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Abstract

Federated Learning (FL) is a decentralized machine learning paradigm where models are trained on distributed devices and are
aggregated at a central server. Existing FL frameworks assume simple two-tier network topologies where end devices are directly
connected to the aggregation server. While this is a practical mental model, it does not exploit the inherent topology of real-world
distributed systems like the Internet-of-Things. We present Flight, a novel FL framework that supports complex hierarchical multi-
tier topologies, asynchronous aggregation, and decouples the control plane from the data plane. We compare the performance of
Flight against Flower, a state-of-the-art FL framework. Our results show that Flight scales beyond Flower, supporting up to 2048
simultaneous devices, and reduces FL makespan across several models. Finally, we show that Flight’s hierarchical FL model can
reduce communication overheads by more than 60%.

Keywords: Federated Learning, Hierarchical Federated Learning, Function-as-a-Service, Decentralized Systems, Edge
Intelligence

1. Introduction

Much of today’s data is naturally distributed due to the grow-
ing ubiquity of systems like the Internet-of-Things (IoT) (Shah
and Yaqoob, 2016; Baccour et al., 2022) and Mobile Edge Com-
puting (Hu et al., 2015). Conventionally, training an Artifi-
cial Intelligence (AI) model on distributed data required first
transferring the data to a centralized computing system (e.g.,
high-performance computing cluster). However, in many sce-
narios this approach is intractable due to large data volumes,
data transfer costs, and privacy concerns (Ali et al., 2022). Fed-
erated Learning (FL) (McMahan et al., 2017; Konečnỳ et al.,
2016), provides a potential solution as it implements a dis-
tributed training paradigm in which AI models can be trained
in a distributed fashion without needing to relocate data.

Unlike conventional deep learning, FL trains individual mod-
els directly where data reside (e.g., edge devices, IoT devices,
mobile devices, and sensors). A central location (e.g., server)
is then tasked with aggregating (or averaging) locally-trained
models rather than training a single model itself. Fig. 1 shows
the general FL training process. Because no training data are
communicated over the network in FL, it provides two key ben-
efits: (i) reduced communication cost (Hudson et al., 2022), as-
suming the size of the model weights are less than the training
data; and (ii) enhanced data privacy (McMahan et al., 2017).

FL typically assumes a two-tier system made up of a single
aggregator connected to a flat layer of workers that perform
local training (see Fig. 1). While reasonable in many cases (Pa-
tros et al., 2022), this assumption has notable limitations. First,
it prevents an FL process from taking advantage of the naturally
hierarchical, often geographically clustered, scale-free topol-
ogy of many networks (e.g., the Internet) (Barabási et al., 2003).
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Figure 1: High-level view of a standard two-tier FL system and process.

Second, it ignores the geospatial relationship between the data
distributions at end devices. For example, consider a collec-
tion of smart homes in which smart meters collect, monitor,
and predict energy consumption. The data collected from indi-
vidual smart homes often follows geospatial patterns related to
income levels (Hudson et al., 2021).

Hierarchical Federated Learning (HFL) (Yu et al., 2023;
Abad et al., 2020; Abdellatif et al., 2022) aims to address these
problems. In HFL, the network used to share model parameter
updates is multi-tier and hierarchical, and can include more than
one aggregator in the network (see Fig. 2). Intermediate aggre-
gators can produce aggregated models that are more regional
in their context as they ultimately depend on the data distribu-
tion of the workers from which local models are obtained. HFL
has been found to be particularly well-suited for use in remote
environments with limited network connectivity due to its re-
duction of communication costs (Almurshed et al., 2022; Rana
et al., 2022). Despite recent innovation in the development of
FL frameworks—e.g., Flower (Beutel et al., 2022), FedML (He
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Figure 2: High-level view of a hierarchical FL system and process.

et al., 2020)—to the best of our knowledge there is no robust FL
framework that natively supports complex HFL. Further, exist-
ing FL frameworks are often device-driven, an assumption that
simplifies deployment, but does not scale to large, distributed
systems.

We present Flight (Federated Learning In General
Hierarchical Topologies), an open-source FL framework for
implementing arbitrary hierarchies in distributed environ-
ments.1 Flight is the spiritual successor of our earlier FL
framework known as FLoX (Kotsehub et al., 2022). Impor-
tantly, Flight supports both simulation and deployment on real
devices across the computing continuum. To do so, Flight pro-
vides modular interfaces for control and data planes. In dis-
tributed environments, Flight can combine the Function-as-a-
Service (FaaS) paradigm (via Globus Compute) and ProxyStore
to decouple control from data and enable flexible, efficient, and
performant deployment.

Flight tackles a range of important distributed systems prob-
lems in FL. The primary contributions of our work are:

• Flight, an open-source framework capable of defining and
deploying hierarchical and asynchronous FL.

• Methods to separate data and control flow in FL using ro-
bust compute and data-management frameworks.

• Comprehensive evaluation showing that Flight scales to
thousands of concurrent workers, can reduce global data
transfer in hierarchical topologies, can reduce training
time using asynchronous FL, and can efficiently train in
a distributed environment.

The rest of this paper is as follows: Section 2 introduces hier-
archical FL and terminology; Section 3 describes the Flight ar-
chitecture; Section 4 discusses how custom FL strategies can be
implemented in Flight; Section 5 evaluates Flight in simulated
and real environments; and Section 6 concludes and discusses
future directions.

1https://github.com/globus-labs/flight

2. Background & Related Work

To better contextualize the contributions of Flight, we first
formally define Hierarchical FL (HFL) and introduce HFL pro-
cesses (i.e., the various steps required to perform HFL, includ-
ing model training, transferring of parameters, and aggrega-
tion). We then survey existing FL frameworks and identify gaps
that highlight the need for Flight.

