
Empowering Scientific Workflows with
Federated Agents

Alok Kamatar∗
University of Chicago

Mansi Sakarvadia
University of Chicago

J. Gregory Pauloski∗
University of Chicago

Daniel Babnigg
University of Chicago

Yadu Babuji
University of Chicago

Kyle Chard
University of Chicago

Argonne National Laboratory

Ryan Chard
Argonne National Laboratory

Ian Foster
University of Chicago

Argonne National Laboratory

Abstract—Agentic systems, in which diverse agents cooperate
to tackle challenging problems, are exploding in popularity
in the AI community. However, existing agentic frameworks
take a relatively narrow view of agents, apply a centralized
model, and target conversational, cloud-native applications (e.g.,
LLM-based AI chatbots). In contrast, scientific applications
require myriad agents be deployed and managed across diverse
cyberinfrastructure. Here we introduce ACADEMY, a modular
and extensible middleware designed to deploy autonomous agents
across the federated research ecosystem, including HPC systems,
experimental facilities, and data repositories. To meet the de-
mands of scientific computing, ACADEMY supports asynchronous
execution, heterogeneous resources, high-throughput data flows,
and dynamic resource availability. It provides abstractions for ex-
pressing stateful agents, managing inter-agent coordination, and
integrating computation with experimental control. We present
microbenchmark results that demonstrate high performance and
scalability in HPC environments. To explore the breadth of
applications that can be supported by agentic workflow designs,
we also present case studies in materials discovery, astronomy,
decentralized learning, and information extraction in which
agents are deployed across diverse HPC systems.

Index Terms—Computational Workflows, Distributed Comput-
ing, Federated Computing, Multi-Agent Systems, Open-Source
Software

I. INTRODUCTION

The desire to automate scientific processes has led to ad-
vancements in many fields, from artificial intelligence (AI) [1]
and computational workflows [2] to research data manage-
ment [3] and self-driving laboratories (SDL) [4], but humans
typically remain responsible for core aspects of the iterative
research cycle, including hypothesis generation, experimen-
tal design, code development, and data analysis. Automated
components stall as humans must trigger experiments, manage
workflows, correct errors, and make menial decisions. This
friction increases as the scale and ambition of computational
science endeavors grow and leads to inefficient use of ex-
perimental and observational facilities, data repositories, and
high-performance computing (HPC) systems.

Intelligent agents, either individually or composing larger
multi-agent systems (MAS), rather than humans, can be the

∗
Authors contributed equally to this work.

Agentic
Infrastructure

Experimental Facilities

D
ata StorageCo

m
pu

te

Agentic Workflows

Fig. 1: Cooperative agents, spanning federated research infrastructure
(experimental facilities, computational systems, data storage), can
enable agentic workflows that autonomously steer discovery.

driving entities of discovery [5]. Agents are independent, per-
sistent, stateful, and cooperative—working together to achieve
a predefined goal with only intermittent human oversight.
The contemporaneous explosion of interest in multi-agent
systems is largely a consequence of advancements in reasoning
capabilities of the large language models (LLMs) often used
to back AI agents [6]–[8]. Expressing components of scien-
tific applications as agents—programs that can perform tasks
independently or semi-autonomously on behalf of a user or
another agent—is powerful. An agent manages its own local
state and exposes a well-defined behavior. Agents can perform
human roles in iterative scientific processes [9] or encapsulate
research cyberinfrastructure (e.g., computational resources and
procedures, experimental instruments, data repositories) [10].

However, current agent frameworks (e.g., AutoGen [11]) are
not ready to build and deploy agents equipped for scientific
applications. They are limited in scope and typically apply
a centralized model and target conversational, cloud-native
applications (e.g., LLM-based AI chatbots) [11]–[13]. Sci-
entific applications, in contrast, typically span geographically
(and administratively) separated instruments, supercomputers,
robotic facilities, and other resources that collectively consti-
tute federated research infrastructure [14]. Federation creates
unique challenges: distributed resources have diverse access
protocols, interactions between resources are asynchronous,

and varying resource availability requires fault-tolerant and
adaptive systems. Existing agentic frameworks are not de-
signed to address these intricacies and workflow manage-
ment tools designed for federated resources (e.g., Globus
Compute [15]) cannot support the long-running and stateful
properties of agents natively. New middleware is needed to
enable agentic workflows that seamlessly integrate experiment,
observation, simulation, analysis, and more, as in Figure 1.

We introduce ACADEMY, a novel actor-based framework
for building agentic, scientific workflows, emphasizing modu-
larity, statefulness, and interoperability across federated com-
puting infrastructure. Specifically, this work contributes:

• ACADEMY, a novel, modular, and extensible middleware
for expressing agentic workflows and deploying multi-
agent systems across federated resources. ACADEMY
addresses unique challenges in scientific applications,
such as high data volumes, variable resource availability,
and the heterogeneous nature of experimental and com-
putational systems (Section III).

• Performance analysis of ACADEMY in diverse scenarios
yielding insights into the scalability and practical consid-
erations of deploying agentic workflows (Section IV).

• Case studies demonstrating the utility of agentic workflow
design and highlighting improvements in automation, re-
source utilization, and discovery acceleration (Section V).

These contributions advance the state of the art in multi-agent
systems for scientific discovery and establish a foundation for
future innovations in autonomous research workflows.

II. BACKGROUND

Agents encompass a rapidly expanding front for AI re-
search that can address a breadth of challenges across the
computational sciences. We begin with a definition of an
agent—inspired by prior work—that is sufficiently generic to
encompass the various semantic uses of the term. Then, we
describe applications that inform the design of ACADEMY, and
distill requirements to support agentic scientific workflows.

An agent is a program that can perform actions indepen-
dently or semi-autonomously on behalf of a user or another
agent. This definition incorporates both the modern notion
of intelligent LLM agents [11] and the more traditional
definitions of agents [16]–[19]. While imprecise, it presents
a powerful conceptual model for distributed computing. The
agent concept originates from the actor model, a concurrent
computing paradigm in which actors encapsulate a local
state and communicate through message passing [20]. Agents
extend the actor model with the notion of agency—the ability
of the agent to engage independently with its environment.

A. Use Cases

As scientists leverage more advanced computational and
experimental resources, and pair them with increasingly ca-
pable machine learning models, such as LLMs, the nature of
computational science workflows is changing. We highlight
applications across four emerging patterns that are guiding our
development of agentic middleware.

a) Steering Applications: Scientists increasingly want to
build applications that delegate the direction and composition
of scientific campaigns to ML models. Agents simplify the
construction of these applications by observing and learn-
ing from the results of previous actions and adapting to
meet the science goals. For example, Colmena is an active
learning library for steering simulation campaigns to discover
molecules with desirable properties [21]. In micro-genomics,
scientists are using agents to learn the performance of viral
identification tools and compose workflows based on sample
characteristics [22]. In physical simulations, agentic systems
enable on-the-fly learning that dynamically switches between
expensive subroutines and learned surrogate models based on
the model uncertainty [23].

b) Decomposing Applications across Facilities: Multi-
site workflows are becoming necessary to support complex and
heterogeneous scientific applications. These applications need
to operate autonomously and manage local state while coordi-
nating workflows across administrative domains. MOFA [24]
is a materials science application designed to discover novel
metal organic frameworks (MOFs) for carbon capture. It uses
a chemical foundation model to generate candidate MOFs and
several simulation tools to filter the candidates. The tools
are best distributed across multiple computing facilities to
meet the heterogeneous resource requirements. Agents can
assist at managing the resources allocated at each facility.
The Coalition for Epidemic Preparedness Innovations aims to
shorten the timeline between disease outbreak and vaccine de-
velopment to 100 days, which requires coordinating analytics
across regions, continuously monitoring outbreaks and trial
results, and integrating development and manufacturing into
workflows [25]. Agents can facilitate data, information and
resource sharing, and automate components of the workflow.

c) Integrating Instruments into Workflows: As exper-
iments become more data-intensive, scientific applications
integrate instruments into computational workflows, or analo-
gously use ML models to control experimental facilities [26].
Embodied agents can integrate instruments into workflows and
provide a mechanism to distribute control to the instrument or
experimental site. Integral field spectroscopy relies on precise
data calibration to study distant spatially complex objects. By
deploying agents with the instruments, scientists can track the
optical parameters necessary for data-processing and acceler-
ate discovery and steering of the telescope [27]. Self-Driving
Laboratories (SDLs) provide an additional tool in chemistry
and biology to automatically synthesize materials and measure
properties [28]. Distributing agents to SDLs allows on-site
control of experiments and integration of these experiments
into computational workflows.

d) Conversational Research Assistants: Scientists are
building conversational assistants that help navigate literature,
code, documentation, and other data. These systems consist of
multiple LLM-based agents that interact (e.g., via dialogue or
shared context), with different agents being assigned different
roles or capabilities. For instance, Dr. MACS is an astronomy
research assistant augmented with retrieval of astronomy lit-

erature [29], and ChemGraph is a general purpose chemistry
assistant that delegates the construction of chemistry simu-
lation workflows to an LLM [30]. While constructed today
with existing agent frameworks, these applications require
access to scientific infrastructure to achieve the autonomy and
performance required to meet scientific goals.

