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ABSTRACT

Scaling deep neural network training to more processors and larger batch sizes is key to

reducing end-to-end training time; yet, maintaining comparable convergence and hardware

utilization at larger scales is challenging. Increases in training scales have enabled natu-

ral gradient optimization methods as a reasonable alternative to stochastic gradient descent

(SGD) and variants thereof. Kronecker-factored Approximate Curvature (K-FAC), a natural

gradient method, has recently been shown to converge with fewer iterations in deep neural

network (DNN) training than SGD; however, K-FAC’s larger memory footprint and increased

communication necessitates careful distribution of work for efficient usage. This thesis in-

vestigates scalable K-FAC algorithms to understand K-FAC’s applicability in large-scale

deep neural network training and presents KAISA, a K-FAC-enabled, Adaptable, Improved,

and ScAlable second-order optimizer framework. Specifically, layer-wise distribution strate-

gies, inverse-free second-order gradient evaluation, dynamic K-FAC update decoupling, and

more are explored with the goal of preserving convergence while minimizing training time.

KAISA can adapt the memory footprint, communication, and computation given specific

models and hardware to improve performance and increase scalability, and this adaptable

distribution scheme generalizes existing strategies while providing a framework for scaling

second-order methods beyond K-FAC. Compared to the original optimizers, KAISA con-

verges 18.1-–36.3% faster across applications with the same global batch size. Under a fixed

memory budget, KAISA converges 32.5% and 41.6% faster in ResNet-50 and BERT-Large,

respectively. KAISA can balance memory and communication to achieve scaling efficiency

equal to or better than the baseline optimizers.
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CHAPTER 1

INTRODUCTION

Deep neural networks (DNNs) have revolutionized how tasks in classification, object detec-

tion, segmentation, language modeling, and more are solved. As the computational needs

for DNN training have grown due to larger models and datasets, there has been a grow-

ing interest in exploiting the powerful memory and communication architectures available

on high-performance computing (HPC) systems [2, 11, 46, 53, 70, 72]. The intersection

of deep learning and HPC has specifically enabled new uses of deep learning for scientific

applications [10, 28, 35].

Supercomputers can yield significant speedups in training time, but it is an open challenge

to efficiently utilize available hardware without harming convergence (e.g., loss or validation

accuracy) [43]. Significant work has been devoted to understanding and improving the

scaling properties of SGD [2, 6, 46, 70, 72, 73]. Impressive results have been shown for

specific applications such as ResNet-50 [19] and BERT [13]; however, improvements are

often made possible via techniques specific to the application or hardware such as custom

fused kernels and topology-aware communication optimizations, respectively.

SGD alternatives that incorporate second-order information, such as natural gradient

methods, have been explored more recently as incorporating second-order information can

improve the per-iteration progress made when optimizing an objective function. Kronecker-

factored Approximate Curvature (K-FAC), a second-order method, approximates the Fisher

Information Matrix (FIM)—an approximation of the Hessian—and preconditions the gradi-

ents with the FIM approximation before parameter updates [41]. K-FAC significantly reduces

iterations required for convergence and scales well to O(1000) GPUs [53], but prior imple-

mentations have only been evaluated on ResNet-like convolution models and often struggle

to either maintain comparable convergence to the acceptable performance baselines [49] or

exceed the time-to-convergence of SGD.
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Improving on SGD’s time-to-convergence with K-FAC is difficult due to K-FAC being

1) compute intensive, due to the required inverse or eigen decomposition calculations with

O(N3) complexity (N is the number of parameters); 2) memory intensive because per-layer

activations and gradients must be stored, which may take O(N2) space compared to O(N) for

SGD; and 3) communication intensive for distributed training because the Kronecker factors

and accompanying inverses or eigen decompositions must be communicated. To overcome

these overheads and achieve faster training times than SGD at scale, K-FAC updates are

often decoupled from gradient preconditioning so the expensive computations are performed

less frequently.

These various considerations make it difficult to use K-FAC efficiently in practice given

the specific requirements of the DNN model or hardware and requires users to choose between

optimizing memory or communication. This thesis investigates the design and implemen-

tation of a K-FAC-based gradient preconditioner that addresses these concerns by reducing

time-to-convergence and improving scaling efficiency. The performance, in terms of con-

vergence and time-per-iteration, of an explicit matrix inverse algorithm and implicit eigen

decomposition algorithm is evaluated. A conventional method in L-BFGS [40] is applied

to decouple the approximation of the FIM from gradient preconditioning which speeds up

training time by reducing the frequency at which the FIM is computed, and the conver-

gence impact of the FIM computation frequency is quantified. The training time and model

convergence is analyzed for K-FAC specific hyperparameter schedules such as damping and

K-FAC update interval decay.

Key to improving scaling with K-FAC is the introduction of an adaptable distribution

strategy for second-order optimization. This strategy generalizes existing strategies that op-

timize for either reduced communication or reduced memory usage using a single parameter,

the gradient worker fraction. This adaptation is made possible by grouping the workers,

then distributing and communicating data within each group. This framework for adaptable
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distribution of second-order optimization is called KAISA, a K-FAC-enabled, Adaptable,

Improved, and ScAlable second-order optimizer framework.

KAISA is implemented as a preconditioner in the popular PyTorch framework [55] and

evaluated with a suite of reference applications including ResNets [19], Mask R-CNN [20],

U-Net [62], and BERT [13] on two clusters with different hardware. The implementation

converges to or exceeds the baseline performance metrics in fewer iterations and 9–42% less

time across all applications.

This thesis makes the following contributions:

• An adaptive second-order optimizer framework that trains faster than SGD and its

variants, while preserving convergence;

• A study of the two K-FAC gradient preconditioning variants;

• An analysis of K-FAC update intervals and optimal values for our applications;

• A study of the convergence abilities of K-FAC in four application with different dis-

tributed frameworks;

• A quantitative study of the tradeoff between memory footprint and communication

and its impact on training time in K-FAC design;

• An open source implementation of the proposed algorithm using PyTorch [55].

The remainder of this thesis is organized as follows. Chapter 2 outlines methods for

parallel training and formalizes the K-FAC optimization process. Chapter 3 reviews related

work in large-scale training with SGD and K-FAC. Chapter 4 describes the existing strat-

egy for distributed K-FAC, introduces a new and optimized strategy, and then presents a

generalized method for distributed second-order optimization. Chapter 5 details the imple-

mentation of KAISA. Chapter 6 evaluates KAISA and the various distributed strategies on

3



a variety of applications. Finally, Chapter 7 draws conclusions and offers remarks on future

avenues for exploration.
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CHAPTER 2

BACKGROUND

This chapter discusses forms of parallelism in deep learning training, data-parallelism in

iterative batch optimization with SGD, and the K-FAC preconditioning method.

2.1 Distributed Training

Data-parallel, model-parallel, and hybrid-parallel, a combination of the first two, are the

typical methods used to distribute deep learning training across more than one worker. In

data-parallel training, the entire model is replicated on each worker, and in every iteration

a unique mini-batch is consumed by each worker. Data-parallelism is the common choice

for scaling single worker training to many workers. Model-parallelism is beneficial when

training cannot be performed on a single worker such as in the case where the model cannot

fit in worker memory. In model-parallelism, a single model instance is split across workers,

and this model division can happen layer-wise or even within a layer. Hybrid approaches,

combining data and model-parallelism in different ways, can also be used. For example,

workers can be grouped such that model-parallelism is used across workers within a group

and data-parallelism is used between groups, or different parallelism methods can be used

on a per-layer basis.