2.1. Hierarchical Federated Learning Processes
An HFL process is performed on a network topology made

up of various connected devices. The topology of these devices
are arranged as a tree (see Fig. 2). The device at the root of
this tree—the global aggregator in Fig. 2—is responsible for
coordinating the HFL process. The first task of the global ag-
gregator is to instantiate an ML model, in this case a deep neu-
ral network (DNN), called the global model. The global model
is initialized with random model parameters (or weights) ωt=0
where t denotes the current round (i.e., t = 0 is the initializa-
tion round). A copy of the global model is sent by the global
aggregator to a worker deployed on an end device in the net-
work topology. We refer to the copies of the global model now
hosted by workers as local models. Workers then locally train
their copy of the model on their local data. Local model param-
eters ωk

t+1 for worker k are updated according to Eq. (1):

ωk
t+1 = ωt − η∇ℓ(ωt,Dk) (1)

where η is the learning rate hyperparameter, ℓ(ωt,Dk) is the
loss from using the global model parameters on the device’s
local datasetDk, and ∇ℓ(·) is the gradient from the loss.

In standard two-tier FL, when the workers finish training
their local models they send their locally-updated model param-
eters back to the global aggregator. In HFL processes, work-
ers instead send their locally-updated model parameters to their
parent in the topology. This parent will either be an interme-
diate aggregator or the global aggregator. The intermediate ag-
gregators in the tree are responsible for aggregating the model
parameters returned by their topological children—irrespective
of whether their children are leaves (workers) or other interme-
diate aggregators. Various strategies can be used to aggregate
the local models (see Section 4).The simplest approach is to
compute a simple average over the returned model parameters
(see Eq. (2)).

ωk
t+1 ≜

1
children(k)

∑
k′∈children(k)

ωk′
t+1 (2)

Like the intermediate aggregators, the global aggregator will
also collect some set of returned model parameters from its im-
mediate children and then perform aggregation. The result of
this aggregation is then used to update the global model. Once
the global model is updated, the global aggregator might per-
form other administrative tasks (e.g., testing the global model,
checkpointing) before launching a new round of local model
training on the end devices. Because we consider the interme-
diate aggregators as simply returning their own averaged pa-
rameters to their parents, we consider a two-tier FL process as
a special case of HFL.
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Hierarchies Modularity Deployment Control

Simulation

Framework Complex Simple Device Selection Sync Aggr Async Aggr Single-Node Multi-Node Remote Coord Decoupled

LEAF (Caldas et al., 2018) ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ N/A N/A
TFF (Bonawitz et al., 2019) ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ N/A N/A
OpenFL (Foley et al., 2022) ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ N/A N/A

FLoX (Kotsehub et al., 2022) ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗
APPFL (Li et al., 2023) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Flower (Beutel et al., 2022) ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗
FedScale (Lai et al., 2022) ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

FedML (He et al., 2020) ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗
Flight (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Overview of federated learning frameworks. Hierarchies captures the topologies supported, from simple two- or three-tier to more complex topologies.
Modularity captures the extensibility of the framework in terms of selecting participating devices and the use of synchronous or asynchronous aggregation.
Deployment captures the scenarios supported from single-node to multi-node simulation and real deployment on devices. Control captures how the FL framework
coordinates the FL process and if data and control planes are decoupled. “N/A” denotes that control coordination and data decoupling are not applicable in
frameworks that do not support remote deployment.

The design of aggregation strategies is an active area of re-
search in the FL community. The simplest strategy, FedSGD,
performs a simple average, similar to Eq. (2), over returned
model parameters in a two-tier setting. McMahan et al. pro-
posed the alternative FedAvg strategy (McMahan et al., 2017),
which generalizes FedSGD and is often seen as the standard ag-
gregation strategy in FL. FedAvg foregoes a simple average and
instead uses a weighted averaging method based on the amount
of data at each end device. This can be defined as follows:

ωt+1 ≜
K∑

k=1

nk

n
ωk

t+1. (3)

The goal of FedAvg is to make the aggregation less sensitive
to imbalanced data distributions. Further, Li et al. later pro-
posed FedProx (Li et al., 2020) which generalizes FedAvg with
even greater emphasis on data heterogeneity. Finally, alter-
native aggregation strategies exist for Asynchronous Federated
Learning (AFL) (Xie et al., 2019) to incorporate individual lo-
cal model updates as they arrive. A simple approach is:

ωt+1 = β · ωt + (1 − β) · ωk
tk′ (4)

where tk′ is the time-step of the most recent update from
worker k′ and β ∈ (0, 1) is the step size.

2.2. Federated Learning Frameworks

Here, we briefly survey existing FL frameworks, with promi-
nent frameworks summarized in Table 1.

TensorFlow Federated (TFF) (Bonawitz et al., 2019) and
LEAF (Caldas et al., 2018), two of the first FL frameworks,
focus on training models using on-premise simulations. TFF
is developed and maintained by Google and is meant to sim-
ulate FL processes and the underlying statistical qualities of
federated datasets. Currently, it provides a lot of foundational
abstractions for federated computations and mathematics; it
is limited in its use for real-world FL use cases because it is
moreso a simulation framework. LEAF is a simple benchmark-
ing framework for different FL scenarios using TensorFlow. It
is not designed to be modular framework that enables rapid

development of novel FL algorithms (e.g., aggregation algo-
rithms). Additionally, it only provides the standard FedAvg al-
gorithm for FL processes.

While FL was initially developed for communication effi-
ciency (McMahan et al., 2017), its ability to operate across sites
enables privacy preservation when data cannot be moved from a
device (e.g., medical datasets). Some FL frameworks are more
pointedly designed around the privacy-preservation benefits of
FL. APPFL (Li et al., 2023) is a framework developed and
maintained by a team at Argonne National Laboratory that per-
forms cross-silo FL. APPFL is designed to be a platform that re-
quires little technical expertise to use, including a graphical user
interface to lessen the burden of entry. Similar to APPFL, Sub-
straFL (Galtier and Marini, 2019) is FL framework designed to
enable medical research on naturally decentralized healthcare
data. PySyft (Ziller et al., 2021) is a general framework that
provides algorithms for private deep learning. Though not nec-
essarily a framework specifically made for FL, it provides out-
of-the-box support for common privacy-preserving algorithms
including differential privacy and homomorphic encryption.