B. Requirements to Support Federated Agents

The case studies illuminate benefits of building agentic
workflows in science, but also introduce new requirements
unmet by existing agent, actor, or workflow systems.
(R1) Federated Orchestration. Many of the use-cases re-

quire launching and managing agents across different
computing systems or scientific instruments.

(R2) Configurable Data Plane. Agents may need to fre-
quently communicate at the pace of simulation time-
steps on high-performance interconnects or large vol-
umes between facilities and instruments for long running
campaigns. The communication mechanism that agents
use needs to be configurable to adapt to the specific
application.

(R3) Temporally Decoupled Messaging. Research infras-
tructure has varying availability, typically with much
lower uptimes than cloud infrastructure [31]. Commu-
nication between agents must cope with facilities being
temporarily unavailable.

(R4) Agent Authentication and Permissions. Agents with
the capability to use research infrastructure risk exposing
the infrastructure to untrusted users. Researchers must be
able to securely delegate (and revoke) the permissions
to use tools and infrastructure to agents.

(R5) Resilient State Management. State is a key feature
across use-cases allowing these agentic systems to learn
and adapt. While state is a necessary feature of the actor
model, it is ill supported across workflow management
tools that are popular among scientific applications.

The adoption of specific frameworks is often also influenced
by usability requirements such as intuitive and simple repre-
sentations, local testing and debugging capabilities, etc.

III. ACADEMYDESIGN

In the design of ACADEMY, we aim to address the following
high-level challenges: How to represent, in code, the declara-
tion of and interaction between agents? How to deploy agents
across federated infrastructure? How to achieve performance
across heterogeneous systems and networks? ACADEMY is an
open-source Python library, available on GitHub1 and PyPI.
We target Python for its broad compatibility with scientific
workflow codes and libraries, but both the architecture and in-
dividual components could be implemented in other languages.

A. ACADEMY Architecture

ACADEMY is a middleware for expressing agentic work-
flows and deploying multi-agent systems across federated

1https://github.com/academy-agents

User

Handle

Handle

Executor(s) (Control Plane)

Exchange (Data Plane)

Control

Actions

Agent

State

Agent

Control

Actions

State

HandlesHandles

Mailbox Mailbox Mailbox

Fig. 2: Agents and users in ACADEMY interact via handles to invoke
actions asynchronously. Agents implement a behavior, defined by
their actions, control loops, and state. ACADEMY decouples the con-
trol and data planes through the executor and exchange components
that manage spawning agents and communication, respectively.

resources. Its architecture strongly decouples the implemen-
tation of agent behavior from execution and communication
to simplify the development of new agents while maintaining
flexibility in deployment.

As depicted at a high level in Figure 2, an ACADEMY
deployment includes one or more agents and zero or more
users. An agent is a process with a local state, a set of actions,
and a set of control loops. Agents are executed remotely using
an executor. Once running, an agent concurrently executes
all of its control loops and listens for messages from clients,
which can be other agents or users.

A client interacts with an agent through a handle, a term we
borrow from actor frameworks. A handle acts like a reference
to the remote agent and translates method calls into action
request messages. Each entity (i.e., user or agent) has an
associated mailbox that maintains a queue of messages sent to
that entity by other entities. Mailboxes are maintained by an
exchange such that any client with access to a given exchange
can send messages to the mailbox of another agent in the
exchange and receive a response through its own mailbox.

B. ACADEMY Interaction

We first describe how scientists program agents and interact
with the ACADEMY ecosystem.

1) Agent Representation: An agent is implemented as a
Python class that inherits from the base Agent type: see
Listing 1. This class-based approach is simple, so existing code
can be easily transformed into agents, and extensible through
inheritance and polymorphism. Instance attributes maintain the
agent’s state, and methods define the actions and control loops.

The @action decorator marks a method as an action,
allowing other entities to invoke it remotely. An agent can
invoke actions on itself, as actions are simply Python methods.
Methods not decorated as @action are private to the agent.
The @loop decorator marks methods as control loops. Control
loops extend the actor model to enable the programming of
autonomous behavior. Control loops are executed concurrently

https://github.com/academy-agents

1 from asyncio import Event , sleep
2 from academy.agent import Agent , action , loop
3

4 class Example(Agent):
5 def __init__(self) -> None:
6 self.count = 0 # State stored as attributes
7

8 @action
9 async def square(self , value: float) -> float:
10 return value **2
11

12 @loop
13 async def count(self , shutdown: Event) -> None:
14 while not shutdown.is_set ():
15 self.count += 1
16 await sleep (1)

Listing 1: Example agent definition, showing initialization that sets
an internal count variable, an action that squares a supplied value,
and a loop that increments the internal count variable once a second.

in an event loop; a shared Event is passed to each loop
to signal agent shutdown, so that control loops can exit
gracefully. A control loop can terminate early and the agent
will remain running. Commonly, control loops are used to
execute a routine on a regular interval, such as to check the
state of the environment, or in response to an event. We
provide special loop decorators, such as @timer and @event,
that simplify agent implementations for common use cases.

Two special methods, agent on startup() and
agent on shutdown(), allow agents to define callbacks
when starting or shutting down, such as to load/store state
or initialize/destroy resources. Multiple inheritance of agents
enables the creation of composite agents.

2) Agent Invocation: A handle is a client interface to a
remote agent used to invoke actions, ping, and shutdown the
agent. Each handle acts as a reference to that agent, translating
each method call into a request message that is sent via the
exchange and asynchronously waiting on the response message
and returning the result. The handle decides which mailbox to
send from and listen to based on the context where the handle
is used; a handle can be passed between users and agents and
automatically attaches to the mailbox of the respective client.
This ensures that there is only one listening task per mailbox,
and one mailbox per client (i.e., agent or user).

3) Manager Class: A Manager combines an exchange and
one or more executors to provide a single interface for launch-
ing, using, and managing agents. This reduces boilerplate
code, improves communication efficiency, and ensures stateful
resources and tasks are appropriately cleaned up. An end-to-
end example is provided in Listing 2.

C. Agent Management

1) Agent Runtime: ACADEMY provides an agent Runtime
that executes an agent and manages communication with other
entities. It is instantiated with an agent class or instance,
a unique identifier (the address of the agent’s mailbox in
the exchange), and an exchange interface. When started, the
Runtime: (1) invokes the agent on startup() callback of
the agent, (2) spawns tasks for each @loop method, (3) spawns
a task to listen for new messages in the agent’s mailbox, and

(4) waits for the agent to be shut down. We use asyncio to en-
sure that many @action requests can be handled concurrently
without blocking control loop and message listening tasks.

2) Execution: An agent can be run manually, but the
intended method of deployment is via an executor. Any class
that implements the concurrent.futures.Executor protocol
can be used to launch agents on distributed resources via the
Manager interface (R1). We use the following executors which
cover most local and remote resource types:

• Thread: Runs agents in separate threads of the same
process. Useful for local development and testing or for
lightweight or I/O bound agents.

• Process: Runs agents in distinct processes on a machine.
• Parsl: Runs agents across the workers of a Parsl Execu-

tor [32]. Parsl supports execution on local, remote, and
batch compute systems.

• Globus Compute: Runs agents across Globus Compute
Endpoints [15]. Globus Compute is a cloud-managed
function-as-a-service (FaaS) platform which can execute
Python functions across federated compute systems.

3) State API: The ACADEMY State API provides a
dictionary-like interface for agents to persist in-memory state
to storage. This API currently supports only writing/reading
state to/from disk, but could be extended to other storage
modalities. Agents can define the agent on startup() call-
back to restore state automatically. Given that research infras-
tructure can fail, agents may want to perform periodic state
checkpointing (R5). ACADEMY does not enforce a specific
checkpointing mechanism, as the format, location, and fre-
quency of checkpoints are highly application specific, agents
can use the State API to periodically store checkpoints.

D. Agent Communication

Entities communicate by sending and receiving messages
to and from mailboxes. The mailboxes serve as mediated
communication channels to decouple agents in time (R3);
messages persist in a mailbox even when an agent is of-
fline. An exchange hosts these mailboxes, and the Exchange
protocol defines the interface to an exchange. Namely, the
ExchangeClient defines methods for registering new agent or
user mailboxes, sending and receiving messages, and creating
handles to remote agents. Registering an agent or user involves
creating a unique ID for the entity, which is also the address of
its mailbox, and initializing that mailbox within the exchange.

A mailbox has two states: active and terminated. Active
indicates that the entity is accepting messages, even if, for
example, an agent has not yet started or is temporarily offline.
Terminated indicates that the entity is permanently finished
and will cause a terminated error to be raised by subsequent
send or receive operations to that mailbox.

Users can define custom exchanges to address specific
hardware or application characteristics (R2). We provide three
exchange implementations: for testing (Thread Exchange),
single-site (Hybrid), and distributed (Cloud) deployments.

1) Thread Exchange: This implementation stores messages
in-memory and is suitable for agents running in separate
threads of a single process, such as when testing.