Conventionally, model-parallelism is used in cases where data-parallelism is not possible

because model-parallelism can reduce machine utilization and often requires additional op-

timizations such as pipeline parallelism [22]. As data-parallelism is the dominant form of

large scale DL training, numerous frameworks provide native support via NCCL, Gloo [23],

or MPI collective operations [65] such as Intel MLSL [24], Horovod [63], TensorFlow [1],

PyTorch [55], and NVIDIA Apex [51].
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Figure 2.1: Synchronous SGD iteration stages. I/O: Batch creation. Forward: Forward pass
and loss computation. E: Gradient evaluation (backpropagation). X: Gradient exchange. U:
Trainable variable update.

2.2 SGD

In SGD, a batch optimization method [6], mini-batches of training data are iteratively passed

through the network to compute a loss which is used for gradient computation and vari-

able update. Data-parallel training with SGD takes two forms, synchronous [71] and asyn-

chronous [27, 36, 47, 60, 76], and are distinguished by whether all variables are updated each

iteration. This thesis focuses on synchronous SGD methods because asynchronous SGD has

a non-linear slowdown compared with the synchronous form [3].

An iteration of synchronous data-parallel SGD has five stages, depicted in Figure 2.1. In

the I/O stage, a fixed-size batch of training data is read from storage, pre-processed, and

potentially moved to the local memory of the worker. The batch is processed by the model

in the forward pass phase and the output is used to compute a loss. The gradient evaluation

stage, often referred to as backpropogation, uses the loss to compute the gradient for each

trainable variable. Then, there is a collective communication operation between workers to

exchange the gradients. In the final stage, each worker updates the variables in their local

copy of the model. Key to achieving high hardware utilization in modern frameworks is

the exploitation of asynchronous I/O methods for overlapping training data retrieval and

gradient exchange with other stages.

The communication required by synchronous SGD involves communicating initial model
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weights and the gradient exchange in each iteration, and these communications are generally

performed with the broadcast and allreduce collective operations, respectively.

2.3 K-FAC

K-FAC is an efficient approximation of the Fisher Information Matrix (FIM), which has been

shown to be equivalent to the Generalized Gauss-Newton (GGN) matrix in specific cases and

can be viewed as an approximation of the Hessian [41].

In the weight update equation for SGD (Equation 2.1), the weight at the k + 1 iteration

(w(k+1)) is the difference of the current weight (w(k)) and the product of the current learning

rate (a(k)) with gradient of the loss for the mini-batch of size n. The gradient of the loss is

computed as the average of the gradient with respect to the loss over each ith example in

the mini-batch, denoted as ∇Li(w
(k)).

w(k+1) = w(k) − α(k)

n

n∑
i=1

∇Li(w
(k)) (2.1)

With K-FAC, the gradient is preconditioned by F−1(wk), the inverse of the FIM.

w(k+1) = w(k) − α(k)F−1(w(k))

n

n∑
i=1

∇Li(w
(k)) (2.2)

In this context, precondition means to transform a matrix to accelerate iterative optimization

algorithms, and in this case, the gradients are transformed by the FIM.

It has been shown empirically that training deep neural networks with K-FAC enables

convergence with fewer iterations than with SGD alone. Theoretical understandings of the

convergence rates of natural gradient methods, such as K-FAC, are an area of active research.

Previous work has shown that K-FAC [75] has linear convergence to the global minimum

given a sufficiently over-parameterized model. In strongly-convex problems, natural gradient
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methods have a quadratic convergence rate compared to the linear convergence of SGD [6].

The strongly-convex case provides some understanding of how K-FAC can improve conver-

gence in non-convex cases. Further, it has been shown that natural gradient methods enable

larger learning rates improving the rate of convergence [75]. K-FAC makes greater per-

iteration progress in minimizing the objective function at the cost of more computationally

expensive iterations.

2.3.1 K-FAC Approximation

K-FAC is based on the Kronecker product, a block matrix factorization that can reduce a

large matrix inverse into two smaller matrix inverses. K-FAC exploits the properties of the

Kronecker product and the geometry of the FIM for DNNs to greatly reduce the complexity

of computing the approximate FIM inverse.

The Kronecker product is written as A⊗B where A has size m×n and B has size p× q.

The resulting matrix has shape mp× nq.

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 (2.3)

The Kronecker product has two convenient properties:

(A⊗B)−1 = A−1 ⊗B−1 (2.4)

(A⊗B)c⃗ = B⊤c⃗A. (2.5)

The FIM for a deep neural network is a block matrix where each block maps to layers in

8



Figure 2.2: The K-FAC approximation of the FIM. ⊗ symbolizes the Kronecker product.

the model. The block corresponding to the i and jth layers is approximated as

Fi,j ≈ ai−1a
⊤
j−1 ⊗ gig

⊤
j . (2.6)

Here, ai−1 and gi are the activations of the i − 1th layer and the gradients of the ith layer

in the model, respectively [41, 56].1

A fundamental assumption of K-FAC is the independence between layers [41, 56].2 Using

this assumption, K-FAC approximates the FIM as a diagonal block matrix F̂ .

F̂ = diag(F̂1, ..., F̂i, ..., F̂L) (2.7)

As shown in Figure 2.2, the inverse of F̂ is a diagonal block matrix composed of the

inverses of each diagonal block F̂i:

F̂−1 = diag(F̂−1
1 , ..., F̂−1

i , ..., F̂−1
L ) (2.8)

where

F̂i = ai−1a
⊤
i−1 ⊗ gig

⊤
i = Ai−1 ⊗Gi. (2.9)

1. Formally, F represents an expected value, and the expectation of a Kronecker product is not equivalent
to the Kronecker product of the expected factors. However, this approximation still reasonably represents
the structure of the FIM [41].

2. This assumption is sufficient to produce an effective approximation for F and necessary to produce a
tractable algorithm.
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Ai−1 and Gi are referred to as the Kronecker factors. In practice, Ai−1 and Gi are estimated

with a running average of the factors computed over training batches [41, 56]. E.g.,

A
(k)
i−1 = ξA

(k)
i−1 + (1− ξ)A

(k−1)
i−1 (2.10)

G
(k)
i = ξG

(k)
i + (1− ξ)G

(k−1)
i (2.11)

where ξ is the running average hyper-parameter typically in the range [0.9, 1).

Due to the layer-wise independence of K-FAC, the gradient preconditioning and weight

update for a single layer i at iteration k can be written as:

w
(k+1)
i = w

(k)
i − α(k)F̂−1

i ∇Li(w
(k)
i ). (2.12)

Applying properties 2.4 and 2.5 to the gradient preconditioning, F̂−1
i ∇Li(w

(k)
i ), reduces

computation to an efficient form where the smaller Kronecker factors, rather than the large

FIM, are inverted.

F̂−1
i ∇Li(w

(k)
i ) = (Ai−1 ⊗Gi)

−1∇Li(w
(k)
i ) (2.13)

= (A−1
i−1 ⊗G−1

i )∇Li(w
(k)
i ) (2.14)

= G−1
i ∇Li(w

(k)
i )A−1

i−1 (2.15)

Tikhonov regularization is used to avoid ill-conditioned matrix inverses with K-FAC by

adding a damping parameter γ to the diagonal of F̂i [18, 53]. In most implementations,

instead of computing F̂i
−1

, (F̂i + γI)−1 is computed as:

(F̂i + γI)−1 = (Ai−1 + γI)−1 ⊗ (Gi + γI)−1. (2.16)
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Thus, the final update step for the parameters of layer i at iteration k is:

w
(k+1)
i =w

(k)
i − α(k)(F̂i + γI)−1∇Li(w

(k)
i ) (2.17)

=w
(k)
i − α(k)(Gi + γI)−1∇Li(w

(k)
i )(Ai−1 + γI)−1. (2.18)

2.3.2 Infrequent K-FAC Updates

A common strategy in second-order optimization methods is to update the second-order

information (i.e., factors and their inverses) every few iterations [41, 53, 56]. Intuitively,

second-order information does not change as rapidly from one iteration to the next like

first-order information. The K-FAC update interval parameter controls the number of iter-

ations between second-order updates, i.e., iterations between recomputing the second-order

information. Larger K-FAC update intervals result in more stale information but reduce

average iteration time. Infrequent K-FAC updates are key to reducing communication in the

distributed strategy introduced in Section 4.2.2, and the tradeoff between stale information

and reduced iteration time is evaluated in Section 6.4.
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CHAPTER 3

RELATED WORK

While data-parallelism is key to scaling deep learning training, data-parallelism necessitates

scaling the batch size by the number of workers. Larger batch sizes have been shown to

produce models which do not generalize as well, and this inhibits practical training of deep

neural networks on hundreds or thousands of workers [30]. Batch sizes are not the only

limiting factors at the largest scales; communication costs can also become prohibitive be-

cause the data needed to be exchanged is proportional to the worker count. Finally, the

trend towards training larger models necessitates careful usage of limited worker memory

and advanced hybrid-parallel schemes that maintain high hardware utilization.