Frameworks such as FedLess (Grafberger et al., 2021),
Flower (Beutel et al., 2022), FedScale (Lai et al., 2022), and
OpenFed (Chen et al., 2023) accommodate FL training over
distributed resources and provide interfaces to customize the
training process. These frameworks enable larger experiments
as well as deployment on devices. Additionally, frameworks
like λ-FL (Jayaram et al., 2022), XFL (Wang et al., 2023), and
Parrot (Tang et al., 2023) offer simple user interfaces, but lack
support for broad deployments.

The popular Flower (Beutel et al., 2022) FL framework sup-
ports a wide range of environments for both simulated and real
world experiments. For deployment, Flower uses gRPC for
communication. Flower’s experiments are client-driven but ex-
perimentally configured at the server. In this way, Flower rep-
resents a traditional client-server model where each is indepen-
dently configured and waits on the other.

Hierarchies: We know of no other FL framework that, like
Flight, supports HFL across hierarchical device networks in
which a global aggregator may be connected to worker nodes
by multiple intermediate aggregators in a tree topology. One
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partial exception is FedML by He et al. (2020), which sup-
ports HFL in networks that link a global aggregator with multi-
ple multi-GPU workers, with model training performed across
GPUs on each individual worker followed by worker-localized
aggregation before worker-aggregated parameters are returned
to the global aggregator. While useful for cross-silo FL, this
feature is not sufficient for more sophisticated decentralized
systems, such as Internet-of-Things, sensor networks, and mo-
bile edge computing.

Modularity: The ability to rapidly change FL strategies
is crucial for experiments and real-world deployments (e.g.,
where some devices may be intermittently online). Device se-
lection allows for devices to be sampled in a training round,
various strategies can be applied (e.g., based on data distribu-
tion, training time, or previous impact on global model). Flower
provides extensible interfaces for this purpose.

Most frameworks are designed to support different syn-
chronous aggregation strategies (Bonawitz et al., 2019; Foley
et al., 2022; Kotsehub et al., 2022; Beutel et al., 2022; He et al.,
2020); however, there are a handful of frameworks, such as
APPFL (Li et al., 2023) and FedScale (Lai et al., 2022), that
support asynchronous aggregation. This mode of aggregation
is necessary in environments with highly heterogeneous or un-
reliable compute resources, allowing results to be incorporated
as they are returned.

Deployment: The vast majority of FL framework support
single-node simulation and most now also support deploying
simulations across several compute nodes and deploying on de-
vices, with some notable exceptions (Bonawitz et al., 2019; Fo-
ley et al., 2022; Caldas et al., 2018). Most frameworks adopt a
simple multi-processing approach for single node experiments.
Support for simulating FL is a necessary feature for a FL frame-
work for simple debugging before remote deployment. In ad-
dition to simple debugging, it is necessary for FL frameworks
to enable simulation of FL processes for novel research in the
field of FL. Not all FL researchers are necessarily interested in
deploying on remote devices. For instance, FL researchers in-
terested in developing novel privacy-preserving FL algorithms
will only need to simulate FL to analyze the trade-offs of their
proposed algorithms. However, an ideal FL framework will
have support for both simulations and real-world deployment
and interoperable switching between these two modes. Most
existing FL frameworks primarily use client-server or RPC
models for multi-node and on-device deployment. Notable ex-
ceptions include FLoX and APPFL, which can use the FaaS-
based Globus Compute platform to deploy training operations,
and TFF, which uses Kubernetes.

Control: FL frameworks take different approaches to man-
aging the FL process. “Coord” in Table 1 refers to whether the
process is driven by the topmost node (i.e., the “Coordinator”
in Fig. 4) rather than being driven the bottom-most nodes (i.e.,
the “Workers” in Fig. 4). The former also suggests that you can
change model configuration and training hyperparameters from
a centralized location.“Decoupled” refers to whether the con-
trol plane is decoupled from the data plane, meaning that the
communication of logical components (i.e., code for jobs) and
data are handled separately. It is important to be able to easily
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Figure 3: High-level view of Flight architecture. The Coordinator launches
jobs to be run on Aggregators and Workers through the control plane,
while data (e.g., model parameters, ω) are transferred through a data plane.
Each Worker trains its local copy of the model and sends back its locally-
updated model to its parent (either the Coordinator or an Aggregator).
Each Aggregator aggregates the responses of its children (Workers and other
Aggregators alike). The Coordinator facilitates the entire process.

reconfigure the FL process, including aggregation topologies,
worker workloads, experiment parameters, and the model being
used. Most FL frameworks—such as FLoX (Kotsehub et al.,
2022), APPFL (Li et al., 2023), FedScale (Lai et al., 2022), and
FedML (He et al., 2020)—support such configurations; how-
ever device-driven approaches (Beutel et al., 2022) make re-
configuration challenging as device clients must be restarted
to change parameters. This contrasts with other frameworks
where new models and parameters can be pushed from the co-
ordinator to reinitialize an experiment (Kotsehub et al., 2022).

As we consider more sophisticated FL topologies, decou-
pling the data and control plane is essential for efficient and
scalable deployment. To the best of our knowledge, no exist-
ing framework separates control from data, nor do they provide
a robust, standardized data communication method that is de-
coupled from the control plane. Finally, FL frameworks take
different approaches to communication with various assump-
tions regarding connectivity. For example, frameworks relying
on gRPC assume inbound network access (Li et al., 2023; Beu-
tel et al., 2022) while others require SSH connections between
devices (Lai et al., 2022).

3. Flight: Design & Implementation

Flight is an open-source Python library for implementing
HFL processes. It is designed to be robust, scalable, and flexi-
ble with respect to deep learning models, how aggregation and
training tasks are launched, and how parameters are transferred
between devices. A high-level overview of Flight’s design can
be found in Fig. 3.