2) Hybrid Exchange: This implementation enables com-
munication between entities across local networks (e.g., HPC
interconnects). It leverages an object store that persists infor-
mation about registered entities. A hybrid approach is used for
message passing: direct messaging is preferred, and indirect
message passing via the object store is available as a fallback.
Upon startup, an entity writes its location (i.e., address and
port) to the object store; peers that want to send a message
can attempt to send directly to the entity’s address. If the peer
is offline or a direct connection fails, messages are appended to
the list of pending messages in the object store. The multi-path
design also makes the hybrid exchange suitable for dealing
with heterogeneous networks.

Entities continuously listen to incoming messages from
peers and pending messages in the object store. Entities cache
successful communication routes locally to reduce queries to
the object store. Our implementation uses TCP (Transmission
Control Protocol) sockets for direct messaging and a Redis
server as the object store. Redis provides low-latency commu-
nication and optional replication, but applications that need
greater fault-tolerance could consider (distributed hash table
(DHT)-based object stores. The security model for the hybrid
exchange relies on Redis’s built-in password authentication
and access control lists.

3) Cloud Exchange: This implementation supports feder-
ated agent deployments. It exposes a secure, HTTP-accessible
REST API that wraps Redis queues and enforces authorized
access to mailboxes (R4).

The cloud exchange security model is designed to ensure
that any communication on the exchange is done by authen-
ticated and permitted agents. This guarantees, for instance,
that any action request served by an agent comes from an
authorized agent/user and similarly response data is only read
by the requesting agent/user. Authorization and permissions
enforcement occur at the exchange server; communication
with the exchange is secured using standard TLS. Users
are authenticated via Globus Auth, an identity and access
management platform that supports federated authentication
via thousands of supported identity providers [33]. Each agent
is registered as an authenticated entity with the Globus Auth
service. Creating an agent involves creating a new application
identity with Globus Auth; a mailbox on the exchange linked
with that identity, and a delegated token for the new agent to
authenticate with the exchange; and launching the agent with
the delegated token.

We assume that the launching entity is trusted, and that the
launching mechanism is secure. When launched, the new agent
exchanges a delegated token for a refresh token, allowing long-
lived access to the exchange without reauthentication. The
refresh token is used to obtain access tokens to the exchange;
these are introspected by the exchange to verify the client ID
matches the expected client of the mailbox, and are cached for
60 seconds. Revocation of the delegated token invalidates the

1 from concurrent.futures import ThreadPoolExecutor
2 from academy.exchange.local import LocalExchangeFactory
3 from academy.manager import Manager
4

5 async with await Manager.from_exchange_factory(
6 # Can be swapped with other implementations
7 factory=LocalExchangeFactory (),
8 executors=ThreadPoolExecutor (),
9) as manager:

10 agent = Example () # From Listing 1
11 handle = await manager.launch(agent)
12

13 result = await handle.square (2)
14 assert result == 4
15

16 await handle.shutdown () # Or via the manager
17 await manager.shutdown(handle , blocking=True)

Listing 2: Example of initialization, spawning, using, and shutting
down an agent using the Manager interface.

refresh token and any derived access token, but the exchange
does not respond to the revocation until the cache expires.
This response time depends on the cache length. Users can
revoke tokens using the Globus Python SDK or web app.
Currently, permissions are coarse-grained—an agent is either
allowed to communicate or not—but we plan to support finer-
grained access controls for agents.

4) Pass-by-Reference: We optimize the Hybrid and Cloud
exchanges for low latency, as control messages are typically
small: O(100) bytes. However, action request and response
messages can contain arbitrarily sized serialized values for
arguments and results that can induce considerable overheads
when messages are sent indirectly via the object store. To
alleviate these overheads, we pass large values by reference
and perform out-of-band data transfers by using ProxyS-
tore [34], [35], which provides pass-by-reference semantics
in distributed computing through proxy objects. Proxy objects
act like references (cheap to serialize and communicate) and
automatically de-reference themselves to the true object using
performant data storage and communication methods. For
example, ProxyStore can leverage RDMA (remote direct mem-
ory access) transfers via Mochi [36] and UCX [37], Globus
Transfer [38], and reliable peer-to-peer UDP (user datagram
protocol) through NAT hole-punching. Two key ProxyStore
optimizations are useful within ACADEMY: proxies can be for-
warded to actions executed on other agents without incurring
additional data transfers and proxies can be asynchronously
resolved to overlap communication and computation.

IV. EVALUATION

We studied the performance characteristics of ACADEMY to
answer specific questions: How well does the system scale?
How fast can agents be deployed? What is the messaging
latency? In non-federated settings, we also compare to Dask
and Ray, two popular frameworks with support for distributed
actors in Python.

We conducted experiments using the Aurora supercomputer
at the Argonne Leadership Computing Facility (ALCF), unless
otherwise stated. Aurora has 10 624 nodes interconnected by
an HPE Slingshot 11 network and a high performance DAOS
storage system. Aurora nodes contain two Intel Xeon Max

1 2 4 8 16 32 52 104 208 416 832 1664 3328
Agents/Actors

0.01

0.1

1

10
To

ta
l S

ta
rtu

p
Ti

m
e

(s
)

Lower is better
52 workers per node

Error bands are std dev

Academy
Dask
Ray

1 2 4 8 16 32 52 104 208 416 832 1664 3328
Agents/Actors

10
20
30
50

100
200
300
500

Co
m

pl
et

io
n

Ti
m

e
(s

) Lower is better
52 workers per nodeAcademy

Dask
Ray
Ideal

Fig. 3: (Top) Warm-start times for n agents/actors with ACADEMY
(with Parsl launcher), Dask Actors, and Ray Actors. Ray does not
benefit from warm starts because a new process is spawned for each
actor. (Bottom) Time to execute 30 actions per agent/actor (weak
scaling). Each action sleeps for 1 s. Note the ACADEMY and Ray
lines are overlapped.

CPUs, each with 52 physical cores and 64 GB of high-
bandwidth memory; 512 GB of DDR5 memory per socket;
and six 128 GB Intel Data Center Max GPUs (split into two
tiles, or logical GPUs each). In some cases we also use the
Polaris supercomputer at ALCF and the compute-zen-3 nodes
of Chameleon Cloud’s CHI@TACC cluster [39]. Polaris has
560 nodes interconnected by an HPE Slingshot 11 network.
Polaris nodes contains one AMD EPYC Milan processor with
32 physical cores, 512 GB of DDR4 memory, and four 40 GB
NVIDIA A100 GPUs. Each compute-zen-3 node contains
two 64-core CPUs and 256 GB memory. Experiments were
performed using Python 3.10, AutoGen 0.5.1, Dask 2025.2.0,
Globus Compute 3.5.0, Parsl 2025.03.03, and Ray 2.43.0.

A. Weak Scaling

We measure weak scaling performance from two aspects:
agent startup and action completion time. We use the hybrid
exchange with the object store located on the head node of
the batch job to best match the behavior of Dask and Ray.

1) Agent Startup Time: We measure the time to spawn n
agents in Figure 3 (top). We pre-warm the worker processes
by starting and stopping n agents, then record the average
startup time over five runs. Specifically, we measure the time
between submitting the first agent to receiving a ping from all
agents to ensure that they have finished their startup sequence.
We configured ACADEMY to use Parsl’s High-throughput
Executor as the executor. Ray always spawns a new process
per actor and thus does not benefit from pre-warmed workers
leading to high startup overheads at smaller scales. ACADEMY,
Dask, and Ray have comparable cold start times, dominated
by loading libraries from the shared file system. With warm
starts, ACADEMY starts a single actor in 5.5 ms, 2.8× faster
than Dask. ACADEMY scales well, starting 3328 actors in 7.6 s
compared to Dask’s 23.4 s, but Ray demonstrates an advantage

10 KB 100 KB 1 MB 10 MB 100 MB
Action Payload Size

0.001
0.01
0.1

1
10

100

Ac
tio

n
La

te
nc

y
(s

)

Aurora Aurora
Baseline
+Pass-by-ref
+Direct

10 KB 100 KB 1 MB 10 MB 100 MB
Action Payload Size

Lower is better
Error bands are std dev

Workstation Aurora

Fig. 4: Time for a client to invoke a no-op action on an actor as a
function of input and output payload size with different optimizations
enabled on the hybrid and cloud exchanges. Two scenarios are
considered: client and agent are at the same site using the hybrid
exchange (left) and different sites using the cloud exchange (right).

at this scale with a 3.2 s startup. Since ACADEMY can leverage
many executor types, applications requiring frequent startup
of agents can utilize Parsl for low-latency, and applications
launching thousands of long-running agents could use Ray.

2) Action Completion Time: In Figure 3 (bottom), we
execute 30 sleep tasks (1 s) per agent and record the total
completion time. We set the maximum concurrency to 1 for
all agents to ensure that tasks are processed sequentially.
Completion time remains constant for ACADEMY and Ray up
to 3328 agents while Dask performance degrades starting at
104 actors.

B. ACADEMY Exchange

Next, we investigate performance and optimizations of the
hybrid and cloud exchange implementations. In baseline, all
message data are communicated indirectly between peers via
the exchange’s object store. For node to node communication
on Aurora (Aurora → Aurora), the object store of the hybrid
exchange is located on the head node of the Aurora batch
job. For remote communication, (Workstation → Aurora),
the cloud exchange is deployed on AWS. In pass-by-ref,
messages are still communicated via the object store, but
action arguments and results are replaced with references using
ProxyStore. ProxyStore is configured to use ZeroMQ and P2P
endpoints for intra-site and inter-site transfer of referenced
objects, respectively. In direct, messages are communicated
directly between peers, circumventing the object store; this is
only possible when peers are located within the same site.

