
The Diminishing Returns of Masked Language Models to Science
Zhi Hong∗, Aswathy Ajith∗, Gregory Pauloski∗, Eamon Duede†,

Kyle Chard∗‡, Ian Foster∗‡
∗Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

†Department of Philosophy and Committee on Conceptual and Historical Studies of Science,
University of Chicago, Chicago, IL 60637, USA

\Public.Resource.Org, Healdsburg, CA 95448, USA
‡Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60615, USA

Abstract

Transformer-based masked language models
such as BERT, trained on general corpora,
have shown impressive performance on down-
stream tasks. It has also been demonstrated
that the downstream task performance of such
models can be improved by pretraining larger
models for longer on more data. In this
work, we empirically evaluate the extent to
which these results extend to tasks in sci-
ence. We use 14 domain-specific transformer-
based models (including SCHOLARBERT, a
new 770M-parameter science-focused masked
language model pretrained on up to 225B to-
kens) to evaluate the impact of training data,
model size, pretraining and finetuning time on
12 downstream scientific tasks. Interestingly,
we find that increasing model sizes, training
data, or compute time does not always lead to
significant improvements (i.e., > 1% F1), if
at all, in scientific information extraction tasks
and offered possible explanations for the sur-
prising performance differences.

1 Introduction

Massive growth in the number of scientific publi-
cations places considerable cognitive burden on
researchers (Teplitskiy et al., 2022). Language
models can potentially serve as a tool to alleviate
this burden by automating the scientific knowledge
extraction process. BERT (Devlin et al., 2019) was
pretrained on a general corpus (BooksCorpus and
Wikipedia) which differs from scientific literature
in terms of the context, terminology, and writing
style (Ahmad, 2012). Subsequently, other masked
language models have since been pretrained on
domain-specific scientific corpora (Gu et al., 2021;
Huang and Cole, 2022; Beltagy et al., 2019) with
the goal of improving downstream task perfor-
mance. (Here, we use the term domain to indicate a
specific scientific discipline such as biomedical sci-
ence or computer science.) Other studies (Liu et al.,
2019; Kaplan et al., 2020) explored the impact of

varying model size, training corpus size, and com-
pute time on downstream task performance. How-
ever, no previous work has investigated how these
parameters affect science-focused models.

In this study, we train a series of scientific lan-
guage models, called SCHOLARBERT, on a large,
multidisciplinary scientific corpus consisting of
225B tokens to understand the effects of model
size, data size, as well as pretraining and finetun-
ing epochs on downstream task performance. We
find that for information extraction tasks, the pri-
mary application for scientific language models,
the performance gains by training a larger model
for longer with more data are not robust—they are
highly dependent on the individual tasks. We make
the SCHOLARBERT models and a sample of the
training corpus publicly available to encourage fur-
ther studies.

2 Related Work

Prior research (Kaplan et al., 2020; Brown et al.,
2020; Liu et al., 2019) has explored the effects of
varying model size, dataset size, and amount of
compute on language model performance.

Kaplan et al. (2020) demonstrated that cross-
entropy training loss scales as a power-law with
model size, dataset size, and compute time for
unidirectional decoder-only architectures. Brown
et al. (2020) showed that the few-shot learning abil-
ities of language models can be improved by us-
ing larger models. However, both studies explored
only the Generative Pre-trained Transformer (GPT),
an autoregressive generative model (Brown et al.,
2020).

By comparing BERT-Base (110M parameters)
and BERT-Large (340M parameters), Devlin et al.
(2019) showed that masked language models can
also benefit from larger models. Likewise, the
RoBERTa (Liu et al., 2019) paper demonstrates
how BERT models can benefit from being trained
for longer periods, with bigger batches, and with
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more data.
Models such as BERT and RoBERTa were pre-

trained on general corpora. To boost performance
on scientific downstream tasks, SciBERT (Belt-
agy et al., 2019), PubMedBERT (Gu et al., 2021),
BioBERT (Lee et al., 2020), and MatBERT (Tre-
wartha et al., 2022) were trained on domain-
specific text with the goal of enhancing perfor-
mance on tasks requiring domain knowledge. Yet,
as mentioned earlier, there is no work on how that
task performance varies with pre-training parame-
ters.

3 Data and Methodology

We outline the pretraining dataset, related models
to which we compare performance, and the archi-
tecture and pretraining process used for creating
the SCHOLARBERT models.