KAISA is an advanced optimization framework that aims to address many of these afore-

mentioned issues. Hence, KAISA builds on many prior efforts to scale out deep learning

training and is designed to work in conjunction with a variety of techniques. This chapter

summarizes prior work in scalable deep learning and discusses the relationships between

KAISA and other existing methods.

3.1 Optimization Frameworks

Distributed optimization frameworks take many forms. In a synchronous optimizer, such

as Horovod’s DistributedOptimizer wrapper [63], all parameters are updated in every

iteration. Asynchronous optimizers relax parameter update consistency, for example by

passing values via parameter servers [36], to achieve higher performance than synchronous

methods [38, 60]. The pipeline parallel paradigm, such as GPipe [22] and PipeDream [50]

which hold multiple versions of a model partition in a worker and exploit asynchronous

optimizers, has shown comparable training convergence. Generally, asynchronous SGD has

a non-linear slowdown compared to synchronous SGD [3], so KAISA implements K-FAC in a
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synchronous manner as a preconditioner designed to work with any synchronous optimizer.

BytePS [26] proposes a unified interface for synchronous and asynchronous SGD and

leverages heterogeneous computing resources by offloading computations from GPUs on to

the CPU. ZeRO, the zero-redundancy optimizer, leverages CPU offloading and improves

memory efficiency compared to pipeline parallel methods by partitioning model states across

CPUs and GPUs to avoid memory redundancies inherent to data-parallel training [57].

ZeRO-Infinity extends memory offloading to high-speed NVMe storage in order to train

models with tens of trillions of parameters [58]. KAISA’s configurable distribution strategy

for second-order computations enables either improved memory efficiency by reducing mem-

ory redundancies or improved communication efficiency by increasing memory redundancies

when there is sufficient spare worker memory.

3.2 Memory Shortage and Remedies

Offloading is a common method at the optimizer level for reducing the memory intensity of

deep learning training; however, swapping between GPU memory and host memory, such

as in SuperNeurons [68] and SwapAdvisor [21], is another viable method for training larger

models. SuperNeurons modifies the GPU memory scheduling runtime to make optimal al-

location and swap decisions, and SwapAdvisior uses a genetic algorithm to search possible

memory allocations and swapping schedules to find a pre-planned schedule that best over-

laps computations with communication. Subsequently, SuperNeurons can handle dynamic

graph executions while SwapAdvisor requires static graph execution. KAISA uses PyTorch’s

dynamic execution and is therefore not compatible with SwapAdvisor.

An alternative to swapping out allocated memory is to discard some activation tensors

and rematerialize them when needed for back-propagation. Checkmate [25] formulates this

tradeoff as an optimization problem and provides an optimal rematerialization schedule.

KAISA saves activations during the forward pass to later be used in the second-order com-
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putations which negates most of the benefits of rematerialization methods.

Recent support for half-precision computation on GPUs has enabled lower memory usage

and faster computation through automatic mixed-precision (AMP) training [44]. AMP per-

forms computations in the faster half-precision FP16 format where possible, but maintains

higher-precision for more numerically unstable operations. To avoid numerical instability

when computing gradients, AMP scales the loss appropriately to ensure gradient magnitudes

are within the supported range of the half-precision format. Many popular frameworks such

as NVIDIA Apex [51] and PyTorch [55] offer AMP support, and AMP training is now a de

facto standard for high-performance training. KAISA has native support for PyTorch AMP

and can store data in lower precisions when necessary to reduce memory consumption.

3.3 Generalization Gap

Researchers have observed that training with large-batches exacerbates the generalization

gap—the difference in a model’s performance on training data and testing data [30]. Early

work in scaling SGD training focused on adapting the learning rate by instituting a warmup

and scaling the learning rate by the batch size [17], and these two techniques enabled ResNet-

50 training without harming convergence with batch sizes up to 8192. However, this still

limits training to modest numbers of GPUs because ResNet-50 is commonly trained with

per-GPU batch sizes of 128 or 256. Later work, LARS [72] and LAMB [73], iterated on

this idea with an SGD variant that adapts the learning rate per-layer to enable even larger

batch sizes while maintaining convergence. This method enabled ResNet-50 training on

ImageNet-1k in 20 minutes on 2048 Intel Xeon Platinum 8160 processors and BERT training

in 76 minutes on a TPUv3 Pod with batch sizes of 32K for both applications [72, 73].

Many works have leveraged these optimizers with dedicated enhancements for the system

architectures (e.g., 2D torus) and hardware improvements such as GPUs and TPUs. These

iterative improvements have resulted in researchers training ResNet-50 to 76.3% validation
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accuracy on ImageNet-1k in∼2.2 minutes on 1024 TPUs [70]. Many of these techniques, such

as mixed-precision, interconnect-aware allreduce, and distributed batch normalization, are

application or hardware specific, so this thesis focuses on a general optimization algorithm

that is hardware, network topology, and application agnostic. Consequently, KAISA can

be combined with most of these methods. For example, evaluations with BERT-Large in

Chapter 6 use KAISA as a preconditioner to LAMB.

3.4 Distributed K-FAC

K-FAC can reduce iterations-to-convergence in image classification tasks with ResNets [4, 53]

and natural language tasks with RNNs [42]. The gradient preconditioning in K-FAC, de-

scribed in Section 2.3.1, results in much slower iterations than SGD, so prior work uses an

asynchronous K-FAC distribution scheme with a doubly-factored Kronecker approximation

to achieve iteration times on par with SGD for ImageNet-1k training [4]. The 2× training

speedup on eight GPUs is attributed to the faster convergence at the start of training; how-

ever, the optimizations necessary to achieve this speedup result in a low final accuracy of

70%. In contrast, KAISA uses a synchronous scheme and single-factored Kronecker approx-

imation to maintain convergence.

More recently, researchers have found greater benefits to K-FAC in larger-scale training

environments because the factors corresponding to the FIM approximation for each layer can

be distributed across GPUs in a model-parallel fashion [53]. They show that 978 iterations

are sufficient to reach 74.9% validation accuracy on ImageNet-1k in ∼10 minutes with K-

FAC. While the reduction in iterations is impressive, the work does not show K-FAC to be

faster than, nor achieve the same validation accuracy as, SGD.

Later work from the same group addresses these limitations and reaches the MLPerf

baseline in 10.5 minutes on 512 GPUs [66] without the use of a stale FIM approximation.

A novel 21-bit floating point specification is introduced to reduce communication, and the
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baseline SGD code is carefully analyzed and optimized to improve scaling. In contrast,

this thesis shows that the MLPerf baseline can be reached with stale FIM approximations

and that, in practice, the FP16 and FP32 formats provided by standard machine learning

frameworks are sufficient for exceeding the performance of SGD. KAISA is the first K-FAC

implementation to reach MLPerf acceptance baselines in less wall-time than SGD, a set

of criteria not met by prior works but necessary to showcase K-FAC as a viable tool for

practitioners.