In Figure 4, we measure the time it takes for a client to
invoke a no-op action on an agent as a function of payload
size. We compare baseline, pass-by-ref, and direct across two
scenarios: Aurora → Aurora, where the client and the agent
are located on different Aurora nodes and messages are passed
via the hybrid exchange, and Workstation → Aurora, where the
client is located on a personal workstation, the agent is on an
Aurora node, and messages are passed via the cloud exchange.
The round trip network latencies are: Aurora compute node to
Aurora head node: 0.23 ms; Aurora to AWS: 8.8 ms; Aurora
to Workstation: 2.2 ms; and Workstation to AWS: 10.4 ms.

We observe that network latency to the exchange limits per-
formance at smaller payload sizes (≤ 100 KB). Direct, which
is possible only in the intra-site scenario, circumvents these

1KB 10 KB 100 KB 1 MB 10 MB 100 MB
Action Payload Size

0.0001

0.001

0.01

0.1

1
Ac

tio
n

La
te

nc
y

(s
)

Lower is better
Error bands are std dev

Academy
Dask
Ray

1 GB 2 GB 4 GB 8 GB 16 GB
State Size

0.01

0.1

1

10

Ac
tio

n
La

te
nc

y
(s

)

Lower is better; Error bands are std dev

Academy
Globus Compute

1KB 10 KB 100 KB 1 MB 4 MB
Message Size

0.01

0.1

1

Co
m

pl
et

io
n

Ti
m

e
(s

)

Lower is better
Error bands are std dev

Academy
AutoGen

Fig. 5: (Top) No-op action latency between two agents/actors running
on separate Aurora nodes versus action input and output payload size.
(Middle) Action latency between agents located on a workstation
and Aurora. ACADEMY is compared to Globus Compute, a tool for
building federated workflows that only support stateless functions,
so state is read from the file-system on every invocation. (Bottom)
Completion time for a simulated two agent chat where agents send
ten messages back and forth with varied message sizes. ACADEMY
is compared to AutoGen’s distributed runtime.

latencies. In both scenarios, pass-by-ref alleviates overheads of
data transfer to and from the exchange by communicating data
directly between the client and agent via ProxyStore. For intra-
site transfers, pass-by-ref and direct reduce action latency
compared to the baseline by 91.2% and 97.6%, respectively,
with 100 MB payloads. For inter-site transfers, pass-by-ref
reduces action latency by 45.1%.

C. Agent Messaging

Here, we investigate the performance of agent messaging.
1) Action Latency: In Figure 5 (top), we show action

latency—the time between sending an action request and
receiving a result—between two agents on different nodes.
We vary the input/output payload size to understand data
transfer overheads. The mean and standard deviation roundtrip
latencies are 385±301 µs in ACADEMY, 1186±1059 µs in
Dask, and 526±308 µs in Ray for the smallest 10 KB
payloads, with latencies increasing with payload size.

For remote invocation, we compare the action latency of
the cloud exchange to invoking functions with Globus Com-
pute in Figure 5 (middle). Globus Compute is an alternative
for building federated workflows, but only supports stateless
functions. To use state within Globus Compute, the state must
be read from external storage (the shared file system) at every
invocation, while when using ACADEMY the state remains in

1 2 4 8 16 32 52 104
Agents/Actors

0.2
0.5

1
2
5

10
20

M
em

or
y

Us
ed

 (G
B)

Single node
Lower is better

Error bands are std dev

Academy+ProcessPool
Academy+Parsl

Dask
Ray

Fig. 6: Memory used by n agents/actors. We encountered a bug
causing Ray to crash when deploying 104 actors on a single Aurora
node (i.e., all cores on both sockets).

memory. The mean and standard deviation roundtrip latencies
are 34±5 ms in ACADEMY and 1226±313 ms in Globus
Compute for the smallest state size. Dask and Ray do not
support federated deployments—nodes in the cluster must
have direct communication.

2) Action Throughput: We measure the maximum action
throughput for a single agent by submitting a bag of no-op
tasks to a pool of worker agents. The pool contains 208 agents
across four nodes to ensure that each worker agent is not
over-saturated with work. That is, the single submitter agent
is the limiting factor for performance. ACADEMY, Dask, and
Ray achieve maximum throughputs of 3.4K, 185, and 14.1K
action/s, respectively. ACADEMY is 18× faster than Dask but
4× slower than Ray; however, this is a worst case scenario
with no-op tasks and >3K actions/s is sufficient for real-world
agents shown in Section V.

3) Agent Conversations: In Figure 5 (bottom), we simulate
a common pattern in LLM agents where two agents have
a back-and-forth conversation. We compare ACADEMY to
AutoGen, a popular framework for creating multi-agent AI
applications. Each agent is run in a different process on the
same node. Agents send 10 messages back and forth, repeat-
ing with varying message sizes to simulate different kinds
of conversations (i.e., text-only vs. multi-modal). AutoGen’s
distributed agent runtime uses gRPC which has a maximum
message size of 4 MB. ACADEMY has comparatively lower
overhead messaging in distributed settings.

D. Memory Overhead

We show memory used as a function of number of agents
in Figure 6; for ACADEMY, we compare two executors: a
low-overhead but single-node process-pool and Parsl’s High-
throughput Executor. For fairness, we disable features in Dask
and Ray that may increase memory, such as dashboards, and
set the initial Ray object store size to the smallest possible
value. ACADEMY agents have low memory overheads, mak-
ing them suitable for memory-constrained devices, as when
deployed to edge devices via Globus Compute. The Ray
cluster head worker has high memory overhead, but that initial
overhead is amortized as the number of actors is increased,
indicating that each actor has modest overhead.

TABLE I: Per-node throughputs, in MOFs/min, for the various
components of the MOFA application (Figure 7).

Task Academy Colmena/Parsl
Machine Throughput Machine Throughput

Validate Aurora 10.73 Polaris 4.34
Optimize Polaris 0.85 Polaris 0.85
Estimate Cloud 6.81 Polaris 1.85

V. CASE STUDIES

We use four applications to demonstrate the practicality,
generality, and robustness of ACADEMY in real-world settings.
These examples illustrate how ACADEMY integrates with ex-
isting research infrastructure, enables distinct capabilities, and
adapts to the varying demands of scientific applications. More
generally, these examples demonstrate how the agent paradigm
simplifies the construction of the scientific application patterns
identified in Section II.

A. Materials Discovery

MOFA [24] is an online learning application for generating,
screening, and evaluating metal organic frameworks (MOFs)
that couples generative AI methods with computational chem-
istry. MOFs are polymers composed of inorganic metal clus-
ters and organic ligands that are particularly suitable for gas
adsorption applications such as carbon capture [40]. The goal
of MOFA is to generate high-performing candidates by intel-
ligently navigating space of possible MOF structures. MOFA
is representative of a broad class of scientific workflows that
require careful integration of heterogeneous tasks spanning AI
and simulation.

MOFA involves five stages: (1) a generative AI model
produces candidate ligands; (2) these ligands are combined
with predefined metal clusters to assemble candidate MOFs;
(3) the candidates undergo iterative screening and validation
using a series of molecular dynamics simulations; (4) CO2
adsorption properties of the most promising structures are
simulated and recorded in a database; and (5) the generative
model is periodically retrained on the accumulated results to
enhance its performance over time.

These stages have varied requirements that are best satisfied
by different computational resources (see Table I). The valida-
tion stage of the pipeline uses the LAMMPS GPU library to
assess MOF stability (strain). As Aurora has more GPUs than
Polaris (12 vs. 4), we can simulate MOFs approximately 4×
faster on Aurora. Similarly for the CPU-only estimation stage,
the the cloud node has 4× more CPU cores than a Polaris
node allowing higher throughput screening. Meanwhile, the
optimization stage uses CP2K, which could not be built on
Aurora. Thus, to leverage the hardware best optimized for
the specific computations, we must run the application across
multiple sites. Furthermore, stateless execution, as supported
for example by Globus Compute, is inadequate for this appli-
cation. The generation component relies on a machine learning
model that is costly to transfer and load in a stateless task.
In addition, workflow components must adapt their resources

autonomously to varying demands and scheduler conditions
(e.g., job wall time limits or errors).

We adapt MOFA to use ACADEMY and deploy the resulting
agentic application across federated resources: see Figure 7.
We use six agents: Database, Generator, Assembler, Validator,
Optimizer, and Estimator. Each agent is responsible for a
different component of the workflow and manages its own
resources (i.e., storage and compute). Agents are remotely
deployed across Chameleon Cloud, Aurora and Polaris.

An execution trace of the agentic MOFA workflow (Fig-
ure 8) shows how each agent scales out its allocated resources
as work becomes available, and in the case of the Generator,
Validator, and Assembler, scale down when their workload
decreases. After a ramp up period, the Optimizer consistently
has work to do but their batch jobs within which workers
run have 60 minute wall times that expire and then must
be resubmitted, causing temporary drops in the number of
workers. Active tasks that are killed are restarted in the next
job. This separation of concerns is key to enabling long-
running workflows—resource infrastructure is not persistently
available and agents will need to be able to adapt to that
varying availability.