3.1 The Public Resource Dataset

We pretrain the SCHOLARBERT models on a
dataset provided by Public.Resource.Org, Inc.
(“Public Resource”), a nonprofit organization based
in California. This dataset was constructed from
a corpus of 85M journal article PDF files, from
which the Grobid tool, version 0.5.5, was used
to extract text (GROBID). Not all extractions
were successful, because of corrupted or badly en-
coded PDF files. We work here with text from
∼75M articles in this dataset, categorized as 45.3%
biomedicine, 23.1% technology, 20.0% physical
sciences, 8.4% social sciences, and 3.1% arts &
humanities. (A sample of the extracted texts and
corresponding original PDFs is available in the
Data attachment for review purposes.)

3.2 Models

We consider 14 BERT models: seven from exist-
ing literature (BERT-Base, BERT-Large, SciBERT,
PubMedBERT, BioBERT v1.2, MatBERT, and Bat-
teryBERT: Appendix A); and seven SCHOLAR-
BERT variants pretrained on different subsets of
the Public Resource dataset (and, in some cases,
also the WikiBooks corpus). We distinguish these
models along the four dimensions listed in Ta-
ble 1: architecture, pretraining method, pretrain-
ing corpus, and casing. SCHOLARBERT and
SCHOLARBERT-XL, with 340M and 770M pa-
rameters, respectively, are the largest science-
specific BERT models reported to date. Prior lit-
erature demonstrates the efficacy of pretraining

BERT models on domain-specific corpora (Sun
et al., 2019; Fabien et al., 2020). However, the
ever-larger scientific literature makes pretraining
domain-specific language models prohibitively ex-
pensive. A promising alternative is to create
larger, multi-disciplinary BERT models, such as
SCHOLARBERT, that harness the increased avail-
ability of diverse pretraining text; researchers can
then adapt (i.e., finetune) these general-purpose
science models to meet their specific needs.

3.3 SCHOLARBERT Pretraining

We randomly sample 1%, 10%, and 100% of the
Public Resource dataset to create PRD_1, PRD_10,
and PRD_100. We pretrain SCHOLARBERT mod-
els on these PRD subsets by using the RoBERTa
pretraining procedure, which has been shown to
produce better downstream task performance in
a variety of domains (Liu et al., 2019). See Ap-
pendix B.2 for details.

4 Experimental Results

We first perform sensitivity analysis across Scholar-
BERT pretraining dimensions to determine the
trade-off between time spent in pretraining versus
finetuning. We also compare the downstream task
performance of SCHOLARBERT to that achieved
with other BERT models. Details of each evalua-
tion task are in Appendix C.

4.1 Sensitivity Analysis

We save checkpoints periodically while pretrain-
ing each SCHOLARBERT(-XL) model. In this
analysis, we select the checkpoints at ∼0.9k, 5k,
10k, 23k, and 33k iterations based on the decrease
of training loss between iterations. We observe
that pretraining loss decreases rapidly until around
10 000 iterations; further training to convergence
(roughly 33 000 iterations) yields small decreases
of training loss: see Figure 1 in Appendix.

To measure how downstream task performance
is impacted by pre-training and finetuning time,
we finetune each of the checkpointed models for 5
and 75 epochs. We observe the following: (1) The
under-trained 0.9k-iteration model sees the biggest
boost in the F1 scores of downstream tasks (+8%)
with more finetuning, but even with 75 epochs of
finetuning the 0.9k-iteration models’ average F1
score is still 19.9 percentage points less than that
of the 33k-iteration model with 5 epochs of fine-
tuning. (2) For the subsequent checkpoints, the



Model Architecture Pretraining Method Casing Pretraining Corpus Domain Tokens
BERT_Base BERT-Base BERT Cased Wiki + Books Gen 3.3B
SciBERT BERT-Base BERT Cased SemSchol Bio, CS 3.1B
PubMedBERT BERT-Base BERT Uncased PubMedA + PMC Bio 16.8B
BioBERT_1.2 BERT-Base BERT Cased PubMedB + Wiki + Books Bio, Gen 7.8B
MatBERT BERT-Base BERT Cased MatSci Mat 8.8B
BatteryBERT BERT-Base BERT Cased Battery Mat 5.2B
BERT_Large BERT-Large BERT Cased Wiki + Books Gen 3.3B
ScholarBERT_1 BERT-Large RoBERTa-like Cased PRD_1 Sci 2.2B
ScholarBERT_10 BERT-Large RoBERTa-like Cased PRD_10 Sci 22B
ScholarBERT_100 BERT-Large RoBERTa-like Cased PRD_100 Sci 221B
ScholarBERT_10_WB BERT-Large RoBERTa-like Cased PRD_10 + Wiki + Books Sci, Gen 25.3B
ScholarBERT_100_WB BERT-Large RoBERTa-like Cased PRD_100 + Wiki + Books Sci, Gen 224.3B
ScholarBERT-XL_1 BERT-XL RoBERTa-like Cased PRD_1 Sci 2.2B
ScholarBERT-XL_100 BERT-XL RoBERTa-like Cased PRD_100 Sci 221B