3.1. Flight Network Topologies
Here, we introduce the programmatic abstractions for defin-

ing networks of connected devices in Flight. The net-
work topology is defined as a directed graph using Net-
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1 MyCoordinator:
2 kind: coordinator
3 children: [ Aggr, Worker3 ]
4 globus_compute_endpoint: null
5 proxystore_endpoint: <UUID>
6 Aggr:
7 kind: aggregator
8 children: [ Worker1, Worker2 ]
9 globus_compute_endpoint: <UUID>
10 proxystore_endpoint: <UUID>
11 Worker1:
12 kind: worker
13 children: []
14 globus_compute_endpoint: <UUID>
15 proxystore_endpoint: <UUID>
16 ...

Listing 1: Flight network topology definition as a yaml file. Each node is
defined as a dictionary with its key as its ID and various attributes: kind,
children, globus compute endpoint, and proxystore endpoint.

workX (NX) (Hagberg et al., 2008). We consider three entity
types in Flight networks: (i) Coordinator, (ii) Aggregator,
and (iii) Worker. The type for each entity is assigned to the
nodes in the underlying NX graph as an enum attribute.

Each entity type is implemented as a Python class with an ex-
tensible API enabling users to customize behavior. Each entity
type is responsible for different tasks related to the execution of
an HFL process. At a high level, the Coordinator has three key
responsibilities: (i) maintaining the global model; (ii) submit-
ting the appropriate training and aggregation jobs (implemented
as pure functions) to the Aggregators and Workers; and (iii)
acting as the global aggregator to aggregate the model parame-
ters returned from each direct child (Aggregators or Workers).
Both the Aggregator and Workers are entities that wait to
receive jobs to run from the Coordinator. Workers simply
train a local copy of the global model on local data. Workers
then return a JobResult—a data class that contains the locally-
updated model and other information related to the completion
of the job (e.g., loss, time). The JobResult is sent to its parent
node (either an Aggregator or the Coordinator). Aggregator
jobs instantiate a Future with a callback that blocks until the
Futures for the jobs of the Aggregator’s children have com-
pleted. Aggregator then will also return a JobResult to its
parent. Using a common JobResult for Aggregators and
Workers allows for Aggregators to aggregate what is returned
to them regardless of whether they are returned by a Worker or
another Aggregator. This design choice generalizes to support
arbitrary hierarchical scenarios.

We define a legal network topology as follows. 1) The net-
work must be a rooted directed tree. 2) There must be exactly
one Coordinator node and it must be the root of the tree. 3)
There must be at least one Worker node and each Worker node
must be a leaf of the tree. 4) An Aggregator node can be nei-
ther the root nor a leaf of the tree; Aggregators are also not
required. These rules enable many different types of hierarchi-
cal topologies (see Fig. 4).

Flight topologies are defined using yaml files. An example
of such a definition is shown in Listing 1. Entities in a Flight

topology have three properties: (i) an identifier, (ii) a flag indi-
cating the entity type (i.e., coordinator, aggregator, or worker),
and (iii) a list of children’s identifiers. Optionally, if deploying
on remote resources, the entity may include a Globus Compute
endpoint ID and a ProxyStore endpoint ID for managing re-
mote computation and data, respectively. These properties are
discussed in Section 3.2.3 and Section 3.3, respectively.

Topology files can be loaded and used in Flight
by flight.Topo.from yaml(<filename>). Using Net-
workX (Hagberg et al., 2008) to define system topologies gives
Flight the ability to load (or generate) a large variety of topol-
ogy definitions.

3.2. Control Flow: Job Launching
As mentioned earlier, in Flight, the Coordinator is respon-

sible for managing the execution of the HFL process. This
includes the task of telling Workers to locally train a model
and Aggregators to aggregate models. Other FL frameworks
often apply a Worker-driven approach, as discussed in Sec-
tion 2.2. That is, it is responsible for launching the train-
ing and aggregation tasks on the target entities (e.g., a local
thread or a process on a remote device). In Flight this is han-
dled by a Launcher—a Python object that implements Flight’s
Launcher interface for running jobs on arbitrary computing re-
sources. The Launcher is an asynchronous interface to submit
a Python function and any input arguments for execution on a
target entity (we call the executing training or aggregation func-
tion a task). The interface returns a future to the Coordinator,
enabling it to monitor execution and receive a callback when the
task completes. Futures are also passed from the Coordinator
to Aggregators such that they too can wait on a callback
from a Worker or other Aggregator. The result wrapped in
the future includes returned objects or exceptions. We im-
plement the Launcher interface on top of Python’s concur-
rent.futures Executor interface with additional requirements
on the submit() method (e.g., submitting a Job and return-
ing a JobResult). Flight supports several modes for launching
jobs necessary for an FL process. For convenience, Flight in-
cludes Launcher implementations for three use cases: (i) local
single-node simulation via threads or processes, (ii) local multi-
node simulation via Parsl (Babuji et al., 2019), and (iii) remote
execution via Globus Compute (Chard et al., 2020). For con-
venience, Flight provides a high-level function for launching
any type of FL process. A small example of launching an FL
process in Flight is shown in Listing 2.

3.2.1. Single-node simulation
Flight provides a LocalLauncher that implements the

Launcher interface using Python’s standard concurrent.futures
ProcessPoolExecutor and ThreadPoolExecutor. The
LocalLauncher enables rapid prototyping for algorithm de-
sign, experimentation, simulations, and debugging tasks related
to FL/HFL.

3.2.2. Multi-node simulation
Flight implements a ParslLauncher to run FL/HFL pro-

cesses on high-performance computing systems. Parsl (Babuji
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Figure 4: Example legal Flight network topologies: (a) simple two-tier network; (b) simple three-tier hierarchical network; (c) complex hierarchical network.

