash of the configuration and the user endpoint
that is spawned. Thus, creation of executors with the same



user configurations will direct tasks to the same user endpoint.
Users can therefore force use of different user endpoints by
modifying the configuration such that the hash is different.

C. Discussion

The multi-user endpoint provides a number of important
benefits to both users and administrators.

Lowering Barriers of Use: HPC systems often have unique
configurations and tools for running tasks. As a result, con-
figuration of a Globus Compute endpoint can be complicated
for end users. Shifting the burden of configuration to HPC
administrators (experts in their own systems) allows end users
to submit functions without managing unnecessary-to-their-
research boilerplate such as SSH configuration details, a spe-
cific cluster’s firewall policy, or how to specify the resource’s
scheduler, options, and so forth.

Improved Access Control: With multi-user endpoints, ad-
ministrators have granular control over user access permissions
and resource usage. User access is controlled by the identity
mappings to local user accounts, and can be augmented at
the web service layer through authentication policies. All
limits placed on users through scheduler controls as well as
standard Unix limits are respected by the multi-user endpoint.
Consequently, limited access can be granted to users without
the need for SSH access to the machine.

Efficient Resource Utilization: Multi-user compute end-
points allow administrators to optimize resource allocation and
utilization by creating predefined configurations for users or
groups of users. For example, an administrator may provide
full access to a select group, while providing only limited
access to a wider set of users.

Improved user experience: The multi-user model removes
the need for users to log in deploy and manage endpoints.
It also removes the need to maintain multiple endpoints for
different configurations. Instead, all configuration can be done
remotely via Globus Compute APIs.

V. DATA MOVEMENT

Globus Compute limits the amount of data that can be
passed to, or returned from a task to 10 MB. For data sizes
beyond 10 MB, such as large data frames, files, or machine
learning models, external transfer methods can be used, such
as Globus Transfer and ProxyStore.

A. Globus Transfer

A simple solution for data movement is to write data to a
local file system, replacing task arguments or results with file
paths to the corresponding objects. However, if applications
require access to that data, it must be then moved between
Globus Compute endpoints. Globus transfer, which offers
a secure, fire-and-forget model for reliable and performant
file transfer between Globus Connect endpoints [2], can be
used for this purpose. Globus Connect software is widely
deployed on research computing facilities (there are more than
60,000 active endpoints at the time of writing), and Globus
Connect Personal endpoints can be configured as needed when

leveraging personal or edge devices. As with Globus Compute,
authentication is provided through Globus Auth and thus
Globus Compute and Transfer can be easily used together.

B. ProxyStore

ProxyStore [11] streamlines data flow management in dis-
tributed Python applications. At its core is the transparent
object proxy, a reference-like object that refers to an object
in distributed storage. The proxy is “transparent” because it
automatically resolves its target object when first used and
then forwards all operations on itself to the target.

A proxy is initialized with a factory, a callable object that,
when invoked, retrieves the target from remote storage. Thus,
the complexity of interacting with low-level communication
protocols and storage mediums is encapsulated within the
factory. The proxy can be efficiently passed around without
the consumer of the proxy needing to be aware of the
communication mechanisms being used.

This approach effectively combines the advantages of pass-
by-reference and pass-by-value patterns and yields many bene-
fits for Globus Compute applications. Proxying task arguments
and results avoids transfer of large objects through the cloud
service which improves task latency and circumvents the
10 MB payload limit. Task code does not need to be modified
to work with proxies due to their transparent behavior. Objects
reused by many tasks can be cached in the worker process.
Proxies can leverage many communication channels and stor-
age systems to fit the specific deployment. For example, TCP,
RDMA, objects stores, and shared file systems can be used
when the client and workers are located within the same site,
and peer-to-peer methods (Globus Transfer and UDP hole
punching) are provided for wide-area deployments.

ProxyStore can be easily integrated into Globus Com-
pute applications. Initializing the Store interface and cre-
ating a proxy of an object requires only a few lines of
code. More sophisticated applications can use the Executor
wrapper provided by ProxyStore to wrap their Globus Com-
pute Executor. This wrapper automatically proxies task
arguments and results based on a user-defined policy (e.g.,
object size or type) and will clean up proxied objects based
on the lifetimes of the tasks with which the proxies are
associated [12].

VI. DISCUSSION

Since November 2022, almost 17 million tasks have been
executed with Globus Compute. We see in Fig. 2, which shows
tasks per day, increasing and more consistent use over time.

Multi-user endpoints were released in April, 2024. By
August 2024, 87 multi-user endpoints had been deployed and
used to spawn 1718 user endpoints: more than 13% of the
then total 12,418 Globus Compute endpoints. We outline in the
following some of the purposes to which multi-user endpoints
are being applied.

Resource scheduling: Delta [13] builds on Globus Com-
pute to provide a single interface for task submission to
many endpoints. Delta profiles the execution of functions on
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Fig. 2: Task invocations per day, truncated at 100,000 tasks from November 28, 2022 to August 14, 2024.

different endpoints, constructing a predictive model that can
estimate runtime based on the specific capabilities of each
resource. With this model, Delta can make informed decisions
about where to schedule workloads in the most effective
and timely manner, maximizing the overall efficiency of the
system. GreenFaaS [14] uses a similar model, but focused on
improving the sustainability and energy efficiency of FaaS
workloads. GreenFaaS deploys an energy monitor alongside
the Globus Compute Endpoint and captures energy use as tasks
are executed. It uses this information to then schedule tasks
to specific resources based on predicted energy use.