Table 1: Characteristics of the 14 BERT models considered in this study. The BERT-Base and -Large architectures
are described in (Devlin et al., 2019); the BERT-XL architecture has 36 layers, hidden size of 1280, and 20 heads.
Details of the pretraining corpora are in Table 4 in the Appendix. The domains are Bio=biomedicine, CS=computer
science, Gen=general, Mat=materials science and engineering, and Sci=broad scientific.

performance gains from more finetuning decreases
as the number of pre-training iterations increases.
The average downstream task performance of the
33k-iteration model is only 0.39 percentage points
higher with 75 epochs of finetuing than with 5
epochs. Therefore, in the remaining experiments,
we use the SCHOLARBERT(-XL) model that was
pretrained for 33k iterations and finetuned for 5
epochs.

4.2 Finetuning

We finetuned the SCHOLARBERT models and the
state-of-the-art scientific models listed in Table 1
on NER, relation extraction, and sentence classi-
fication tasks. F1 scores for each model-task pair,
averaged over five runs, are shown in Tables 2 and 3.
For NER tasks, we use the CoNLL NER evalua-
tion Perl script (Sang and De Meulder, 2003) to
compute F1 scores for each test.

Tables 2 and 3 show the results, from which we
can make the following observations: (1) With
the same training data, a larger model cannot
always achieve significant performance improve-
ments. BERT-Base achieved F1 scores within 1
percentage point of BERT-Large on 6/12 tasks;
SB_1 achieved F1 scores within 1 percentage point
of SB-XL_1 on 7/12 tasks; SB_100 achieved F1
scores within 1 percentage point of SB-XL_100 on
6/12 tasks. (2) With the same model size, a model
pretrained on more data cannot guarantee signifi-
cant performance improvements. SB_1 achieved
F1 scores within 1 percentage point of SB_100 on
8/12 tasks; SB_10_WB achieved F1 scores within
1 percentage point of SB_100_WB on 7/12 tasks;

SB-XL_1 achieved F1 scores within 1 percentage
point of SB-XL_100 on 10/12 tasks. (3) Domain-
specific pretraining cannot guarantee significant
performance improvements. The Biomedical do-
main is the only domain where we see the on-
domain model (i.e., pretrained for the associated
domain; marked with underlines; in this case is
PubMedBERT) consistently outperformed models
pretrained on off-domain or more general corpora
by more than 1 percentage point F1. The same
cannot be said for CS, Materials, or Multi-Domain
tasks.

4.3 Discussion

Here we offer possible explanations for the three
observations stated above. (1) The nature of the
task is more indicative of task performance than
the size of the model. In particular, with the same
training data, a larger model size impacts perfor-
mance only for relation extraction tasks, which
consistently saw F1 scores increase by more than 1
percentage point when going from smaller models
to larger models (i.e., BERT-Base to BERT-Large,
SB_1 to SB-XL_1, SB_100 to SB-XL_100). In
contrast, the NER and sentence classification tasks
did not see such consistent significant improve-
ments. (2) Our biggest model, SCHOLARBERT-
XL, is only twice as large as the original BERT-
Large, but its pretraining corpus is 100X larger.
The training loss of the SCHOLARBERT-XL_100
model dropped rapidly only in the first ∼10k itera-
tions (Fig. 1 in Appendix), which covered the first
1/3 of the PRD corpus, thus it is possible that the
PRD corpus can saturate even our biggest model.