Scalable and Practical Natural Gradient Descent (SP-NGD) can scale to large batch

sizes with minimal overheads [54]. SP-NGD reaches 74.9% ImageNet-1k validation accuracy

in only 873 steps, an improvement over prior work, but the method results in sub-MLPerf

baseline performance even at small batch sizes. KAISA addresses the more general question

of can K-FAC easily enable both training time and convergence improvements without the

need for careful tuning of all aspects of the baseline code.

3.5 Alternative K-FAC Methods

Eigenvalue-corrected Kronecker-factorization (EK-FAC) [14], a more accurate approximation

of the FIM, can perform cheap, partial updates. Noisy K-FAC [74] and noisy EK-FAC [5]

are functionally similar to standard K-FAC but introduce adaptive weight noise. K-BFGS

and K-BFGS(L) [16] apply BFGS [7] and L-BFGS [39] in an analogous method to K-FAC

(e.g., block-diagonal, Kronecker-factored). These works have shown better-than-K-FAC per-

formance in many small scale (e.g., single GPU) and small dataset/model (e.g., MNIST or

CIFAR-10 with VGG16) cases. Kronecker-factor based FIM approximation variants are a

growing area of research; however, large-scale studies have largely been limited to standard

K-FAC. KAISA introduces a valuable, unified design paradigm that can be applied to these

K-FAC variants to efficiently deploy and evaluate their effectiveness on large models at scale.
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CHAPTER 4

OPTIMIZING DISTRIBUTED K-FAC DESIGN

This chapter discusses how KAISA addresses limitations in prior works by using an alter-

native K-FAC approximation and introducing new strategies for distributing second-order

computations. These unique KAISA designs are key to achieving performance that exceeds

that of SGD.

4.1 Alternative K-FAC Approximation

The largest computational cost in K-FAC is computing the second-order information needed

to precondition the gradients. Typically, this second-order information is the inverses of

(Ai−1 + γI) and (Gi + γI) (Equation 2.16), and all existing distributed K-FAC implemen-

tations use this method [4, 53, 66]. Grosse and Martens [18] notes that an expansion of the

eigen decomposition of (F̂i + γI)−1 can be used to obtain an exact solution compared to

a direct inversion of the factors. Given QA and QG, the eigenvectors of the factors, and

υA and υG, the eigenvalues of the factors, the preconditioned gradient can be computed as

follows.

V1 = Q⊤
G∇L(w

(k)
i )QA (4.1)

V2 = V1/(υGυ
⊤
A + γ) (4.2)

(F̂i + γI)−1∇L(w
(k)
i ) = QGV2Q

⊤
A (4.3)

The composition of the factors A and G in Equation 2.9 guarantees the factors are sym-

metric and therefore the factor eigen decompostions have real eigenvalues and orthogonal

eigenvectors.

Table 4.1 compares the explicit inverse preconditioning method with the implicit eigen

decomposition method. The final validation accuracy for ResNet-32 trained on CIFAR-10

17



Table 4.1: Validation accuracy with inverse and eigen decomposition K-FAC methods for
ResNet-32 trained on CIFAR-10.

Batch Size 256 512 1024

SGD 92.77% 92.58% 92.69%
K-FAC with Inverse 92.58% 92.36% 91.71%

K-FAC with Eigen-decomp. 92.76% 92.90% 92.92%

is consistently better as a function of batch size in the eigen decomposition method, and

the eigen decomposition method performs as well as or better than SGD for all batch sizes.

While the implicit decomposition method requires a few more matrix multiplications per

layer compared to the explicit inverse method, the empirically more stable solution of the

implicit method addresses the generalization gap issues between K-FAC and SGD observed

in prior works (Section 3.4).

The remainder of this thesis uses the implicit eigen decomposition method for all exper-

iments; however, in general discussions of distributed second-order methods, second-order

information will be used to ambiguously refer to the inverses or eigen decompositions of

the factors and second-order computations refers to the computation of the second-order

information using the factors. The choice of preconditioning method does not effect the

distribution of second-order computations, and these distribution methods can be extended

to many of the alternative preconditioning methods described in Section 3.5.

4.2 Hybrid Parallel K-FAC

Existing distributed K-FAC implementations are hybrid-parallel, with first-order information

(e.g., gradients) computed in data-parallel and second-order information (e.g., inverses of the

factors) in model-parallel, as described in Figure 4.1. Each iteration starts with standard

data-parallel training. The model is replicated across all workers and a random local batch of

data is assigned to each worker. The forward pass, loss, and backwards pass are computed in

parallel across all workers, and then the gradients computed for each layer in the backwards
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Figure 4.1: Hybrid-parallel distributed K-FAC implementation overview. Blue boxes are
standard computations in data-parallel training. Green boxes are computations required by
K-FAC. Workers maintain identical copies of the model. The output of each layer z is com-
puted during the forward pass for the local batch x. Then, the loss between the true output
y and predicted output zL is calculated and used to compute gradients in the backward
pass. Gradients are averaged across workers with allreduce. During the forward/backward
pass, K-FAC caches intermediate data for computing factors. In the K-FAC stage, workers
compute factors A and G in a data-parallel fashion and allreduce the results. The second-
order information (such as the eigen decompositions) and preconditioned gradients G are
computed in the K-FAC approximation stage. After the K-FAC stage, all workers have G
and can update weights locally using G and a standard optimizer (e.g., SGD or Adam).
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pass are averaged across all of the workers.

After the gradient communication, the K-FAC preconditioning stage begins. The K-

FAC preconditioning stage has three steps for each layer: compute the factors, compute

the second-order information using the factors, and precondition the gradients using the

second-order information. The factors A and G are computed using intermediate values

saved during the forward and backward passes, so after workers compute A and G for each

layer locally in a data-parallel fashion, the factors are averaged across workers. Once the

factors are computed and communicated, the second-order information can be computed in

a model-parallel fashion and the gradients can be preconditioned. Figure 4.1 deliberately

leaves this stage ambiguous as the model-parallelism can be implemented in various ways.

At the end of the K-FAC stage, every worker has a local copy of the preconditioned gra-

dients. Then, each worker can update its local copy of the weights using the preconditioned

gradients and an optimizer of choice (e.g., SGD).

The remainder of this chapter discusses how prior works implement the model-parallel

K-FAC approximation stage, the limitations inherent in these previous designs, and a series

of improvements designed to address these prior limitations.

4.2.1 A Memory Efficient Approach

Osawa et al. [53] introduced the first hybrid-parallel distributed K-FAC scheme which is

referred to as MEM-OPT (memory optimized). MEM-OPT takes a strong layer-wise ap-

proach to the model-parallel K-FAC approximation stage. After the factors A and G have

been computed and communicated, each layer in the model is assigned to a different worker.

Each worker computes the second-order information for the layers assigned to itself. Then

the worker will precondition the gradients using the second-order information for the lay-

ers. Once all workers have computed the second-order information and preconditioned the

gradients for all of the layers in a model-parallel fashion, the workers share the resulting pre-
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conditioned gradients with each other (generally using an allgather or a series of broadcast

operations).

This method maintains a minimal memory footprint because second-order information is

not duplicated: each layer’s second-order information is stored on only one worker. MEM-

OPT has communication in three places: a) gradient allreduce, b) factor allreduce, and c)

preconditioned gradient communication, all shown in Figure 4.1. In non-K-FAC update

steps (e.g., steps where the second-order information is not updated), MEM-OPT avoids

the factor allreduce because the second-order information from a previous step is reused;

however, the preconditioned gradient communication is still required because the gradient

being preconditioned changes every iteration. This marks a key limitation of this approach:

the amount of gradient communication required is invariant to the frequency at which the

K-FAC approximations are recomputed. A second limitation of this approach is that workers

will be left idle during the K-FAC approximation stage if there are more workers than layers

in the model.