1 import torch
2 import flight as fl
3
4 from torchvision.datasets import MNIST
5
6 class MyModule(fl.TorchModule):
7 # Model definition.
8
9 topo = fl.Topo.from_yaml('my-topo.yaml')
10 mnist = MNIST(...)
11 fed_data = fl.federated_split(
12 topo, mnist, num_classes=10,
13 sample_alpha=1.0, label_alpha=1.0
14 )
15 trained_model, results = fl.federated_fit(
16 topo,
17 MyModule(),
18 fed_data,
19 strategy='fedavg',
20 where='local', # 'globus-compute',
21 kind='sync', # 'async'
22 )
23 results.to_csv('my-results.csv')

Listing 2: Example Flight program that showcases a simple Flight program.
Listing 1 provides an example my-topo.yaml file.

et al., 2019), a scalable parallel programming library for
Python, is designed to run workloads on parallel and dis-
tributed computing systems (e.g., institutional clusters, super-
computers, and clouds). Parsl’s modular architecture defines
an extensible Executor interface via which different runtime
executors can be used for different scenarios: e.g., High-
ThroughputExecutor (HTEX) (Babuji et al., 2019), RADICAL-
Pilot (Merzky et al., 2022), and WorkQueue/TaskVine (Sly-
Delgado et al., 2023). These executors implement the same
asynchronous API but differ in how tasks are executed. Parsl
supports provisioning of resources from various compute re-
sources, including batch schedulers (e.g., Slurm, PBS), clouds
(e.g., AWS), and container orchestration systems (e.g., Kuber-
netes). Flight’s ParslLauncher instantiates a Parsl process us-
ing a user-defined Parsl configuration (e.g., specifying execu-
tor options such as batch queue, account, walltime). Flight
tasks are then submitted to Parsl for execution and results are
retrieved via the returned future.

3.2.3. Execution on remote endpoints
Flight includes a GlobusComputeLauncher to enable sim-

ple and convenient remote execution of functions for FL/HFL
processes. Globus Compute (Chard et al., 2020) implements

the Function-as-a-Service (FaaS) paradigm enabling execution
of Python functions. It combines a single cloud-hosted service
with an ecosystem of user-deployed endpoints. Thus, Flight
can use the cloud-hosted Globus Compute service to orchestrate
execution of tasks (e.g., Aggregator and Worker tasks) on arbi-
trary remote devices. As the endpoint software is lightweight—
a pip-installable Python agent that communicates via cloud-
hosted message queues—it is easily deployed on diverse com-
pute devices. Further, it requires only outbound connectivity to
the Globus Compute cloud service, therefore addressing chal-
lenges with firewalls and Network Address Translation (NAT)
used in many edge environments. The endpoint software builds
on Parsl and is therefore equipped to dynamically provision and
then execute tasks on diverse systems, including HPC clusters
and Kubernetes. Finally, Globus Compute endpoints have been
deployed nearly 10,000 times around the world (Bauer et al.,
2024); on those systems, Flight can be used without needing to
deploy any new infrastructure.

Flight’s GlobusComputeLauncher uses Globus Compute’s
Python SDK and executor interface to submit tasks. Flight
users must provide OAuth 2 access tokens to instantiate the ex-
ecutor and they must also provide the set of compute endpoints
to be used in the network topology definition. Flight submits
Aggregator and Worker tasks to Globus Compute as required
and tracks results via the Globus Compute Future returned to
Flight.

3.3. Data Flow: Federated Data Transfer

The purpose of HFL is to improve performance by distribut-
ing model aggregation to different locations. Thus, it would be
both inefficient and costly if all data had to pass through the
Coordinator rather than be passed directly between the partic-
ipating entities. Our solution to this problem is to decouple the
transfer of data from the execution of the task itself. We effec-
tively use a control layer, via which small function invocations
and small function results are sent via the launcher (e.g., via
Globus Compute’s cloud service or through Parsl’s DataFlowK-
ernel). We use ProxyStore (Pauloski et al., 2023, 2024) to
move larger data (e.g., models and weights) directly between
the tasks running on Workers and Aggregators. ProxyStore
is a framework that uses Python proxy objects to provide pass-
by-reference semantics in distributed computing environments.
Given some data x, ProxyStore will generate a proxy object
p(x) for the data x. This proxy—essentially a small refer-
ence to the data—can then be sent with the computing task via
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the launcher. When the data is needed by the task being ex-
ecuted on a device, it will then be transferred by ProxyStore
using the user’s choice of transfer protocol. ProxyStore sup-
ports many data transfer protocols, including Redis and Remote
Direct Memory Access (RDMA). It also implements a peer-to-
peer transfer solution, referred to as the EndpointConnector,
for direct communication between endpoints. This transfer
mechanism uses UDP hole punching to establish connections
between devices that are behind firewalls and that use NAT for
private networks.

3.4. Execution Schemes: Synchronous and Asynchronous FL
Now, we describe Flight’s execution schemes to perform

FL/HFL either synchronously or asynchronously. Specifically,
we describe how jobs are launched and the timing of when their
returned results are aggregated. It is worth noting that, for both
execution schemes, the role of the Coordinator remains the
same. Its role is to oversee and manage the execution during
the lifetime of the FL/HFL process.

Flight’s modular design allows for customization for differ-
ent FL algorithms and strategies. This modularity is achieved
via the Strategy abstraction. As discussed more fully in Sec-
tion 4, a Strategy provides callbacks that can be programmed
by users to customize the execution of their FL/HFL processes.
For the sake of brevity, we forego mentioning all available call-
backs when describing the execution scheme.

3.4.1. Synchronous HFL (SHFL)
In the SHFL case, Flight begins a series of “rounds”. In

each round, the Coordinator selects Workers to participate in
the round (i.e., to train their local model). Depending on the
configuration, the selected workers can be either a subset of, or
all, workers. The Coordinator then identifies all Aggregators
that are on the path from the Coordinator to each selected
Worker. If all Workers are selected to perform local training,
then it follows that all Aggregators are also selected. Next,
the Coordinator submits jobs to the selected Workers and
the relevant Aggregators by using its configured Launcher.
These submissions are generated in a breadth-first search-like
fashion where the Coordinator (at the root) traverses each of
its children and submits the appropriate (training or aggrega-
tion) job to each, retaining a corresponding Future for each
child. The Coordinator submits aggregation jobs to each
Aggregator, including for each a list of the Aggregator’s chil-
dren’s Futures as an argument. The Aggregators begin their
aggregation jobs once their children’s respective Futures have
completed. Because we separate the data flow from the control
flow via ProxyStore (see Section 3.3), the data from the results
of the child Futures for each Aggregator is never sent back to
the Coordinator. The data (i.e., model parameters) are trans-
ferred to the Aggregator that depends on it. When Workers are
traversed as the leaves of the tree, the Coordinator submits a
local training job to these entities. Each of which will eventu-
ally return a JobResult to its parent entity. The Coordinator,
like the Aggregators, waits for the completion of its children’s
Futures. When the Futures complete, the Coordinator ag-
gregates to update the global model. It then performs additional

tasks (e.g., evaluating the global model, processing results) and
restarts the process until a set number of rounds concludes.