Domain Biomedical CS Materials Multi-Domain Sociology
Dataset BC5CDR JNLPBA NCBI-Disease ChemDNER SciERC MatSciNER ScienceExam Coleridge Mean

BERT-Base 85.36 72.15 84.28 84.84 56.73 78.51 78.37 57.75 74.75
BERT-Large 86.86 72.80 84.91 85.83 59.20 82.16 82.32 57.46 76.44

SciBERT 88.43 73.24 86.95 85.76 59.36 82.64 78.83 54.07 76.16
PubMedBERT 89.34 74.53 87.91 87.96 59.03 82.63 69.73 57.71 76.11

BioBERT 88.01 73.09 87.84 85.53 58.24 81.76 78.60 57.04 76.26
MatBERT 86.44 72.56 84.94 86.09 58.52 83.35 80.01 56.91 76.10

BatteryBERT 87.42 72.78 87.04 86.49 59.00 82.94 78.14 59.87 76.71
SB_1 87.27 73.06 85.49 85.25 58.62 80.87 82.75 55.34 76.08

SB_10 87.69 73.03 85.65 85.80 58.39 80.61 83.24 53.41 75.98
SB_100 87.84 73.47 85.92 85.90 58.37 82.09 83.12 54.93 76.46

SB_10_WB 86.68 72.67 84.51 83.94 57.34 78.98 83.00 54.29 75.18
SB_100_WB 86.89 73.16 84.88 84.31 58.43 80.84 82.43 54.00 75.62
SB-XL_1 87.09 73.14 84.61 85.81 58.45 82.84 81.09 55.94 76.12

SB-XL_100 87.46 73.25 84.73 85.73 57.26 81.75 80.72 54.54 75.68

Table 2: NER F1 scores for each model. Models are finetuned five times for each dataset and the average result is
presented. Underlined results represent the F1-scores of models trained on in-distribution data for the given task,
and bolded results indicate the best performing model on that task. SB = SCHOLARBERT.

Domain CS Biomedical Multi-Domain Materials
Dataset SciERC ChemProt PaperField Battery Mean

BERT-Base 74.95 83.70 72.83 96.31 81.95
BERT-Large 80.14 88.06 73.12 96.90 84.56

SciBERT 79.26 89.80 73.19 96.38 84.66
PubMedBERT 77.45 91.78 73.93 96.58 84.94

BioBERT 80.12 89.27 73.07 96.06 84.63
MatBERT 79.85 88.15 71.50 96.33 83.96

BatteryBERT 78.14 88.33 73.28 96.06 83.95
SB_1 73.01 83.04 72.77 94.67 80.87

SB_10 75.95 82.92 72.94 92.83 81.16
SB_100 76.19 87.60 73.14 92.38 82.33

SB_10_WB 73.17 81.48 72.37 93.15 80.04
SB_100_WB 76.71 83.98 72.29 95.55 82.13

SB-XL_1 74.85 90.60 73.22 88.75 81.86
SB-XL_100 80.99 89.18 73.66 95.44 84.82

Table 3: F1 scores for each model on Relation Extraction (SciERC, ChemProt) and Sentence Classification (Pa-
perField, Battery) tasks. Models are finetuned five times for each dataset and the average result is presented.
Underlined results represent the F1-scores of models trained on in-distribution data for the given task, and bolded
results indicate the best performing model on that task. SB = SCHOLARBERT.

(Kaplan et al., 2020; Hoffmann et al., 2022). (3)
Finetuning can compensate for missing domain-
specific knowledge in pretraining data. While pre-
training language models on a specific domain can
help learn domain-specific concepts, finetuning can
also fill holes in the pretraining corpora’s domain
knowledge, as long as the pretraining corpus incor-
porates the characteristics specific to the finetuning
dataset.

5 Conclusions

We have reported experiments that compare and
evaluate the impact of various parameters (model
size, pretraining dataset size and breadth, and pre-
training and finetuning lengths) on the performance
of different language models pretrained on scien-
tific literature. Our results encompass 14 existing
and newly-developed BERT-based language mod-
els across 12 scientific downstream tasks.

We find that model performance on downstream
scientific information extraction tasks is not im-
proved significantly or consistently by increasing

any of the four parameters considered (model size,
amount of pretraining data, pretraining time, fine-
tuning time). We attribute these results to both the
power of finetuning and limitations in the evalua-
tion datasets, as well as (for the SCHOLARBERT
models) small model sizes relative to the large pre-
training corpus.

We will make all pretrained SCHOLARBERT
models, plus a subset of the Public Resource
Dataset, freely available online. (We are not per-
mitted to share the full Public Resource Dataset.)