4.2.2 Reducing Communication

To remedy the two limitations of MEM-OPT, Pauloski et al. [56] introduces a new method

for the model-parallel K-FAC approximation stage, referred to as COMM-OPT (communi-

cation optimized). COMM-OPT decouples the second-order information computation from

gradient preconditioning. Instead of assigning each layer to a worker, individual second-order

computations are assigned to workers to be performed in parallel. The second-order informa-

tion is broadcast back to all workers such that every worker holds a copy of all second-order

information for all layers. This allows each worker to compute the preconditioned gradients

locally.

This method has a larger memory-footprint because every worker caches all second-order

information. COMM-OPT has communication in three places: a) gradient allreduce, b)
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factor allreduce, and c) second-order information broadcast , also shown in Figure 4.1. De-

coupling the second-order calculations from the gradient preconditioning achieves two goals:

1) the second-order calculations for Ai−1 and Gi can be computed on different workers,

doubling the maximum worker utilization over MEM-OPT, and 2) in non-K-FAC update

steps, the communication in (b) and (c) can be avoided because every worker can locally

precondition gradients with the cached second-order information. Thus, in non-K-FAC up-

date steps, COMM-OPT has no additional communication overhead compared to SGD. In

other words, the communication required by K-FAC is proportional to the K-FAC update

frequency.

4.3 Generalizing Second-Order Hybrid Parallelism

COMM-OPT and MEM-OPT convey the fundamental tradeoff between caching second-

order information locally to avoid communication and communicating the preconditioned

gradients every iteration to avoid additional memory overheads. This tradeoff impacts the

communication, computation, and memory overhead of K-FAC and motivates a more flexible

design for second-order optimization.

KAISA introduces HYBRID-OPT, a configurable distributed K-FAC strategy that can

exploit tradeoffs between memory usage and communication overhead.

In this strategy, each layer has a subset of the workers assigned to be gradient pre-

conditioners, referred to as the gradient workers. The gradient worker fraction, abbrevi-

ated as grad-worker-frac, defines the size of this subset, i.e., the gradient worker count is

max(1, grad-worker-frac × world-size). One or two of the gradient workers are also respon-

sible for computing the second-order information for the layer and broadcasting the results

to the remaining gradient workers (two if the second-order information for each of the two

factors are computed on separate workers). At the end of the second-order computation

stage, each gradient worker has a copy of the second-order information and can precondition
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Algorithm 1: Optimization with K-FAC pseudocode at iteration k.

// Compute Gradients

1 Compute loss in forward pass with local batch
2 Compute gradients ∇L1:L(w1:L) in backward pass
3 allreduce(∇L1:L(w1:L))

// Step 1: Compute Factors

4 if k (mod factor-update-interval) then
5 foreach layer i do
6 Ai−1 = ai−1a

⊤
i−1 // Equation 2.9

7 Gi = gig
⊤
i // Equation 2.9

8 A
(k)
i−1 = ξA

(k)
i−1 + (1− ξ)A

(k−1)
i−1 // Equation 2.10

9 G
(k)
i = ξG

(k)
i + (1− ξ)G

(k−1)
i // Equation 2.11

10 allreduce(A
(k)
i−1,G

(k)
i )

11 end

12 end

// Step 2: Compute Eigen Decompositions

13 if k (mod kfac-update-interval) then
14 foreach layer i do
15 if second-order worker for Ai−1 then
16 QAi−1

, υAi−1
= eigendecompose(Ai−1)

17 broadcast(QAi−1
, υAi−1

)

18 else if gradient worker for layer i then
19 receive(QAi−1 , υAi−1)
20 end
21 if second-order worker for Gi then
22 QGi

, υGi
= eigendecompose(Gi)

23 broadcast(QGi
, υGi

)

24 else if gradient worker for layer i then
25 receive(QGi

, υGi
)

26 end

27 end

28 end

// Step 3: Precondition Gradients

29 foreach layer i do
30 if gradient worker for layer i then
31 Gi =precondition(∇Li(wi)) // Equation 4.1—4.3

32 broadcast(Gi)

33 else
34 receive(Gi)
35 end

36 end

// Update Weights with SGD

37 foreach layer i do
38 Update weights using preconditioned gradients
39 end
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Figure 4.2: A comparison of three grad-worker-frac values on eight workers. Process 1,
shaded in red, computes the second-order information for this layer and communicates the
result to all gradient workers, the workers inside the dashed red box. Gradient workers
compute and broadcast the preconditioned gradient to a subset of the remaining workers,
denoted by the light blue box. In MEM-OPT, there is one gradient worker that broadcasts
the preconditioned gradient to all workers. In HYBRID-OPT, there are four gradient workers
that send the preconditioned gradient to one of the four remaining workers (e.g., worker 0
sends the preconditioned gradient to worker 4). In COMM-OPT, the preconditioned gradient
need not be communicated because all workers are gradient workers.

the gradient.

Gradient receivers are the workers not assigned as gradient workers for the layer. Each

gradient worker is responsible for broadcasting the preconditioned gradient to a subset of

the gradient receivers. With multiple gradient workers, the broadcast groups are smaller and

simultaneous broadcasts are possible, reducing overall communication time. For example,

given two gradient workers and two gradient receivers, each gradient worker sends the pre-

conditioned gradients to just one receiver; both gradient workers perform this communication

at the same time.

After the gradient broadcast, all workers have a copy of the preconditioned gradient with

which local weights can be updated. Pseudocode for this process is provided in Algorithm 1.

Observe that this strategy unifies existing distributed K-FAC strategies because COMM-

OPT and MEM-OPT are special cases of HYBRID-OPT. COMM-OPT is the case where

grad-worker-frac = 1 (all workers are gradient workers for every layer), and MEM-OPT is

the case where grad-worker-frac = 1/world-size (all workers are gradient receivers except

for a single gradient worker which preconditions a layer’s gradient and broadcasts the re-
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sult). Figure 4.2 compares MEM-OPT, COMM-OPT, and HYBRID-OPT in an eight worker

environment.

As the grad-worker-frac increases, more workers cache the second-order information and

the memory footprint increases. Visually, the number of workers that cache the second-order

information is represented by the workers in the dashed red box in Figure 4.2.

Continuing with Figure 4.2, HYBRID-OPT has a lower preconditioned gradient broad-

cast cost than MEM-OPT because the broadcast groups are smaller and broadcasts are

overlapped. HYBRID-OPT requires four separate broadcasts to groups of size two in com-

parison to MEM-OPT which requires one large broadcast to a group of eight. Since these

broadcasts involve non-overlapping workers, all four broadcast calls can be executed simul-

taneously in the HYBRID-OPT case. Given the complexity of broadcast using the minimum

spanning tree algorithm is O(log p), where p is the number of workers in the broadcast

group, the complexity is reduced from O(log 8) in MEM-OPT to O(log 2) in HYBRID-OPT.

Note in steps where the second-order information is updated, HYBRID-OPT incurs an addi-

tional second-order information broadcast with O(log 4) complexity; however, as mentioned

in §2.3.2, second-order information is updated infrequently so the average complexity for

HYBRID-OPT is still less than that of MEM-OPT.

The problem addressed by KAISA’s HYBRID-OPT strategy is akin to that of 2.5D

matrix multiplication [64]. Both algorithms can utilize extra worker memory to reduce com-

munication costs by controlling the replication factor of data. In 2.5D matrix multiplication,

a parameter c determines the number of data copies, and in KAISA, the grad-worker-frac

determines the number of workers that store the second-order information.