We contrast the Academy implementation of MOFA to a
version implemented with Colmena [21], a bespoke simulation
campaign framework built on Parsl [32]—a traditional work-
flow system that does not support stateful federated agents.
We compare the Academy version, deployed on federated
resources, to the Colmena version run as a single batch
job on Polaris. In addition to using different resources, the
Academy execution includes queue wait times to acquire
resources while the Colmena execution does not. Although the
performances are thus not directly comparable, the comparison
against Colmena/Parsl (shown in Figure 9) demonstrates how
federated agents support more efficient resource utilization.
With Academy, resource allocations (Figure 8) are managed
autonomously by each agent, whereas Colmena allocates re-
sources statically for the entire workflow. This, along with
the hardware configuration of Polaris, means that when the
Colmena workflow performs CPU-only tasks like “estimate,”
the GPU resources of the allocation sit idle.

A further advantage is that the loose coupling between
agents in the Academy model makes it trivial to swap one
agent implementation for another, provided that the API ex-
posed by the agent remains the same. It also becomes easier to
integrate future agents, such as to incorporate embodied agents
that interact with self-driving labs to synthesize the best-
performing MOFs via physical experiments [4], [28], [41].

B. Astronomical Spectroscopy

Integral field spectroscopy is a powerful technique used in
observational astrophysics to gather spatially-resolved spec-
troscopic data from a target field at once, enabling the
study of spatially-complex objects like distant strongly-lensed
galaxies—optimal candidates for understanding galaxy forma-
tion in the early universe [42]. Before analyzing the spectra
offered by the Integral Field Units for Magellan (IFU-M)

Training
Dataset

Generator

Assembler EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resources

Data Flow

Fig. 7: MOFA deploys agents across federated infrastructure with Globus Compute. The Assembler, Database, and Estimator run on Chameleon
Cloud nodes with fast single-core performance; the Generator and Validator run on Aurora login nodes and execute AI and simulation tasks,
respectively, on Aurora compute nodes; and the Optimizer runs on a Polaris login node and executes simulation tasks on Polaris compute
nodes. Each agent is responsible for a single MOFA stage. Agents cooperate by passing messages on the exchange, such as to request more
work and trigger periodic events. Agents on Aurora and Polaris use Parsl to scale resources up and down based on workload needs.

Generator
Assembler

Validator

Optimizer
Estimator

0

100

200

Su
bm

itt
ed

 Ta
sk

s

Generator
Assembler

Validator
Optimizer

Estimator

0 25 50 75 100 125 150 175 200
Runtime (minutes)

0

10

20

Al
lo

ca
te

d
W

or
ke

rs

Fig. 8: Execution trace of the Academy MOFA workflow. (Top)
Active tasks per agent. The vertical axis height represents the
maximum size of the resource pool allocated by each agent. (Middle)
Cumulative tasks submitted per agent. (Bottom) Active workers
allocated in each agent’s resource pool. Worker allocations vary with
demand (as in Assembler and Estimator) or batch job wall times (as
in Generator, Validator, and Optimizer).

instrument, scientists first process and calibrate the data which
involves the overarching steps: pre-processing, spatial and
wavelength calibrations, and datacube creation. A crucial step
in pre-processing the data is detecting and filtering cosmic
rays through subtracting multiple images of the same patch
of sky. However, the optics of the telescope shift over time
in response to small variations in external factors such as
temperature. The images must be aligned by finding offset
and scaling parameters that minimize the variation between
images. Previously, the alignment was found through a grid
search of parameters between pairs of images.

We employ a hybrid pattern for this workflow in which
Academy conceptually maps the instrument into the workflow

0

10

20

30

GP
Us

 O
cc

up
ie

d

0 10 20 30 40 50 60 70 80
Runtime (minutes)

0

100

200

CP
Us

 O
cc

up
ie

d Generate
Assemble
Validate

Optimize
Estimate
Idle

Fig. 9: Resources used for a traditional workflow implementation of
MOFA deployed on Polaris. The static resource configuration does
not match the workload, so in the estimation stage, when tasks are
only using the CPU, the rest of the resources are idle.

by estimating and storing the optical parameters of the tele-
scope (see Figure 10). As these parameters vary smoothly in
time, the agent uses previously calibrated images to inform
the search for new parameters, leading to faster alignment
and reduced noise in the processed images. The two spec-
trographs of the instrument are each represented by their
own agent. Other tasks in the application remain stateless,
allowing them to be scheduled to any available worker. In
the future, deploying the agents on the instrument would allow
the agent to use observations (e.g., temperature measurements)
to inform the alignment, and provide on-site feedback for
targeting observations.

C. Decentralized Learning

In decentralized machine learning a set of models learn
collaboratively across distributed datasets [43]. This paradigm
is particularly relevant today as data are generated in de-
centralized settings and transfer to a centralized location
can be infeasible for cost and privacy reasons. Each device
in a decentralized learning workflow performs three steps:

0 500 1000 1500 2000 2500 3000
Runtime (s)

Stateless
Workers

Academy
Agents

Fig. 10: Execution trace of the IFU-M workflow. Each color corre-
sponds to a different task type. Tasks within the Parsl workflow are
stateless, but invoke actions on agents that track the instrument state.

12 24 48 96 192 384 768 1536
Agents

0.01

0.1

1

M
od

el
 C

om
m

un
ica

tio
n

Ti
m

e
pe

r R
ou

nd
 (s

) Lower is better
12 agents per node

1.2 MB Model
4.8 MB Model

9.7 MB Model
19.2 MB Model

Fig. 11: Model communication time to an agent’s neighbors averaged
over five rounds of decentralized training. Training time and aggre-
gation time are excluded since they are nearly constant.

(1) train model on local data for a set number of iterations;
(2) receive models from neighboring devices and send its own
model to neighbors; and (3) update the local model via an
all-reduce operation performed across its own and received
models. It is straightforward to reframe such a decentralized
learning workflow as an agentic workflow. We represent the
application as a graph in which nodes are agents and edges
are communication channels. Each agent trains its local model,
receives neighboring agents’ models, and periodically aggre-
gates received models with its own model.

Using ACADEMY, we simulate decentralized learning on
Aurora. For the connectivity between devices, we choose
a power-law cluster graph to approximate real-world net-
works [44]. Each agent uses a copy of the MNIST dataset [45].
The agents are configured to use pass-by-ref with ProxyStore
as the transfer backend. We investigate the cost of distributing
updates from all agents as we scale the size of the graph for
different model sizes: see Figure 11. The agents are deployed
on Aurora using Parsl, with each agent pinned to a single
GPU tile (two tiles per physical GPU), allowing 12 agents per
node. Our results demonstrate ACADEMY’s ability to support
more than 1500 autonomous agents working collaboratively
with no client coordination, as shown by the constant times
seen in Figure 11.

D. Information Extraction

Exponential growth in scientific publications [46] creates
potential for cross-disciplinary insights that are largely un-
tapped due to the limitations of manual literature review. Au-
tomating information extraction from this vast and varied body
of work using AI is crucial to accelerate scientific progress.

0 200 400 600 800
Runtime (s)

PDFParser
MCQGeneratorA

MCQGeneratorB

MCQSelector
MCQAnswererA
MCQAnswererB
AnswerScorerA
AnswerScorerB

Fig. 12: Execution trace of the agentic MCQ workflow processing 10
manuscripts to generate and validate questions and answers over 15
minutes. The figure shows the active agents and the duration of their
tasks. Agents employ either the Mistral-7B-Instruct-v0.3 or Meta-
Llama-3-70B-Instruct model, denoted A and B, respectively.

AI methods can be employed to identify and synthesize key
findings, methodologies, and datasets across fields and thus
to identify connections and facilitate the cross-pollination of
ideas that would otherwise go unnoticed [47], [48].

Agentic workflows that leverage LLMs present a transfor-
mative new approach to engage with scientific literature. Em-
ploying autonomous agents with specific roles and capabilities
makes it possible to automate the extraction of information and
generation of structured datasets that represent key concepts
and findings. Such datasets can be used to fine-tune models
and enhance their ability to understand scientific text, answer
domain-specific queries, and potentially contribute to tasks like
hypothesis generation or literature summarization.

To explore the potential of agentic workflows for thus
analyzing the scientific literature, we used ACADEMYto im-
plement a system for generating and validating multi-choice
questions (MCQs) from research publications [49], [50]. The
workflow includes a PDFParser agent to extract text from a
manuscript; two Generator agents that use different LLMs
to generate MCQs; an MCQSelector to choose subsets of
questions to evaluate; and two MCQAnswerers and two An-
swerScorers (again, each with a different LLM) to generate
and validate, respectively, answers to questions. The agents
use the Mistral-7B-Instruct-v0.3 [51] and Meta-Llama-3-70B-
Instruct [52] models, denoted A and B, respectively.