3.4.2. Asynchronous FL (AFL)
Flight currently supports only two-tier AFL topologies. Sup-

porting AFL with arbitrary hierarchies would require imple-
menting a new type of launcher with the ability to maintain
stateful entities at each level. In SHFL, the Coordinator and
Aggregators remain idle until all their children’s Futures re-
solve. Specifically, the Coordinator launches local training
jobs on each Worker and maintains a list of Futures. The
Coordinator takes action as each Future is completed. As
soon as one Future completes, the Coordinator retrieves the
locally-updated model parameters from the Future result and
performs a partial aggregation to update the global model—see
Eq. (4). The Coordinator then launches a new local training
job on the worker whose Future just completed and appends
its new Future to its list of Futures.

3.5. Enabling Machine Learning

We describe now how Flight works with existing deep learn-
ing frameworks to implement, train, and use models and man-
age datasets.

Deep learning models. Flight relies on the PyTorch (Paszke
et al., 2019) framework to define, train, and evaluate AI models.
We chose PyTorch due to its ubiquity in both deep learning and
FL. Flight implements the FlightModule class which extends
the torch.nn.Module class for defining a neural network.
This class offers callbacks similar to the LightningModule
from PyTorch Lightning (Falcon and The PyTorch Lightning
team, 2019). Further, the FlightModule requires only that
two of these callbacks are implemented by the user (i.e.,
training step() and configure optimizers()). Flight can
then train the model by launching remote jobs on Workers
without further specification from users. We choose to imple-
ment the FlightModule class rather than use Lightning’s de-
fault LightningModule so as not to require the latter as a de-
pendency given its size and complexity—an important consid-
eration when deploying on edge devices. However, in future
work we will add support for PyTorch Lightning. Flight also
provides a callable LocalTrainJob class that provides a com-
mon interface to define how models are trained on Workers to
allow highly-custom local training loops.

Datasets in Flight are based on the PyTorch Dataset ab-
straction. Flight requires that each Worker have its own data.
For simulated FL processes, this is typically based on partition-
ing a common dataset (e.g., FashionMNIST (Xiao et al., 2017))
into separate subsets for each worker. Flight simplifies this
process by providing a class (FederatedSubsets) that allows
users to define how a dataset is partitioned and allows users
to easily control the distribution of data across Workers. This
class is effectively a dictionary where the key is the Worker ID
and the value is a PyTorch Subset of the data. Crucial to the
needs of HFL deployments, Flight also allows users to load
data local on the Workers.
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1 @dataclass(frozen=True)
2 class Strategy:
3 coord_strategy : CoordinatorStrategy
4 aggr_strategy : AggregatorStrategy
5 worker_strategy : WorkerStrategy
6 trainer_strategy: TrainerStrategy

Listing 3: Definition of the Strategy class in Flight.

4. Strategies

FL is an active research domain and new algorithms are fre-
quently proposed to meet new requirements relating to system
heterogeneity, data/statistical heterogeneity, and many other
challenges. FL frameworks must thus be flexible and customiz-
able to meet the needs of both FL researchers and practition-
ers so that novel and custom algorithms can be readily imple-
mented and deployed. Flight implements a modular and ex-
tensible abstraction for specifying such algorithms, which we
refer to as a Strategy. A Strategy is essentially a wrapper for
an FL algorithm or solution that provides specific implementa-
tion details necessary to execute the HFL process. In designing
this architecture we considered the needs of various aggrega-
tion methods, asynchronous and hierarchical FL, and privacy-
preserving FL.

Specifically, a Strategy is made up of the following compo-
nents: (i) CoordinatorStrategy, (ii) AggregatorStrategy,
(iii) WorkerStrategy, and (iv) TrainerStrategy (see List-
ing 3). We refer to these components as “sub-strategies”
because they implement the respective logic that is run
on all of the entities in a topology for an HFL process.
The CoordinatorStrategy is run on the Coordinator and
provides callbacks for users to implement custom worker
selection algorithms based on worker conditions. The
AggregatorStrategy is run on the Aggregators and pro-
vides callbacks for custom parameter aggregation algorithms.
The WorkerStrategy and TrainerStrategy sub-strategies are
both run on the Workers; the former provides callbacks more
specific to the execution of the entire local training job per-
formed by the worker (e.g., caching/recording system condi-
tions, pre-processing data on the worker) while the latter pro-
vides callbacks specific exclusively to the training loop (e.g.,
modifying the loss before back-propagation).

A new Flight strategy can be defined simply by com-
posing four existing sub-strategies. Or, a user can provide
custom implementations of one or more of the sub-strategy
classes. To simplify the development of custom implementa-
tions, Flight provides a default implementation for each sub-
strategy; a user can inherit from such a default implementation
and override only what is needed. As an example, we present
our FedAvg (McMahan et al., 2017) implementation in List-
ing 4. For user convenience, Flight provides implementations
of strategies for common FL algorithms, including FedSGD,
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), and
FedAsync (Xie et al., 2019).