4.4 Work Assignments

Distributing the second-order computations is key because these computations are typically

either matrix inversions or eigen decomposition which are expensive to compute. To most
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efficiently use available resources, the second-order computations should be distributed in

a manner that minimizes the makespan T , the time it takes for all workers to complete

their assigned computations. The longest processing time greedy algorithm produces an

assignment with makespan T ≤ 3
2T

∗ where T ∗ is the optimal makespan [32]. This algorithm

works by sorting jobs by decreasing length and then iteratively assigning each job to the

worker with the lowest current work load.

The processing time for matrix inversion and eigen decomposition can be approximated

as O(N3) where each matrix is N×N [12]. KAISA approximates the cost of all second-order

computations at the start of training and then uses the longest processing time strategy to

assign each computation to a worker. Alternatively, memory usage can be optimized for by

using O(N2) as the approximation since each matrix has N2 elements.
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CHAPTER 5

IMPLEMENTATION

5.1 Interface and Usage

KAISA implements K-FAC as a preconditioner to standard optimizers with support for

Conv2d and Linear layers. KAISA has an easy-to-use interface and can be incorporated

into existing training scripts in two lines: one to initialize and one to call KFAC.step()

prior to optimizer.step() (see Listing 5.1). In the initialization, hooks are registered to all

Conv2D and Linear modules for saving the necessary intermediate data, and the second-

order computations are distributed across workers using the longest processing time greedy

algorithm and the grad-worker-frac.

A call to KFAC.step() 1) computes the factors using the forward/backward pass data,

2) computes the second-order information in parallel and broadcasts the results, 3) com-

putes the preconditioned gradients and broadcasts the results if necessary, and 4) scales

the preconditioned gradients. KAISA defaults to using the implicit eigen decomposition

preconditioning method but also provides support for the explicit inverse method.

1 model = DistributedDataParallel(model)
2 optimizer = optim.SGD(model.parameters (), ...)
3 preconditioner = KFAC(model , grad_worker_frac =0.5, ...)
4

5 for data , target in train_loader:
6 optimizer.zero_grad ()
7 output = model(data)
8 loss = criterion(output , target)
9 loss.backward ()

10

11 preconditioner.step()
12 optimizer.step()

Listing 5.1: Example K-FAC usage.
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5.2 Application Support

Because KAISA is designed to work seamlessly with data-parallel training scripts, KAISA

works with the distributed data-parallel model wrappers provided by PyTorch [55], NVIDIA

Apex [51], and DeepSpeed [59]. Usage with NVIDIA Apex and DeepSpeed is similar to

the example with PyTorch in Listing 5.1. KAISA provides additional features to support a

wider-variety of training environments.

5.2.1 Mixed Precision Training

Mixed-precision training is becoming increasingly important for training larger models as

hardware support for half-precision operations has improved [45]. KAISA supports storing

and communicating the factors and second-order information in single-precision (FP32) or

half-precision (FP16) to work with training scripts that use PyTorch’s native AMP imple-

mentations.

When training with AMP, factors are stored in half-precision, reducing memory costs.

K-FAC computations are performed in half-precision where possible. Inverses or eigen de-

compositions are generally unstable in half-precision so factors are cast to single-precision

before decomposition. KAISA can store second order information in half-precision to further

reduce memory consumption if needed. With PyTorch AMP, the GradScaler object respon-

sible for scaling and unscaling the gradient in the backward pass can be passed to KAISA.

KAISA uses the GradScaler to correctly unscale the intermediate data used to compute the

G factors, since the scale factor can change from iteration to iteration, causing problems

when computing the running average of G over the course of training.

Half-precision training has become a staple in achieving state-of-the-art results in deep

learning, and KAISA can particularly benefit from half-precision training due to the K-FAC

computation and communication overhead.
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5.2.2 Gradient Accumulation

Worker memory (e.g., GPU VRAM) limits the maximum per-worker batch size during train-

ing. A common strategy to achieve larger effective batch sizes is gradient accumulation, a

method where gradient values for multiple forward and backward passes are accumulated

between optimization steps. For example, if worker memory limits the batch size to 8, an

effective batch size of 32 can be achieved by accumulating gradients over four forward/back-

ward passes prior to the optimization step. This strategy is common in applications such as

BERT, where effective batch sizes are often > 215, but modern GPUs are limited to local

batch sizes < 27.

The forward/backward pass data needed by KAISA to compute the factors is accumulated

over each mini-batch between calls to KFAC.step(). As the number of gradient accumulation

steps increases, the memory needed to accumulate the forward/backward pass data grows

linearly. KAISA can efficiently support gradient accumulation by computing the factors

for the current mini-batch during the forward/backward pass instead of accumulating and

delaying the computation until the next KFAC.step() call. The factor communication is still

performed during KFAC.step().

5.3 Hyper-Parameters

KAISA has hyper-parameters for the factor update interval, damping, and gradient scaling.

The kfac-update-interval parameter controls the number of iterations between second-

order information updates and communication. Pauloski et al. [56] found that the running

average of the factors can be updated and communicated at a frequency 10× that of the

frequency of the second-order information without affecting the convergence. As mentioned

previously, the factors become more stable throughout training so at fixed iterations, the

kfac-update-interval can be increased by a scalar factor to reduce the computation and

communication over the course of training. Small improvements can be gained via advanced
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kfac-update-interval schedules, but Pauloski et al. [56] found that a constant value was

generally sufficient in terms of performance for the entirety of training.

Similarly, a fixed damping decay schedule is used such that larger damping values early

account for rapid changes in the FIM at the start of training [53].

The preconditioned gradient Gi for a layer is scaled by ν to prevent the norm of Gi

becoming large compared to wi [53], where ν is computed as

ν = min

1,

√
κ

α2
∑n

i=1 |G⊤
i ∇Li(wi)|

 (5.1)

using a user-defined constant κ [15, 67]. Typically, values for κ on the order of 10−3 are

sufficient.

5.4 Communication

For KAISA specific communication operations, KAISA uses the PyTorch interfaces to collec-

tive communication operations. The asynchronous variants of the operations are preferred

to overlap communication with computation.

5.4.1 Triangular Factor Communication

Previous K-FAC work has exploited the symmetric nature of the Kronecker factors to reduce

communication volume by sending only the upper triangle for each factor [54, 66]. KAISA

supports extracting the upper triangle for the factor allreduce and reconstructing the full

factor before the second-order computation stage. For the models studied in this thesis, this

optimization did not yield performance improvements for two reasons. First, network latency

impacted overall communication time more than bandwidth; second, this optimization has

an additional overhead for extracting the upper triangle and reconstructing the factor. For

models with larger individual layers—and therefore factors—this optimization could yield
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greater benefits.

5.4.2 Gradient Preconditioning

The largest overhead of K-FAC in non-K-FAC update steps is computing the preconditioned

gradients. This process, described by Equations 4.1–4.3 in the implicit eigen decomposition

method, involves a series of matrix additions, divisions, and multiplications. Observe that the

gradient ∇Li(w
(k)
i ) is the only variable that changes between non-K-FAC update iterations.

In particular, the computation involving the outer product of the eigenvalues, 1/(υGυ
⊤
A +

γ), in Equation 4.2 does not need to be recomputed every iteration—only after the eigen

decompositions are updated. Also observe that when grad-worker-frac > 1/world − size,

multiple workers perform this computation redundantly.

To reduce the total number of operations during the preconditioning stage, the computa-

tion of the outer product is moved into the eigen decomposition stage. The worker assigned

to eigen decompose G computes 1/(υGυ
⊤
A+γ) and broadcasts the result to all gradient work-

ers instead of broadcasting υA and υG. This ensures that 1/(υGυ
⊤
A + γ) is computed once

(on a single worker) and then reused many times by other workers. In practice, this reduced

the time to precondition the gradients for a single layer by up to 53%. Note that there is

no similar optimization when using the explicit inverse preconditioning method; however, as

mentioned previously, the evaluations here do not use the explicit method.