The beauty of this architecture is that alternative tasks and
LLMs are easily integrated by defining new agents; agents
can scale up and down in response to demand; and different
agents can run concurrently or at different times. We show in
Figure 12 an execution trace from a run in which the agents
just listed were run concurrently to generate and validate
MCQs for 10 publications.

VI. DISCUSSION

We describe several lessons learned implementing
ACADEMY and applying it to a diverse range of applications.

Scientific agentic systems require federation and state-
fulness. Science is often collaborative and multi-institutional.
Research infrastructure (e.g., instruments, HPC systems, etc.)
mirrors this inherently federated ecosystem. Building intelli-
gent scientific systems requires agents that run in multiple lo-
cations and collaborate across institutions. Existing workflow

systems (e.g., Parsl, Ray, Dask, Globus Compute) either do not
support the capabilities necessary for agentic science, or face
significant barriers when deployed on research infrastructure.
Similarly, conversational agentic frameworks (e.g., LangChain,
PydanticAI) are not designed for such environments, but can
leverage ACADEMY to deliver these capabilities.

Start-up barriers hinder adoption and deployment.
ACADEMY initially required that users deploy the hybrid
exchange to allow inter-site communication. This requirement
hindered the transition from local development to multi-site
deployment. The introduction of the cloud exchange reduced
barriers and thus enabled significant improvements (e.g., agent
sharing and reuse). It also simplified integration with existing
execution and data transfer solutions (e.g., Globus Compute,
ProxyStore), further reducing barriers of using ACADEMY.

Agentic middleware should not bias the behaviors
that users create. Commonly used agentic systems such as
LangChain and SmolAgents shoehorn applications into spe-
cific patterns (e.g., LLMs with tool-calling). Scientific agents
behave in diverse ways that often do not fit such patterns.
Rather than design specific behaviors into the system, we
implemented patterns in ACADEMY (e.g., agent hierarchies,
agents as resource managers) and reused them in different
contexts.

LLMs combined with tool calling cannot currently
construct complex real-world science applications. For
instance, in the MOFA workflow we experimented with the
use of LLMs for such functions as improving MOF design and
deciding which simulators and simulations to run. However,
we found that the large number of tools and tool parame-
ters, often with limited documentation, and sometimes subtle
differences among tools, led to frequent problems including
improperly configured/invoked codes that ran without errors
but produced incorrect results. Manual construction of both
tools (as ACADEMY actions) and workflow architecture (by
invoking handles) informed by domain expertise, created more
reliable applications.

Autonomy and adaptability can improve application
performance and resource utilization. Static resource alloca-
tions often inadequately match the dynamic nature of scientific
workloads. Agentic systems enable not only component auton-
omy but also dynamic resource utilization at fine granularity.

VII. RELATED WORK

A workflow is a structured sequence of tasks, typically a
directed acyclic graph (DAG), designed to achieve a specific
goal, often involving data transformation, analysis, or com-
putational modeling. Frameworks for building workflows take
many forms. Parallel computing libraries, such as Dask [53]
and Ray [54], provide mechanisms for executing functions
in parallel across local resources or distributed systems. Sim-
ilarly, workflow management systems (WMSs) can execute
tasks in parallel but also provide mechanisms for defining,
optimizing, and monitoring DAG execution (e.g., Airflow [55],
Fireworks [56], Makeflow [57], Nextflow [58], Parsl [32],
Pegasus [59], Swift [60]). WMSs can be differentiated by

whether dependency graphs are defined [61] with static con-
figurations files, such as CWL [62], XML, or YAML; general
purpose languages (GPLs); domain specific languages (DSLs);
or procedurally through the dynamic execution of a program.
The class of workflows supported by these frameworks have
two key limitations that we address: tasks are assumed to be
pure (i.e., no side-effects) and programs are static, i.e., they
cannot adapt to changing environments over time.

Actors are computational entities that enable concurrent
computing through message passing [20]. In response to a
message, an actor can alter its local state, send messages to
other actors, and create new actors. No global state means
locks and synchronization primitives are not required. Actors
can enable stateful computations within traditionally stateless
programming models, and are supported in parallel comput-
ing frameworks (e.g., Akka [63], Dask, Orleans [64], Ray)
and function-as-a-service (FaaS) platforms (e.g., Abaco [65],
Azure Service Fabric [66], PraaS [67]). Actor models have
been investigated as alternatives for designing computational
workflows where communication and coordination are decou-
pled [68]. Our system extends the actor model to support
autonomous behaviors and federated deployments.

Multi-agent systems can enhance or automate scientific
processes. Early work investigated cooperative agent environ-
ments for distributed problem solving with minimal human
intervention [69], [70]. Recent work focuses on improving the
reasoning capabilities of LLM-backed agents through onto-
logical knowledge graphs and multi-agent systems [71] and
tool-augmented LLMs [72]. Increasingly popular is the use of
multi-agent conversations, in which multiple role-specialized
agents interact to collaborate, coordinate, or compete to-
wards goals [11]. These systems enhance LLM-based tools
through better reasoning [73], validation [74], and divergent
thinking [75], prompting rapid development of frameworks
such as LangGraph [12], Microsoft AutoGen [11], OpenAI
Swarm [13], and Pydantic Agents [76]. Subsequently, interest
in standardizing agent protocols has developed. Anthropic’s
Model Context Protocol (MCP) [77] defines structured in-
teraction between humans/tools and AI models. Google’s
Agent2Agent (A2A) Protocol [78] focuses on structured in-
teraction between autonomous agents; each agent serves an
HTTP endpoint which is impracticable for many scientific
workflows. Multi-agent conversations can proxy scientists in
iterative scientific processes—brainstorming ideas, planning
experiments, and reasoning about results [9], [10], [79], [80]—
but these aforementioned systems are designed for local or
cloud-native applications and lack the features necessary to
deploy agents across federated research infrastructure. We
focus on the systems-level challenges of representing and
deploying diverse agent types and agentic workflows across
heterogeneous environments rather than the applied use of
LLMs for workflow steering.

VIII. CONCLUSION & FUTURE WORK

Advancements in AI, coupled with concurrent advance-
ments in self-driving laboratories, high performance com-

puting, and research data management, open the door for
truly autonomous scientific discovery. Realizing this grand
vision requires mechanisms for the seamless and dynamic
integration of research software and infrastructure. To that
end, we introduced ACADEMY, a middleware for developing
agentic workflows that engage multi-agent systems spanning
federated research infrastructure. This framework enables scal-
able and flexible orchestration of intelligent agents across
heterogeneous resources. We presented solutions to three key
challenges: representing and programming agents; commu-
nicating among agents; and executing agents across diverse
resources. Our evaluations demonstrate that ACADEMY can
support high-performance workflows, and four case studies
highlight the advantages of agentic workflow design.

IX. ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under Grants 2004894 and 2209919. We used
resources provided by the Argonne Leadership Computing
Facility (ALCF), a U.S. Department of Energy (DOE) Of-
fice of Science user facility at Argonne National Labora-
tory supported under Contract DE-AC02-06CH11357, and
the Chameleon testbed supported by the National Science
Foundation.

REFERENCES

[1] M. Zvyagin, A. Brace, K. Hippe, Y. Deng, B. Zhang, C. O. Bohorquez,
A. Clyde, B. Kale, D. Perez-Rivera, H. Ma et al., “GenSLMs: Genome-
scale language models reveal SARS-CoV-2 evolutionary dynamics,” The
International Journal of High Performance Computing Applications,
vol. 37, no. 6, pp. 683–705, 2023.

[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-Science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540, 2009.

[3] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, “Software as a service for data scientists,” Communications
of the ACM, vol. 55, no. 2, p. 81–88, feb 2012. [Online]. Available:
https://doi.org/10.1145/2076450.2076468

[4] M. Abolhasani and E. Kumacheva, “The rise of self-driving labs in
chemical and materials sciences,” Nature Synthesis, vol. 2, no. 6, pp.
483–492, 2023.

[5] J. G. Pauloski, K. Chard, and I. Foster, “Agentic discovery:
Closing the loop with cooperative agents,” Computer, vol. 58,
no. 10, pp. 20–27, October 2025. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/MC.2025.3575029

[6] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[7] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou, “Self-consistency improves chain of thought reasoning
in language models,” arXiv preprint arXiv:2203.11171, 2022.

[8] M. Sakarvadia, “Towards interpreting language models: A case study in
multi-hop reasoning,” arXiv preprint arXiv:2411.05037, 2024.