1 class FedAvgAggr(DefaultAggregatorStrategy):
2 def aggregate_params(
3 self, state, children_states, children_params
4 ) -> Params:
5 weights = {}
6 for node, child_state in children_states.items():
7 weights[node] = child_state['num_data_samples']
8 state['num_data_samples'] = sum(weights.values())
9 return average_params(
10 # Flight-provided utility fn
11 children_params, weights=weights
12 )
13
14 class FedAvgWorker(DefaultWorkerStrategy):
15 def before_training(
16 self, state: WorkerState, data
17 ) -> tuple[WorkerState, t.Any]:
18 state['num_data_samples'] = len(data)
19 return state, data
20
21 class FedAvg(Strategy):
22 def __init__(self, **kwargs):
23 super().__init__(
24 coord_strategy=FedSGDCoordinator(**kwargs),
25 aggr_strategy=FedAvgAggr(),
26 worker_strategy=FedAvgWorker(),
27 trainer_strategy=DefaultTrainerStrategy(),
28 )

Listing 4: This custom implementation of the FedAvg algorithm is constructed
by subclassing the default implementations of AggregatorStrategy and
WorkerStrategy. The required callbacks are then overriden and those
implementations are wrapped in the FedAvg class which contains all the logical
components. Note the use of the FedSGD algorithm’s CoordinatorStrategy
on line 24.

Model Params Size

TinyNet 2 8 bytes
SmallNet (PyTorch, 2024) 62K 242 KB
SqueezeNet (Iandola et al., 2016) 1.2M 5 MB
ResNet-18 (He et al., 2016) 11M 45 MB
ResNet-50 (He et al., 2016) 23M 98 MB
ResNet-152 (He et al., 2016) 60M 231 MB

Table 2: Sizes of the models considered in our experiments.

4.1. Defining Custom Strategies
5. Evaluation

We evaluate Flight’s scalability in multi-node experiments
on an HPC cluster, hierarchical communication costs and asyn-
chronous FL makespan in single node experiments, and perfor-
mance in on-device experiments conducted on AWS.

5.1. Flight Scaling Tests
We explore how Flight scales with different model sizes and

compare with the state-of-the-art Flower framework. For a fair
comparison against Flower, we consider only two-tier topolo-
gies and scale the number of workers and model size.

Testbed: We use SDSC Expanse, a 5.16 petaflop cluster with
728 CPU compute nodes, each with two 64-core AMD EPYC
7742 processors and 256 GB memory. The nodes are connected
with a 100 Gb/s InfiniBand interconnect.
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Figure 5: Weak scaling results: Runtime of Flower vs. Flight using Parsl and Parsl+RedisConnector for a series of increasingly complex models (see Table 2).
Results confirm that our proposed Flight framework provides better performance and, in some cases, also scales to more workers.
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Figure 6: The hierarchical topology of the EC2 testbed employed for remote
tests with GlobusComputeLauncher and ProxyStore.

Models: We use the six image classification model archi-
tectures in Table 2 to evaluate Flight performance and over-
heads. TinyNet, the smallest model, comprises a single lin-
ear layer with 1 input channel and 1 output channel. Small-
Net is a small neural network from the Pytorch documen-
tation (PyTorch, 2024). The ResNet (He et al., 2016) and
SqueezeNet (Iandola et al., 2016) implementations are those in-
cluded in PyTorch.

Configuration: We configure Flight and Flower with a two-
tier hierarchy by deploying a Coordinator and server, respec-
tively, on a single compute node. We then deploy workers on
separate compute nodes and increase the number of workers
from 1 to 128 (each using a single core on a single node) and
then up to 2048 (on 16 nodes). To evaluate scaling performance
and overhead we reduce the fixed processing costs to measure
worst-case performance. To do so, we configure both frame-
works such that the clients do not train or evaluate the model
and instead simply pass a model with randomized weights back

to/from the coordinator. We use FedAvg to aggregate the mod-
els. We record the time from when the clients start until the
aggregator has received and aggregated all models.

In Flight, we configure the Coordinator with a single
model with randomized weights. Flight then distributes that
model to each Worker who instantiate and then return the
model. We configure Flightwith the ParslLauncher and com-
pare Parsl with and without ProxyStore to measure the benefits
of decoupling control from data plane. We configure Proxy-
Store to use the RedisConnector and deploy Redis on the same
node as the Coordinator. Flower is a client-driven framework
and thus we first initialize random models at each client. The
server then picks a client at random and distributes their model
weights to the other clients.

Results: Fig. 5 shows weak scaling results as we increase
the number of workers involved in training. We see that Flight
with Parsl outperforms Flower for smaller models, achieving
faster results and scaling beyond Flower (2048 compared to 512
workers). As we scaled Flower to 1024 and 2048 workers we
observed gRPC errors that prevented aggregation. We did not
scale Parsl beyond 2048 nodes due to limited allocation. For
the larger ResNet models, Flower slightly outperformed Flight
with Parsl, a difference that we attribute to the efficiency of the
gRPC protocol and the fact that Parsl is not optimized to move
large data volumes over its ZMQ-based protocol. Flight with
ProxyStore’s RedisConnector overcomes this limitation and we
see better runtime and scalability than Flower for all models
considered.

5.2. Distributed On-Device Deployment

We now evaluate the use of Flight in a distributed testbed
to replicate a real-world deployment. We use Globus Compute
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Figure 7: Top row: Test accuracy while training over the FashionMNIST dataset using three different strategies. Testing is done on the Coordinator. Bottom row:
Comparison of the total data transferred across the network (implemented as a balanced tree with 256 leaf workers) at each round. For both 2-tier and HFL, the data
transfer analysis assumes the same communication topology, though HFL Aggregators aggregate the models on return to the Coordinator.

and ProxyStore.

Testbed: We constructed the three-layer, 11-node hierar-
chical Flight topology shown in Fig. 6. The coordinator is
deployed on an Apple Silicon M1 laptop with 32GB RAM
while the eight workers and two aggregators are deployed on 10
m2.small EC2 instances (2vCPU, 4GB RAM) on AWS cloud.
We deployed one aggregator and four workers in each of AWS’s
Virginia and Oregon regions. We configured each instance with
both a Globus Compute endpoint and a ProxyStore endpoint.
We used ProxyStore’s EndpointConnector for wide-area data
transfer.