Limitations

Our 12 labeled test datasets are from just five do-
mains (plus two multi-disciplinary); five of the 12
are from biomedicine. This imbalance, which re-
flects the varied adoption of NLP methods across
domains, means that our evaluation dataset is nec-
essarily limited. Our largest model, with 770M
parameters, may not be sufficiently large to demon-
strate scaling laws for language models. We also
aim to extend our experiments to tasks other than



NER, relation extraction, and text classification,
such as question-answering and textual entailment
in scientific domains.
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A Extant BERT-based models

Devlin et al. (2019) introduced BERT-Base and
BERT-Large, with ∼110M and ∼340M parame-
ters, as transformer-based masked language mod-
els conditioned on both the left and right contexts.
Both are pretrained on the English Wikipedia +
BooksCorpus datasets.

SciBERT (Beltagy et al., 2019) follows the
BERT-Base architecture and is pretrained on data
from two domains, namely, biomedical science and
computer science. SciBERT outperforms BERT-
Base on finetuning tasks by an average of 1.66%
and 3.55% on biomedical tasks and computer sci-
ence tasks, respectively.

BioBERT (Lee et al., 2020) is a BERT-Base
model with a pretraining corpus from PubMed ab-
stracts and full-text PubMedCentral articles. Com-
pared to BERT-Base, BioBERT achieves improve-
ments of 0.62%, 2.80%, and 12.24% on biomedical
NER, biomedical relation extraction, and biomedi-
cal question answering, respectively.

PubMedBERT (Gu et al., 2021), another BERT-
Base model targeting the biomedical domain, is
also pretrained on PubMed and PubMedCentral
text. However, unlike BioBERT, PubMedBERT
is trained as a new BERT-Base model, using text
drawn exclusively from PubMed and PubMedCen-
tral. As a result, the vocabulary used in Pub-
MedBERT varies significantly from that used in
BERT and BioBERT. Its pretraining corpus con-
tains 3.1B words from PubMed abstracts and 13.7B
words from PubMedCentral articles. PubMed-
BERT achieves state-of-the-art performance on
the Biomedical Language Understanding and Rea-
soning Benchmark, outperforming BERT-Base by
1.16% (Gu et al., 2021).

MatBERT (Trewartha et al., 2022) is a materials
science-specific model pretrained on 2M journal
articles (8.8B tokens). It consistently outperforms
BERT-Base and SciBERT in recognizing materials
science entities related to solid states, doped mate-
rials, and gold nanoparticles, with ∼10% increase
in F1 score compared to BERT-Base, and a 1% to
2% improvement compared to SciBERT.

BatteryBERT (Huang and Cole, 2022) is a model
pretrained on 400 366 battery-related publications
(5.2B tokens). BatteryBERT has been shown to
outperform BERT-Base by less than 1% on the
SQuAD question answering task. For battery-
specific question-answering tasks, its F1 score is
around 5% higher than that of BERT-base.

B ScholarBERT Pretraining Details

B.1 Tokenization
The vocabularies generated for PRD_1 and
PRD_10 differed only in 1–2% of the tokens; how-
ever, in an initial study, the PRD_100 vocabulary
differed from that of PRD_10 by 15%. A manual in-
spection of the PRD_100 vocabulary revealed that
many common English words such as “is,” “for,”
and “the” were missing. We determined that these
omissions were an artifact of PRD_100 being suffi-
ciently large to cause integer overflows in the un-
signed 32-bit-integer token frequency counts used
by HuggingFace’s tokenizers library. For example,
“the” was not in the final vocabulary because the
token “th” overflowed. Because WordPiece itera-
tively merges smaller tokens to create larger ones,
the absence of tokens like “th” or “##he” means
that “the” could not appear in the final vocabulary.

We modified the tokenizers library to use un-
signed 64-bit integers for all frequency counts, and
recreated a correct vocabulary for PRD_100. In-
terestingly, models trained on the PRD_100 subset
with the incorrect and correct vocabularies exhib-
ited comparable performance on downstream tasks.

B.2 RoBERTa Optimizations
RoBERTa introduces many optimizations for im-
proving BERT pretraining performance (Liu et al.,
2019). 1) It uses a single phase training approach
whereby all training is performed with a maximum
sequence length of 512. 2) Unlike BERT which ran-
domly introduces a small percentage of shortened
sequence lengths into the training data, RoBERTa
does not randomly use shortened sequences. 3)
RoBERTa uses dynamic masking, meaning that
each time a batch of training samples is selected
at runtime, a new random set of masked tokens is
selected; in contrast, BERT uses static masking,
pre-masking the training samples prior to train-
ing. BERT duplicates the training data 10 times
each with a different random, static masking. 4)
RoBERTa does not perform Next Sentence Predic-
tion during training. 5) RoBERTa takes sentences
contiguously from one or more documents until the
maximum sequence length is met. 6) RoBERTa
uses a larger batch size of 8192. 7) RoBERTa uses
byte-pair encoding (BPE) rather than WordPiece.
8) RoBERTa uses an increased vocabulary size of
50 000, 67% larger than BERT. 9) RoBERTa trains
for more iterations (up to 500 000) than does BERT-
Base (31 000).