[9] H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak,
S. Liu, P. V. Katwyk, A. Deac, A. Anandkumar, K. J. Bergen,
C. P. Gomes, S. Ho, P. Kohli, J. Lasenby, J. Leskovec, T.-Y.
Liu, A. K. Manrai, D. S. Marks, B. Ramsundar, L. Song, J. Sun,
J. Tang, P. Velickovic, M. Welling, L. Zhang, C. W. Coley,
Y. Bengio, and M. Zitnik, “Scientific discovery in the age of artificial
intelligence,” Nature, vol. 620, pp. 47–60, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:260384616

[10] S. Gao, A. Fang, Y. Huang, V. Giunchiglia, A. Noori, J. R. Schwarz,
Y. Ektefaie, J. Kondic, and M. Zitnik, “Empowering biomedical
discovery with AI agents,” Cell, vol. 187, no. 22, pp. 6125–6151, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0092867424010705

[11] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang,
X. Zhang, S. Zhang, J. Liu, A. H. Awadallah, R. W. White,
D. Burger, and C. Wang, “AutoGen: Enabling next-gen LLM
applications via multi-agent conversation,” 2023. [Online]. Available:
https://arxiv.org/abs/2308.08155

[12] LangChain, “LangGraph,” 2024. [Online]. Available: https://www.
langchain.com/langgraph

[13] OpenAI, “Swarm,” 2024. [Online]. Available: https://github.com/openai/
swarm

[14] W. L. Miller, D. Bard, A. Boehnlein, K. Fagnan, C. Guok, E. Lançon,
S. Ramprakash, M. Shankar, N. Schwarz, and B. L. Brown, “Integrated
Research Infrastructure Architecture Blueprint Activity (Final Report
2023),” US Department of Energy (USDOE), Washington, DC (United
States). Office of Science; Lawrence Berkeley National Laboratory
(LBNL), Berkeley, CA (United States), Tech. Rep., 07 2023. [Online].
Available: https://www.osti.gov/biblio/1984466

[15] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcX: A federated function serving fabric
for science,” in 29th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 65–76. [Online].
Available: https://doi.org/10.1145/3369583.3392683

[16] R. Goodwin, “Formalizing properties of agents,” Journal of Logic and
Computation, vol. 5, no. 6, pp. 763–781, 1995.

[17] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The Knowledge Engineering Review, vol. 10, pp. 115 – 152,
1995. [Online]. Available: https://api.semanticscholar.org/CorpusID:
221342993

[18] H. S. Nwana, “Software agents: An overview,” The Knowledge Engi-
neering Review, vol. 11, no. 3, p. 205–244, 1996.

[19] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous agents and multi-agent systems, vol. 11, pp. 387–
434, 2005.

[20] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular ACTOR for-
malism for artificial intelligence,” in 3rd International Joint Conference
on Artificial Intelligence, ser. IJCAI’73. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1973, p. 235–245.

[21] L. Ward, G. Sivaraman, J. G. Pauloski, Y. Babuji, R. Chard, N. Dandu,
P. C. Redfern, R. S. Assary, K. Chard, L. A. Curtiss, R. Thakur,
and I. Foster, “Colmena: Scalable machine-learning-based steering of
ensemble simulations for high performance computing,” in IEEE/ACM
Workshop on Machine Learning in High Performance Computing Envi-
ronments. IEEE, 2021, pp. 9–20.

[22] N. Kolodisner, A. Kamatar, and J. G. Pauloski, “An agent-based viral
venture: Adaptive tool selection for scalable genomics,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis - SRC and Research Posters (In Press), 2025.

[23] M. Tynes, K. Chard, I. Foster, and L. Ward, “Will it blend? mixing
numerical and machine-learned physics quantities for accurate on-the-
fly surrogate modeling,” in Computational Science – ICCS 2025, M. H.
Lees, W. Cai, S. A. Cheong, Y. Su, D. Abramson, J. J. Dongarra, and
P. M. A. Sloot, Eds. Cham: Springer Nature Switzerland, 2025, pp.
270–284.

[24] X. Yan, N. Hudson, H. Park, D. Grzenda, J. G. Pauloski,
M. Schwarting, H. Pan, H. Harb, S. Foreman, C. Knight, T. Gibbs,
K. Chard, S. Chaudhuri, E. Tajkhorshid, I. Foster, M. Moosavi,
L. Ward, and E. A. Huerta, “MOFA: Discovering materials for carbon
capture with a GenAI- and simulation-based workflow,” 2025. [Online].
Available: https://arxiv.org/abs/2501.10651

[25] M. Saville, J. P. Cramer, M. Downham, A. Hacker, N. Lurie,
L. V. der Veken, M. Whelan, and R. Hatchett, “Delivering pandemic
vaccines in 100 days — what will it take?” New England Journal
of Medicine, vol. 387, no. 2, p. e3, 2022. [Online]. Available:
https://www.nejm.org/doi/full/10.1056/NEJMp2202669

[26] R. Vescovi, R. Chard, N. Saint, B. Blaisik, J. Pruyne, T. Bicer, A. Lavens,
Z. Liu, M. E. Papka, S. Narayanan, N. Schwarz, K. Chard, and I. Foster,
“Linking scientific instruments and computation: Patterns, technologies
and experiences,” Patterns, vol. 3, no. 10, 2022.

[27] D. Babnigg, “Unraveling distant galaxies: Analyzing IFU data with
Parsl and Academy,” in International Conference for High Performance
Computing, Networking, Storage and Analysis - SRC and Research
Posters, 2025.

https://doi.org/10.1145/2076450.2076468
https://doi.ieeecomputersociety.org/10.1109/MC.2025.3575029
https://doi.ieeecomputersociety.org/10.1109/MC.2025.3575029
https://api.semanticscholar.org/CorpusID:260384616
https://www.sciencedirect.com/science/article/pii/S0092867424010705
https://www.sciencedirect.com/science/article/pii/S0092867424010705
https://arxiv.org/abs/2308.08155
https://www.langchain.com/langgraph
https://www.langchain.com/langgraph
https://github.com/openai/swarm
https://github.com/openai/swarm
https://www.osti.gov/biblio/1984466
https://doi.org/10.1145/3369583.3392683
https://api.semanticscholar.org/CorpusID:221342993
https://api.semanticscholar.org/CorpusID:221342993
https://arxiv.org/abs/2501.10651
https://www.nejm.org/doi/full/10.1056/NEJMp2202669

[28] R. Vescovi, T. Ginsburg, K. Hippe, D. Ozgulbas, C. Stone, A. Stroka,
R. Butler, B. Blaiszik, T. Brettin, K. Chard et al., “Towards a modular
architecture for science factories,” Digital Discovery, vol. 2, no. 6, pp.
1980–1998, 2023.

[29] J. Coburn, A. Wells, N. Ramachandra, and S. Habib, “A multiagent
system for cosmological data analysis,” Submitted for publication to
AAMAS-2026, 2025.

[30] T. D. Pham, A. Tanikanti, and M. Keçeli, “ChemGraph: An agentic
framework for computational chemistry workflows,” arXiv preprint
arXiv:2506.06363, 2025.

[31] M. E. Papka, W. Allcock, B. Cerny, J. Francis, K. Kumaran,
A. Madduri, A. L. Manning, V. Mateevitsi, J. Neel, A. Pope et al.,
“2024 operational assessment report - argonne leadership computing
facility,” Argonne National Laboratory (ANL), Tech. Rep., 12 2024.
[Online]. Available: https://www.osti.gov/biblio/2574032

[32] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, “Parsl: Pervasive parallel programming in Python,” in
28th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 25–36. [Online].
Available: https://doi.org/10.1145/3307681.3325400

[33] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam,
S. Rosen, and I. Foster, “Globus auth: A research identity and access
management platform,” in IEEE 12th International Conference on e-
Science, 2016, pp. 203–212.

[34] J. G. Pauloski, V. Hayot-Sasson, L. Ward, N. Hudson, C. Sabino,
M. Baughman, K. Chard, and I. Foster, “Accelerating communications in
federated applications with transparent object proxies,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’23. New York, NY, USA: ACM, 2023. [Online].
Available: https://doi.org/10.1145/3581784.3607047

[35] J. G. Pauloski, V. Hayot-Sasson, L. Ward, A. Brace, A. Bauer, K. Chard,
and I. Foster, “Object proxy patterns for accelerating distributed applica-
tions,” IEEE Transactions on Parallel and Distributed Systems, vol. 36,
no. 2, pp. 253–265, 2025.

[36] R. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier, K. Harms,
G. Ganger, G. Gibson, S. Gutierrez, R. Latham, B. Robey, D. Robinson,
B. Settlemyer, G. Shipman, S. Snyder, J. Soumagne, and Z. Qing,
“Mochi: Composing data services for high-performance computing
environments,” Journal of Computer Science and Technology, vol. 35,
no. 1, pp. 121 – 144,, Jan 2020, 10.1007/s11390-020-9802-0.

[37] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “UCX: An open source
framework for HPC network APIs and beyond,” in IEEE 23rd Annual
Symposium on High-Performance Interconnects. IEEE, 2015, pp. 40–
43.

[38] K. Chard, S. Tuecke, and I. Foster, “Efficient and secure transfer,
synchronization, and sharing of big data,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 46–55, 2014.

[39] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned
from the Chameleon testbed,” in USENIX Annual Technical Conference.
USENIX Association, July 2020.

[40] H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The
chemistry and applications of metal-organic frameworks,” Science, vol.
341, no. 6149, p. 1230444, 2013.

[41] Y. Zhao, Y. Zhao, J. Wang, and Z. Wang, “Artificial intelligence meets
laboratory automation in discovery and synthesis of metal–organic
frameworks: A review,” Industrial & Engineering Chemistry Research,
vol. 64, no. 9, pp. 4637–4668, 2025.