5.5 Math Libraries

Matrix eigen decomposition and inversion is performed on the GPU. KAISA supports Py-

Torch 1.6 and later but the underlying libraries used for eigen decomposition and inversion

depend on the PyTorch version. In PyTorch 1.7 and older, torch.symeig() is used for eigen

decomposition and torch.inverse() for matrix inversion. The functions are deprecated in

favor of torch.linalg.eigh() and torch.linalg.inv() in PyTorch 1.8. The construction of the
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factors ensures the factors are real and symmetric so eigen decomposition algorithms opti-

mized for symmetric matrices can be used. For the analysis in §4.1, CUDA 10.0 and PyTorch

1.6 is used so the matrix inverses are computed using MAGMA’s getrf and getri routines.

For symmetric eigen decomposition, PyTorch 1.8 and older uses MAGMA’s syevd and heevd

routines while PyTorch 1.9 and newer use the cuSolver equivalents.
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CHAPTER 6

EVALUATION

6.1 Applications

KAISA is evaluated on the ResNet model family, a U-Net, Mask R-CNN, and BERT to

understand the convergence characteristics of KAISA and to compare KAISA’s performance

with the original optimizers. These applications cover three typical deep neural network

usage domains: image classification, object detection, and language modeling.

6.1.1 Image Classification

Correctness, i.e., that KAISA enables convergence to validation metrics on-par with the

default first-order optimizers for the application, is first tested with ResNet-34 [19] and the

CIFAR-10 [33] dataset. Then, ResNet-50 [19], trained on the ImageNet-1k dataset [34], is

used to evaluate KAISA’s convergence and performance at larger scales. The ResNet training

script is based on the Horovod reference ResNet training script [63] and modified to use

PyTorch’s native DistributedDataParallel model wrapper. Unless otherwise specified,

training and communication is done in single-precision. By default, the script uses SGD

with momentum (abbreviated to SGD for the remainder of this section) for optimization,

and when training with KAISA, K-FAC is used is to precondition all convolutional and

linear layers prior to using SGD for the weight updates. For ResNet-34, the acceptable

performance target is 92.49% validation accuracy [19], and for ResNet-50, the MLPerf [49]

acceptance performance of 75.9% validation accuracy is used as the baseline.

6.1.2 Object Detection

Two object detection tasks are explored. The first application is the NVIDIA reference

PyTorch implementation of Mask R-CNN [20, 52] with the Common Objects in Context
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(COCO) 2014 dataset [37]. NVIDIA Apex’s DistributedDataParallel model wrapper

is used to enable data-parallel training. SGD is the default optimizer. KAISA is used

to precondition the convolutional and linear layers in the region of interest (ROI) heads

of Mask R-CNN. The MLPerf benchmark target results [49] of 0.377 bounding-box mean

average precision (bbox mAP) and 0.342 segmentation mean average precision (segm mAP)

are adopted as the baseline.

The second application is a U-Net [62] architecture for segmenting brain tumor sub-

regions. A Kaggle competition implementation [8] is extended to enable multi-GPU training

with PyTorch’s native DistributedDataParallel model wrapper. The model is trained on

the LGG Segmentation dataset [9], which contains Magnetic Resonance (MR) images of the

brain from 110 patients across five hospitals. Images from a random subset of 100 patients

are used as the training dataset and the remaining 10 patients are used for validation.

Adam [31] is the default optimizer, and KAISA is applied to all convolutional layers in the

model. The baseline performance target is a 91.0% validation Dice similarity coefficient

(DSC) [8]. Training for both object detection applications is done in single-precision.

6.1.3 Language Modeling

To evaluate KAISA on language modeling tasks, BERT-Large uncased is trained using a

modified version of the NVIDIA reference PyTorch implementation for BERT [13, 52]. The

model is trained on the English Wikipedia [69] and Toronto BookCorpus datasets [77]. Fused-

LAMB is used as the optimizer [73]. Each transformer in BERT is implemented using a series

of linear layers, so KAISA is applied to all linear layers. KAISA is not used to precondition

the embedding layer and prediction head because both of these layers have a Kronecker factor

with shape vocab-size × vocab-size, and since the vocab size for BERT-Large is 30K, these

factors cannot be efficiently inverted or eigen decomposed. The strategy outlined in §5.2.2

is used to reduce memory consumption since gradient accumulation is used for training.
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PyTorch’s DistributedDataParallel is used for data-parallel training, and PyTorch AMP

is used to enable half-precision training.

A common practice to evaluate BERT convergence is to fine-tune the pre-trained model

for downstream tasks, such as SQuAD v1.1, a question and answer benchmark, and use

the validation results of the downstream tasks as the convergence metric. Researchers have

reported F1 scores of 91.08% [52], 91.0% [61], and 90.4% [73] for fine-tuning on the SQuAD

v1.1 dataset. Due to the partial unavailability of the Toronto BookCorpus training dataset,

the baseline implementation trained with Fused-LAMB only converges to 90.8%.

6.2 Platforms

Two GPU clusters are used for evaluation. The first is Longhorn, the GPU subsystem

of the Frontera supercomputer hosted at the Texas Advanced Computing Center (TACC).

Longhorn has 112 nodes each with two IBM Power9 processors, four NVIDIA V100 GPUs,

and 256 GB of RAM. Nodes are connected by an InfiniBand EDR network. For training on

Longhorn, PyTorch 1.6, CUDA 10.0, CUDNN 7.6.4, and NCCL 2.4.7 is used.

The second system is ThetaGPU, the GPU subsystem of the Theta supercomputer at

Argonne National Laboratory. ThetaGPU has 24 NVIDIA DGXA100 nodes each with eight

40GB A100 GPUs (192 A100 GPUs in total). Training on ThetaGPU is performed with

PyTorch 1.9, CUDA 11.3, CUDNN 8.2.0, and NCCL 2.9.9.

These two systems are distinguished between in the following text by specifying either

V100 or A100 GPUs.

6.3 Convergence

The performance of KAISA is evaluated against the default optimizers in two scenarios:

when both cases use the same batch-size and when the maximum possible batch size al-
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Table 6.1: Baseline validation set performance and hardware summary for ResNet-34,
ResNet-50, Mask R-CNN, U-Net, and BERT-Large. “acc.” is accuracy, “mAP” is mean
average precision, and “DSC” is Dice similarity coefficient.

App Ref Baseline GPU # GPUs

ResNet-34 [19] 92.49% top-1 acc. V100 1

ResNet-50 [49] 75.9% top-1 acc.
V100 64
A100 8

Mask R-CNN [49]
0.377 bbox mAP,

V100
32

0.342 segm mAP 64

U-Net [8] 91.0% DSC A100 4

BERT-Large [52]
90.8% SQuAD

A100 8
v1.1 F1 score

lowable by the GPU memory is used. ”Optimizing with KAISA” is used as shorthand for

preconditioning the gradients with KAISA prior to using the default optimizers for variable

updates.

6.3.1 Fixed Batch Size

KAISA’s performance (converged accuracy, epochs to convergence, and time to convergence)

is examined with ResNet-34, ResNet-50, Mask R-CNN, U-Net, and BERT-Large. The ap-

plications, their baseline targets, and training environments (i.e., type and count of GPUs)

are summarized in Table 6.1.

In this section, the same global batch size is used with and without KAISA to isolate the

improvement from second-order information. Table 6.2 summarizes the hyperparameters for

each application.

For ResNet-34, the learning rate is N × 0.1 and the batch size is N × 128 where N is

the number of GPUs. The linear learning rate warmup is used for the first five epochs and

then decreased by a factor of 10 at epochs 35, 75, 90 for K-FAC and 100, 150 for SGD.