Figure 1: Pretraining loss plots for the SCHOLARBERT models listed in Table 1. The vertical dashed lines indicate
the approximate locations of the iteration checkpoints selected for evaluation in Section 4.1.

Name Description Domain Tokens
Wiki English-language Wikipedia articles (HuggingFace, 2020) Gen 2.5B
Books BookCorpus (Zhu et al., 2015; HuggingFace, 2020): Full text of 11038 books Gen 0.8B
SemSchol 1.14M papers from Semantic Scholar (Cohan et al., 2019), 18% in CS, 82% in Bio Bio, CS 3.1B
PubMedA Biomedical abstracts sampled from PubMed (Gu et al., 2021) Bio 3.1B
PubMedB Biomedical abstracts sampled from PubMed (Lee et al., 2020) Bio 4.5B
PMC Full-text biomedical articles sampled from PubMedCentral (Gu et al., 2021) Bio 13.7B
MatSci 2M peer-reviewed materials science journal articles (Trewartha et al., 2022) Materials 8.8B
Battery 0.4M battery-related publications (Huang and Cole, 2022) Materials 5.2B
PRD_1 1% of the English-language research articles from the Public Resource dataset Sci 2.2B
PRD_10 10% of the English-language research articles from the Public Resource dataset Sci 22B
PRD_100 100% of the English-language research articles from the Public Resource dataset Sci 221B

Table 4: Pretraining corpora used by models in this study. The domains are Bio=biomedicine, CS=computer
science, Gen=general, Materials=materials science and engineering and Sci=broad scientific.

We adopt RoBERTa training methods, with three
key exceptions. 1) Unlike RoBERTa, we randomly
introduce smaller length samples because many of
our downstream tasks use sequence lengths much
smaller than the maximum sequence length of 512
that we pretrain with. 2) We pack training sam-
ples with sentences drawn from a single document,
as the RoBERTa authors note that this results in
slightly better performance. 3) We use WordPiece
encoding rather than BPE, as the RoBERTa authors
note that BPE can result in slightly worse down-
stream performance.

B.3 Hardware and Software Stack
We perform data-parallel pretraining on a clus-
ter with 24 nodes, each containing eight 40 GB
NVIDIA A100 GPUs. In data-parallel distributed
training, a copy of the model is replicated on each
GPU, and, in each iteration, each GPU computes
on a unique local mini-batch. At the end of the iter-

Hyperparameter Value
Steps 33 000

Optimizer LAMB
LR 0.0004

LR Decay Linear
LR Warmup Steps 0.06%

Batch Size 32 768
Precision FP16

Weight Decay 0.01
Attention Dropout 10%

Hidden Dropout 10%
Hidden Activation GELU

Table 5: Pretraining hyperparameters. All SCHOLAR-
BERT variants use the same pretraining hyperparame-
ters.

ation, the local gradients of each model replica are
averaged to keep each model replica in sync. We
perform data-parallel training of SCHOLARBERT
models using PyTorch’s distributed data-parallel
model wrapper and 16 A100 GPUs. For the larger
SCHOLARBERT-XL models, we use the Deep-



Speed data-parallel model wrapper and 32 A100
GPUs. The DeepSpeed library incorporates a num-
ber of optimizations that improve training time and
reduced memory usage, enabling us to train the
larger model in roughly the same amount of time
as the smaller model.

We perform training in FP16 with a batch size
of 32 768 for ∼33 000 iterations (Table 5). To
achieve training with larger batch sizes, we employ
NVIDIA Apex’s FusedLAMB (NVIDIA, 2017) op-
timizer, with an initial learning rate of 0.0004. The
learning rate is warmed up for the first 6% of itera-
tions and then linearly decayed for the remaining
iterations. We use the same masked token percent-
ages as are used for BERT. Training each model
requires roughly 1000 node-hours, or 8000 GPU-
hours.

Figure 1 depicts the pretraining loss for each
SCHOLARBERT model. We train each model
past the point of convergence and take checkpoints
throughout training to evaluate model performance
as a function of training time.