[42] M. Mateo, J. I. B. III, Y. Song, J. Crane, C. Hull, S. Shectman, and
C. Birk, “IFUM: Integral field units for Magellan,” in Ground-based
and Airborne Instrumentation for Astronomy IX, C. J. Evans, J. J.
Bryant, and K. Motohara, Eds., vol. 12184, International Society for
Optics and Photonics. SPIE, 2022, p. 121845P. [Online]. Available:
https://doi.org/10.1117/12.2629506

[43] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decen-
tralized alternative to federated learning,” in Distributed Applications
and Interoperable Systems: 19th IFIP WG 6.1 International Conference,
DAIS 2019, Held as Part of the 14th International Federated Conference

on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby,
Denmark, June 17–21, 2019, Proceedings 19. Springer, 2019, pp. 74–
90.

[44] P. Holme and B. J. Kim, “Growing scale-free networks with tunable
clustering,” Physical Review E, vol. 65, no. 2, p. 026107, 2002.

[45] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[46] L. Bornmann, R. Haunschild, and R. Mutz, “Growth rates of modern
science: A latent piecewise growth curve approach to model publication
numbers from established and new literature databases,” Humanities and
Social Sciences Communications, vol. 8, no. 1, pp. 1–15, 2021.

[47] R. Buchkremer, A. Demund, S. Ebener, F. Gampfer, D. Jägering,
A. Jürgens, S. Klenke, D. Krimpmann, J. Schmank, M. Spiekermann,
M. Wahlers, and M. Wiepke, “The application of artificial intelligence
technologies as a substitute for reading and to support and enhance the
authoring of scientific review articles,” IEEE access, vol. 7, pp. 65 263–
65 276, 2019.

[48] J. Sourati and J. A. Evans, “Accelerating science with human-aware
artificial intelligence,” Nature Human Behaviour, vol. 7, no. 10, pp.
1682–1696, 2023.

[49] D. R. Ch and S. K. Saha, “Automatic multiple choice question generation
from text: A survey,” IEEE Transactions on Learning Technologies,
vol. 13, no. 1, pp. 14–25, 2018.

[50] C. Catlett and I. Foster, “Creating and scoring multiple choice
questions (mcqs) from papers,” 2025. [Online]. Available: https:
//github.com/auroraGPT-ANL/MCQ-and-SFT-code

[51] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7B,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.06825

[52] T. L. T. at Meta, “The Llama 3 herd of models,” 2024. [Online].
Available: https://arxiv.org/abs/2407.21783

[53] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in 14th Python in Science Conference, K. Huff and
J. Bergstra, Eds. Austin, TX, USA: SciPy, 2015, pp. 126 – 132.

[54] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging AI applications,” in 13th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’18. USA: USENIX Association, 2018, p. 561–577.

[55] Apache, “Airflow,” 2015. [Online]. Available: https://airflow.apache.org/
[56] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,

M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and
K. A. Persson, “FireWorks: A dynamic workflow system designed for
high-throughput applications,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 17, pp. 5037–5059, 2015.

[57] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in 1st ACM SIGMOD Workshop on Scalable Workflow Execution En-
gines and Technologies, ser. SWEET ’12. New York, NY, USA:
Association for Computing Machinery, 2012.

[58] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature Biotechnology, vol. 35, no. 4, pp. 316–319, 2017.

[59] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[60] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu, “Parallel scripting for applications
at the petascale and beyond,” Computer, vol. 42, no. 11, pp. 50–60, 2009.

[61] J. G. Pauloski, V. Hayot-Sasson, M. Gonthier, N. Hudson, H. Pan,
S. Zhou, I. Foster, and K. Chard, “TaPS: A performance evaluation
suite for task-based execution frameworks,” in IEEE 20th International
Conference on e-Science. New York, NY, USA: IEEE, 2024, pp. 1–10.

[62] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić,
H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble, and T. C.
Community, “Methods included: Standardizing computational reuse
and portability with the Common Workflow Language,” Commun.
ACM, vol. 65, no. 6, p. 54–63, May 2022. [Online]. Available:
https://doi.org/10.1145/3486897

[63] Lightbend, “Akka: The actor model on the JVM,” 2009. [Online].
Available: https://akka.io/

https://www.osti.gov/biblio/2574032
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3581784.3607047
https://doi.org/10.1117/12.2629506
https://github.com/auroraGPT-ANL/MCQ-and-SFT-code
https://github.com/auroraGPT-ANL/MCQ-and-SFT-code
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.21783
https://airflow.apache.org/
https://doi.org/10.1145/3486897
https://akka.io/

[64] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin, “Orleans: Dis-
tributed virtual actors for programmability and scalability,” Microsoft,
Tech. Rep. MSR-TR-2014-41, March 2014.

[65] C. Garcia, J. Stubbs, J. Looney, A. Jamthe, and M. Packard, “Abaco–A
modern platform for high throughput parallel rcientific computations,”
2020.

[66] Microsoft, “Azure: Service fabric reliable actors,” 2017. [On-
line]. Available: https://learn.microsoft.com/en-us/azure/service-fabric/
service-fabric-reliable-actors-introduction

[67] M. Copik, A. Calotoiu, R. Bruno, G. Rethy, R. Böhringer, and T. Hoefler,
“Process-as-a-service: Elastic and stateful serverless with cloud pro-
cesses,” ETH Zürich, Tech. Rep., 01 2022.

[68] S. Bowers and B. Ludäscher, “Actor-oriented design of scientific work-
flows,” in Conceptual Modeling – ER 2005, L. Delcambre, C. Kop, H. C.
Mayr, J. Mylopoulos, and O. Pastor, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 369–384.

[69] T. T. Drashansky, A. Joshi, and J. R. Rice, “SciAgents-an agent based
environment for distributed, cooperative scientific computing,” in 7th
IEEE International Conference on Tools with Artificial Intelligence.
IEEE, 1995, pp. 452–459.

[70] T. Drashansky, E. N. Houstis, N. Ramakrishnan, and J. R. Rice,
“Networked agents for scientific computing,” Communications of the
ACM, vol. 42, no. 3, pp. 48–ff, 1999.

[71] A. Ghafarollahi and M. J. Buehler, “SciAgents: Automating scientific
discovery through bioinspired multi-agent intelligent graph reasoning,”
Advanced Materials, p. 2413523, 2024.

[72] Y. Ma, Z. Gou, J. Hao, R. Xu, S. Wang, L. Pan, Y. Yang, Y. Cao, A. Sun,

H. Awadalla et al., “SciAgent: Tool-augmented language models for
scientific reasoning,” arXiv preprint arXiv:2402.11451, 2024.

[73] Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mordatch, “Improving
factuality and reasoning in language models through multiagent debate,”
2023. [Online]. Available: https://arxiv.org/abs/2305.14325

[74] Y. Wu, F. Jia, S. Zhang, H. Li, E. Zhu, Y. Wang, Y. T. Lee,
R. Peng, Q. Wu, and C. Wang, “MathChat: Converse to tackle
challenging math problems with LLM agents,” 2024. [Online].
Available: https://arxiv.org/abs/2306.01337

[75] T. Liang, Z. He, W. Jiao, X. Wang, Y. Wang, R. Wang, Y. Yang,
S. Shi, and Z. Tu, “Encouraging divergent thinking in large language
models through multi-agent debate,” in 2024 Conference on Empirical
Methods in Natural Language Processing, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds. Miami, Florida, USA: Association for
Computational Linguistics, Nov. 2024, pp. 17 889–17 904. [Online].
Available: https://aclanthology.org/2024.emnlp-main.992/

[76] Pydantic, “Agents,” 2024. [Online]. Available: https://ai.pydantic.dev/
agents/

[77] Anthropic, “Model Context Protocol (MCP),” 2024. [Online]. Available:
https://modelcontextprotocol.io/

[78] Google, “Agent2Agent Protocol (A2A),” 2025. [Online]. Available:
https://github.com/google/A2A

[79] D. A. Boiko, R. MacKnight, B. Kline, and G. Gomes, “Autonomous
chemical research with large language models,” Nature, vol. 624, no.
7992, pp. 570–578, 2023.

[80] Google Research, “Accelerating scientific breakthroughs with an AI
co-scientist,” 2025. [Online]. Available: https://research.google/blog/
accelerating-scientific-breakthroughs-with-an-ai-co-scientist/

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2306.01337
https://aclanthology.org/2024.emnlp-main.992/
https://ai.pydantic.dev/agents/
https://ai.pydantic.dev/agents/
https://modelcontextprotocol.io/
https://github.com/google/A2A
https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/
https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/

	Introduction
	Background
	Use Cases
	Requirements to Support Federated Agents

	AcademyDesign
	Academy Architecture
	Academy Interaction
	Agent Representation
	Agent Invocation
	Manager Class

	Agent Management
	Agent Runtime
	Execution
	State API

	Agent Communication
	Thread Exchange
	Hybrid Exchange
	Cloud Exchange
	Pass-by-Reference

	Evaluation
	Weak Scaling
	Agent Startup Time
	Action Completion Time

	Academy Exchange
	Agent Messaging
	Action Latency
	Action Throughput
	Agent Conversations

	Memory Overhead

	Case Studies
	Materials Discovery
	Astronomical Spectroscopy
	Decentralized Learning
	Information Extraction

	Discussion
	Related Work
	Conclusion & Future Work
	Acknowledgments
	References