Model and Data: We use SmallNet (see Table 2) to per-
form image classification on the FashionMNIST dataset. For
simplicity, we use the standard stochastic gradient descent algo-
rithm for optimizing the model parameters, with a learning rate
η = 0.01. To obtain a non-IID data distribution, as is common
in decentralized data (McMahan et al., 2017), we partition data
across the eight Workers by using a dual Dirichlet distribution.
Specifically, the number of data samples at each worker follows
the Dirichlet distribution with shape parameter α = 3.0, and the
distribution of labels across each worker follows a Dirichlet dis-
tribution with shape parameter α = 1.0.

Results: Fig. 8 shows the training accuracies obtained over
time at each worker (above) and, averaged across workers,
at the two coordinators (below) when running this HFL ap-
plication on our testbed. In the lower plot, we also show
the accuracy reported by an evaluation step performed on the
Coordinator. The test accuracy converges with the average
training accuracies of the two sets of Workers.
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Figure 8: Training accuracy over time at Workers and Aggregators, and test
accuracy at Coordinator, for an HFL application (image classification with
SmallNet) on an 11-node distributed testbed.

5.3. Hierarchical FL vs. Two-Tier FL: Communication Cost

HFL takes advantage of the multiple hops necessary in net-
work topologies by using Aggregators to perform intermedi-
ate aggregation rather than directly traversing all links between
Workers and the Coordinator with all models as in two-tier
systems. We use Flight’s LocalLauncher to simulate the ben-
efits of HFL by comparing the total amount of data transferred
over the network. We initialize the simulation with a balanced
tree topology with 256 leaves (i.e., 256 Workers) and vary its
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height from h = 1, 2, 4, 8. We generate these tree topologies us-
ing the balanced tree(·) function from NetworkX (Hagberg
et al., 2008). This function takes a height (h) and branching
factor (b) as an argument, which we compute by b = 2561/h.
Given the balanced trees, we use the model sizes from Ta-
ble 2 to numerically compute the data transfer costs for two-tier
FL and HFL. The mathematical details behind these calcula-
tions are presented in Appendix A. The reduction in transfer
volume achieved by HFL is shown in Fig. 7. The benefit of
HFL becomes increasingly notable with topology height, sav-
ing 60.13% in the case of a height of 8 with the ResNet-152
model. Fig. 7 also shows comparable test accuracy during train-
ing across all topology heights, though test accuracy becomes
less stable as height increases.

While comprehensively evaluating the impact of hierarchies
on FL model performance is beyond the scope of this work,
Flight provides a framework to enable research into such ques-
tions.

5.4. Comparing Synchronous vs. Asynchronous FL

We evaluate Asynchronous FL (AFL) on a two-tier topol-
ogy with 12 Workers using the LocalLauncher. We par-
tition the FashionMNIST (Xiao et al., 2017) dataset across
these workers with a dual Dirichlet distribution (via the Flight-
provided federated split() utility function) such that the
workers have non-IID distributions of labels and modestly im-
balanced numbers of samples. We use the LocalLauncher to
start 12 workers, and train SmallNet (see Table 2) with both
FedAvg (synchronous) and FedAsync (asynchronous). In both
cases, we configure the FL process to run for 20 rounds (i.e.,
each worker locally trains the model 20 times).

The visualization in Fig. 9 shows via solid colors when the
workers are engaged in training in each case. We see that syn-
chronous FL (SFL) leaves some workers idle for long periods,
whereas AFL keeps the workers more active. Overall, AFL
has a nearly 20% shorter makespan than SFL. Workers in the
AFL run were idle, on average, just 0.061% of the time (stan-
dard deviation 0.013%) until they completed their final round,
while workers in SFL run were idle 14.858% of the time (stan-
dard deviation 11.313%). While a comprehensive analysis of
the trade-offs between SFL and AFL is beyond the scope of this
paper—such analyses are the focus of related work (Chen et al.,
2020; Xie et al., 2019)—we find that AFL achieved a training
accuracy of 87% whereas SFL achieved 90% accuracy.

6. Conclusion & Future Directions

We have presented Flight, the first FL framework to enable
on-device and simulated FL in complex hierarchies. Flight
is designed for distributed deployment and adopts novel ap-
proaches for decoupling FL control from data movement as
well as use of asynchronous communication. Support for vari-
ous launchers allows for simple deployment in different scenar-
ios and scaling from local processes, to parallel execution on
a cluster, to wide-area deployment. Flight’s extensible Python
implementation and integration with ML frameworks allows it
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Figure 9: Synchronous vs. asynchronous FL in Flight. Each horizontal bar
indicates a worker performing local training, with color indicating round num-
ber. Vertically aligned white regions in the Synchronous case indicate when
workers sync during aggregation before beginning the next round. In contrast,
the Asynchronous case has clear overlaps where workers are working.

to be easily adopted and customized for various scenarios. Our
experiments demonstrate that Flight can scale in multi-node
simulations beyond state-of-the-art frameworks. We also show
the ability to reduce data communication requirements by more
than 60% percent through the use of HFL. Our simulation of
AFL demonstrates a nearly 20% reduction in overall makespan
as well as substantially decreased resource idle time. Finally,
deployment of HFL in a distributed environment of 11 nodes
shows that Flight enables effective learning across Workers
and Aggregators.

In future work we will investigate the generalizability of FL
algorithms to large scale experiments, the efficient exchange of
model weights across different systems, and automated topol-
ogy configuration to best suit a hierarchical FL workflow.
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Appendix A. Method for Calculating Data Transfer Costs
in Hierarchical Topologies

Following the description of the the balanced tree topologies
in Section 5.3. The data volume can be computed by 2 · E · M
where E is the number of edges/links/hops in the topology and
M is the size of the model. By comparison, the total transfer
volume in the two-tier case can be estimated by (E ·M)+(l·h·M)
where l is the number of leaves (i.e., Workers) and h is the
height of the topology. The first term is the initial broadcast
and the second term is the response. From this formulation,
it is clear why the total data transfer in two-tier aggregation
is larger than hierarchical aggregation. Further, even without
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considering transfers across multiple heights, the hierarchical
model reduces the data volume handled by the Coordinator.
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