C Evaluation Tasks

We evaluate the models on eight NER tasks and
four sentence-level tasks. For the NER tasks, we
use eight annotated scientific NER datasets:

1. BC5CDR (Li et al., 2016): An NER dataset
identifying diseases, chemicals, and their in-
teractions, generated from the abstracts of
1500 PubMed articles containing 4409 an-
notated chemicals, 5818 diseases, and 3116
chemical-disease interactions, totaling 6283
unique entities.

2. JNLPBA (Kim et al., 2004): A bio-entity
recognition dataset of molecular biology con-
cepts from 2404 MEDLINE abstracts, consist-
ing of 21 800 unique entities.

3. SciERC (Luan et al., 2018): A dataset annotat-
ing entities, relations, and coreference clusters
in 500 abstracts from 12 AI conference/work-
shop proceedings. It contains 5714 distinct
named entities.

4. NCBI-Disease (Doğan et al., 2014): Annota-
tions for 793 PubMed abstracts: 6893 disease
mentions, of which 2134 are unique.

5. ChemDNER (Krallinger et al., 2015): A
chemical entity recognition dataset derived

from 10 000 abstracts containing 19 980
unique chemical entity mentions.

6. MatSciNER (Trewartha et al., 2022): 800 an-
notated abstracts from solid state materials
publications sourced via Elsevier’s Scopus/-
ScienceDirect, Springer-Nature, Royal Soci-
ety of Chemistry, and Electrochemical Soci-
ety. Seven types of entities are labeled: in-
organic materials (MAT), symmetry/phase la-
bels (SPL), sample descriptors (DSC), mate-
rial properties (PRO), material applications
(APL), synthesis methods (SMT), and charac-
terization methods (CMT).

7. ScienceExam (Smith et al., 2019): 133K en-
tities from the Aristo Reasoning Challenge
Corpus of 3rd to 9th grade science exam ques-
tions.

8. Coleridge (Coleridge Initiative, 2020): 13 588
entities from sociology articles indexed by the
Inter-university Consortium for Political and
Social Research (ICPSR).

The sentence-level downstream tasks are relation
extraction on the ChemProt (biology) and SciERC
(computer science) datasets, and sentence classifi-
cation on the Paper Field (multidisciplinary) and
Battery (materials) dataset:

1. ChemProt consists of 1820 PubMed abstracts
with chemical-protein interactions annotated
by domain experts (Peng et al., 2019).

2. SciERC, introduced above, provides 4716 re-
lations (Luan et al., 2018).

3. The Paper Field dataset (Beltagy et al.,
2019), built from the Microsoft Academic
Graph (Sinha et al., 2015), maps paper ti-
tles to one of seven fields of study (geogra-
phy, politics, economics, business, sociology,
medicine, and psychology), with each field of
study having around 12K training examples.

4. The Battery Document Classification
dataset (Huang and Cole, 2022) includes
46 663 paper abstracts, of which 29 472 are
labeled as battery and the other 17 191 as
non-battery. The labeling is performed in
a semi-automated manner. Abstracts are
selected from 14 battery journals and 1044
non-battery journals, with the former labeled
“battery” and the latter “non-battery.”



D Extended Results

Table 6 shows average F1 scores with standard de-
viations for the NER tasks, each computed over five
runs; Figure 2 presents the same data, with stan-
dard deviations represented by error bars. Table 7
and Figure 3 show the same for sentence classifica-
tion tasks. The significant overlaps of error bars for
NCBI-Disease, SciERC NER, Coleridge, SciERC
Sentence Classification, and ChemProt corrobo-
rate our observation in Section 4 that on-domain
pretraining provides only marginal advantage for
downstream prediction over pretraining on a differ-
ent domain or a general corpus.



BC5CDR JNLPBA NCBI-Disease SciERC
BERT-Base 85.36± 0.189 72.15± 0.118 84.28± 0.388 56.73± 0.716
BERT-Large 86.86± 0.321 72.80± 0.299 84.91± 0.229 59.20± 1.260
SciBERT 88.43± 0.112 73.24± 0.184 86.95± 0.714 59.36± 0.390
PubMedBERT 89.34± 0.185 74.53± 0.220 87.91± 0.267 59.03± 0.688
BioBERT 88.01± 0.133 73.09± 0.230 87.84± 0.513 58.24± 0.631
MatBERT 86.44± 0.156 72.56± 0.162 84.94± 0.504 58.52± 0.933
BatteryBERT 87.42± 0.308 72.78± 0.190 87.04± 0.553 59.00± 1.174
SB_1 87.27± 0.189 73.06± 0.265 85.49± 0.998 58.62± 0.602
SB_10 87.69± 0.433 73.03± 0.187 85.65± 0.544 58.39± 1.643
SB_100 87.84± 0.329 73.47± 0.210 85.92± 1.040 58.37± 1.845
SB_10_WB 86.68± 0.397 72.67± 0.329 84.51± 0.838 57.34± 1.199
SB_100_WB 86.89± 0.543 73.16± 0.211 84.88± 0.729 58.43± 0.881
SB-XL_1 87.09± 0.179 73.14± 0.352 84.61± 0.730 58.45± 1.614
SB-XL_100 87.46± 0.142 73.25± 0.300 84.73± 0.817 57.26± 2.146