Delta and GreenFaaS benefit from the dynamic configura-
tion of endpoints provided by multi-user endpoints. They can
remotely create user endpoints with specific configurations that
best match submitted workload. They can also dynamically
resize configured resources to reduce overprovisioning.

Real-time analysis: The Advanced Photon Source (APS)
at Argonne National Laboratory uses Globus Flows [15]
with Globus Compute to perform near-real-time analysis of
synchrotron workloads by leveraging resources at the Argonne
Leadership Computing Facility (ALCF) [16]. Globus Flows
orchestrates data transfer, processing, and publication tasks us-
ing Globus Compute to execute functions to perform analysis,
create visualizations, extract metadata, and perform other tasks
such as training machine learning models [17], [18]. This ap-
proach enables dynamic, on-demand allocation of computing
resources necessary to meet the demands of the beamlines.
Multi-user endpoints enable the real-time computation to be
adapted to the needs of the acquired data. Thus, the flow can
provision resources suitable to handle incoming data, and de-
provision resources when the task is complete.

Science Gateways: OpenCosmo and Earth Science Grid
Federation (ESGF) [19] build on Globus Compute to deliver
analysis functionality directly to users via a web portal.
Through these portals, users can submit analysis tasks, which
are subsequently routed to Globus Compute and executed
by an ALCF community service account. To adhere to the
strict security requirements of the ALCF, these projects rely
on Globus Compute’s ability to restrict execution exclusively
to specific, pre-approved functions. This ensures that only
authorized operations can be performed.

VII. RELATED WORK

Cloud FaaS systems, such as Amazon Lambda [20], Azure
Functions [21], and Google Cloud Functions [22], enable users
to run code in response to events without provisioning or man-
aging servers. These platforms allow users to deploy small,
modular functions that automatically scale with demand, mak-
ing them ideal for handling variable workloads. However,
unlike Globus Compute, which can support workloads of any
size, including MPI workloads, that may be distributed across
diverse resources, cloud FaaS services are primarily confined
to their respective platforms.

Open source FaaS systems such as Apache OpenWhisk [23],
Fn [24], Kubeless [25], Abaco [26], ChainFaaS [27], and
DFaaS [28] enable FaaS platforms to be deployed on local
resources. These systems primarily use Kubernetes for deploy-
ment and are limited to use on a single computing resource.
ChainFaaS uses a blockchain-based approach for leveraging
idle personal computers in a volunteer computing model.
DFaaS implements a federated and decentralized model for
edge devices via use of a peer-to-peer model. These platforms
do not provide the same managed computation nor do they
support HPC resources.

rFaaS [29] is a FaaS system designed specifically for HPC.
It extends the traditional FaaS model with RDMA to accel-
erate the execution of functions HPC systems. In rFaaS each
function is invoked by directly writing the input data into the
memory of the designated worker, providing efficient and low-
latency execution across distributed systems. Like the open
source systems above, rFaaS is designed for single deployment
on a resource, rather than federated deployment across HPC
resources. It may be possible to leverage rFaaS concepts in
the Globus Compute Agent to improve performance.

Many tools and libraries have developed to abstract the
challenges of using different batch schedulers, enabling job
submission and monitoring without requiring users to nav-
igate the specific nuances of each scheduler. For instance,
SAGA [30], DRMAA [31], and PSI/J [32] offer unified
interfaces that allow users to submit batch jobs seamlessly
across different schedulers. Some workflow systems, such
as Parsl, also facilitate remote computing. These tools are
responsible for orchestrating the execution of tasks on a



designated resource and rely on SSH connections to remotely
act on resources. Globus Compute builds on the Parsl library
to both abstract different batch schedulers and orchestrate task
execution within an endpoint.

Open OnDemand [33] provides a web-based interface for
remote access to HPC systems, allowing users to log in
with their institutional credentials, manage data, and create
and manage computational jobs. Open OnDemand employs
templates for batch jobs that are then mapped to the underlying
scheduler’s batch submission files. Open OnDemand operates
as a web application and uses Apache-supported authentication
methods. Identity mapping is handled similarly to Globus
Compute, using static mappings, regex patterns, and custom
scripts. Globus Compute provides a higher-level interface
designed specifically for executing functions across multiple
connected endpoints.

VIII. SUMMARY

Globus Compute’s hybrid cloud-edge model can signifi-
cantly reduce barriers for adopting heterogeneous, specialized,
and high-performance remote computing infrastructure. Early
use of Globus Compute has shown its suitability for a range
of use cases, but also highlighted areas for enhancement
that could simplify use. In this paper, we presented new
features designed to better support these use cases: an executor
API for simple invocation, multi-user endpoints to separate
configuration and management responsibilities between users
and administrators, ShellFunctions and MPIFunctions to bet-
ter support HPC users, and pass-by-reference data transfer
methods that avoid moving data through the cloud service.
We described how these features have been designed and the
advantages they offer to different user communities.
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