ChemDNER MatSciNER ScienceExam Coleridge
BERT-Base 84.84± 0.004 78.51± 0.300 78.37± 0.004 57.75± 1.230
BERT-Large 85.83± 0.022 82.16± 0.040 82.32± 0.072 57.46± 0.818
SciBERT 85.76± 0.089 82.64± 0.054 78.83± 0.004 54.07± 0.930
PubMedBERT 87.96± 0.094 82.63± 0.045 69.73± 0.872 57.71± 0.107
BioBERT 85.53± 0.130 81.76± 0.094 78.60± 0.072 57.04± 0.868
MatBERT 86.09± 0.170 83.35± 0.085 80.01± 0.027 56.91± 0.434
BatteryBERT 86.49± 0.085 82.94± 0.309 78.14± 0.103 59.87± 0.398
SB_1 85.25± 0.063 80.87± 0.282 82.75± 0.049 55.34± 0.742
SB_10 85.80± 0.094 80.61± 0.747 83.24± 0.063 53.41± 0.380
SB_100 85.90± 0.063 82.09± 0.022 83.12± 0.085 54.93± 0.063
SB_10_WB 83.94± 0.058 78.98± 1.190 83.00± 0.250 54.29± 0.080
SB_100_WB 84.31± 0.080 80.84± 0.161 82.43± 0.031 54.00± 0.425
SB-XL_1 85.81± 0.054 82.84± 0.228 81.09± 0.170 55.94± 0.899
SB-XL_100 85.73± 0.058 81.75± 0.367 80.72± 0.174 54.54± 0.389

Table 6: NER F1 scores for each of 14 models (rows), when the model is finetuned on eight different domain
datasets and the resulting finetuned model applied to that dataset’s associated NER task (columns). In each case,
we give the average value and its standard deviation over five runs.

Figure 2: NER F1 scores from Table 6, with standard deviations represented by error bars.



SciERC ChemProt PaperField Battery
BERT-Base 74.95± 1.596 83.70± 0.472 72.83± 0.082 96.31± 0.087
BERT-Large 80.14± 2.266 88.06± 0.353 73.12± 0.125 96.90± 0.156
SciBERT 79.26± 0.498 89.80± 0.263 73.19± 0.046 96.38± 0.153
PubMedBERT 77.45± 0.964 91.78± 0.096 73.93± 0.099 96.58± 0.148
BioBERT 80.12± 0.179 89.27± 0.281 73.07± 0.074 96.06± 0.200
MatBERT 79.85± 0.121 88.15± 0.026 71.50± 0.135 96.33± 0.106
BatteryBERT 78.14± 0.550 88.33± 0.939 73.28± 0.022 96.06± 0.437
SB_1 73.01± 0.248 83.04± 0.150 72.77± 0.060 94.67± 0.671
SB_10 75.95± 0.203 82.92± 0.792 72.94± 0.182 92.83± 3.758
SB_100 76.19± 1.592 87.60± 0.324 73.14± 0.085 92.38± 5.789
SB_10_WB 73.17± 1.254 81.48± 1.705 72.37± 0.115 93.15± 1.763
SB_100_WB 76.71± 2.114 83.98± 0.252 72.29± 0.048 95.55± 0.272
SB-XL_1 74.85± 1.497 90.60± 0.246 73.22± 0.009 88.75± 4.035
SB-XL_100 80.99± 0.900 89.18± 0.499 73.66± 0.113 95.44± 0.100

Table 7: Sentence classification F1 scores for each of 14 models (rows), when the model is finetuned on one of
four different domain datasets and the finetuned model is applied to that dataset’s associated sentence classification
task (columns). In each case, we give the average value and its standard deviation over five runs.

Figure 3: Sentence classification F1 scores from Table 7, with standard deviations represented by error bars.