ResNet-34 is trained for 100 epochs with K-FAC and twice as long with SGD. K-FAC eigen

decompositions are recomputed every 10 iterations. For ResNet-50, the learning rate is
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Table 6.2: Summary of hyperparameters used for each application. BS = global batch size,
LR = learning rate, WU = warm up iterations, K-int = number of iterations between eigen
decomposition re-computations, F-int = iterations between factor updates. grad-worker-frac
= 1 and γ = 0.003 for all cases.

App BS LR WU K-int F-int

ResNet-34 256 0.2 250 10 1

ResNet-50 2,048 0.8 3,130 500 50

Mask R-CNN 64 8e-2 800 500 50

U-Net 64 4e-4 500 200 20

BERT-Large 65,536 5e-5 103 100 10

N × 0.0125 and the batch size is N × 32. The learning rate is linearly warmed up for the

first five epochs then decayed at epochs 25, 35, 40, 45, and 50. Labels are smoothed with a

factor of 0.1. The SGD momentum is 0.9 for ResNet-34 and ResNet-50.

With Mask R-CNN and BERT-Large, the NVIDIA reference hyperparameters [52] are

used. Further performance improvements could be gained through more extensive hyper-

parameter tuning; however, this is not necessary to achieve results better than the original

optimizers with KAISA.

ResNet-34: Training ResNet-34 on the Cifar-10 dataset with KAISA reduces the epochs

to convergence in half, from 150 to 75 epochs, as shown in Figure 6.1(a). However, since

training is performed on a single GPU, the time-to-convergence is worse with KAISA as no

data- or model-parallelism in the K-FAC stage can be taken advantage of.

ResNet-50: The second experiment compares K-FAC and SGD training with ResNet-

50 and the ImageNet-1k dataset. The goal is to verify that K-FAC 1) converges to 75.9%

validation accuracy, the MLPerf baseline; 2) converges to a validation accuracy that is at

least equal to that of SGD; and 3) requires fewer iterations.

ResNet-50 is trained for 55 and 90 epochs for KAISA and SGD, respectively, using half-

precision on eight NVIDIA A100 GPUs. Figure 6.1(b) shows the validation accuracy curve

using the two optimization methods. KAISA converges to the baseline validation accuracy

at epoch 46 and SGD at epoch 65. The time-to-convergence is 268.1 minutes for KAISA:
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(a) ResNet-34 Accuracy (b) ResNet-50 Accuracy (c) Mask R-CNN BBox mAP

(d) Mask R-CNN Segm mAP (e) U-Net Dice Score

Figure 6.1: Validation Metric Curve Comparison between KAISA and SGD/Adam for
ResNet-34, ResNet-50, Mask R-CNN, and U-Net. The dotted lines represent the target
metric.

24.3% less than the 354.0 minutes for SGD.

Mask R-CNN: The baseline measurement of Mask R-CNN on 32 NVIDIA V100 GPUs

takes 25,640 iterations to converge to 0.377 bbox mAP and 0.342 segm mAP in single-

precision. With K-FAC enabled for the ROI heads, training converges to 0.379 bbox mAP

and 0.350 segm mAP in 21,000 iterations. The bbox mAP and segm mAP comparisions for

SGD and KAISA are shown in Figures 6.1(c) and 6.1(d). KAISA reduces the training time

from 136.1 minutes to 115.8 minutes, a 14.9% improvement. With a batch size of 128 on

64 V100 GPUs, KAISA converges in 12,000 iterations compared to 15,000 with SGD and

reduces training time by 18.1%.

U-Net: The reference U-Net implementation [8] with Adam converges to 91.0% valida-

tion DSC within 50 epochs with four NVIDIA A100 GPUs using single-precision training.

Using KAISA, the training converges above 91.0% in 30 epochs as seen in Figure 6.1(e).

KAISA reduces the training time by 25.4% (10.9 minutes vs. 14.6 minutes).

BERT: BERT pre-training has two phases. The first trains with maximum sequence
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Table 6.3: BERT performance comparison: KAISA vs. LAMB
KAISA, with iterations:

Metric LAMB 1200 1000 800

SQuAD F1 90.8 91.0 91.0 90.8

SQuAD F1 Stdev. 0.13 0.15 0.17 0.24

Iterations 1,536 1,200 1,000 800

Time (hours) 47.7 41.5 34.4 30.4

length of 128 for 7038 iterations and the second trains with maximum sequence length of

512 for 1,563 iterations. The pre-trained BERT model is fine-tuned for three epochs using

the SQuAD dataset. All phases and fine-tuning are done in half-precision. Tuning the

hyperparameters of BERT is expensive as each run can take over 130 hours with 8 A100

GPUs, so the effectiveness of KAISA is shown with the second phase of BERT pre-training.

Phase two training begins with the same model pre-trained with LAMB during phase one.

Training with KAISA is performed for {800, 1,000, 1,200} iterations then fine-tuned on

SQuAD. Table 6.3 summarizes the validation SQuAD F1 scores after fine-tuning and the

pre-training performance improvements.

KAISA converges to the 90.8 F1 baseline in 800 iterations, 47.9% less iterations than

required for LAMB, and KAISA takes 36.3% less time than LAMB to converge.

6.3.2 Fixed Memory Budget

To understand how the gradient worker fraction can enable second-order optimization in

memory-constrained environments, KAISA’s performance is compared against baselines with

fixed memory budgets. In particular, ResNet-50 is trained with 64 V100 GPUs and BERT-

Large phase two is trained with eight A100 GPUs. For each experiment, the maximum

possible local batch size is used and the epochs to convergence and time to convergence are

measured. Table 6.4 summarizes the hyperparameters and time to convergence.

ResNet-50: With SGD, the maximum local batch size is 128 per GPU and the global
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Table 6.4: Time to convergence and hyperparameters for each optimizer. BS in the global
batch size, LR in the learning rate, g-frac in the gradient worker fraction, K-f is the iterations
between eigen decomposition re-computations, F-f is the iterations between factor updates,
and T-conv is time to convergence in minutes.

App Optimizer BS LR g-frac K-f F-f T-conv

ResNet-50
SGD 8K 3.2 — — — N/A

KAISA 5K 2.0 1/64 200 20 96
KAISA 5K 2.0 1/2 200 20 83

BERT-Large
LAMB 24K 3e-3 — — — 2,917.6
KAISA 32K 4e-3 1/2 100 10 1,702.5
KAISA 32K 4e-3 1 100 10 1,703.5

batch size is 8,192. ResNet-50 when trained for 90 epochs using SGD achieves 75.0% vali-

dation accuracy—0.9% lower than the MLPerf baseline. KAISA with grad-worker-frac = 1

and a local batch size of 80 exceeds the local memory of the GPU. Lowering grad-worker-frac

to 1/2, training takes 83 minutes to converge to 75.9% in the 48th epoch. The complete 55

epoch training takes 95 minutes and the validation accuracy reaches 76.0%. So, even if SGD

converges to 75.9% by the 90th epoch, KAISA still reduces the time to convergence by 32.5%.

Finally, the same training process is repeated with MEM-OPT by setting the grad-worker-

frac to 1/64. This configuration converges at the 47th epoch and the time to convergence is

96 minutes. The complete 55 epoch training takes 111 minutes. This experiment highlights

the benefit of KAISA in cases where compute resource can not be efficiently utilized with

the original optimizers. With a grad-worker-frac value of 1/2, KAISA offers benefits over

COMM-OPT and MEM-OPT by enabling second-order optimization under a tight memory

budget that is 13.9% faster than COMM-OPT and not feasible with MEM-OPT.

BERT:With LAMB, the maximum possible local batch size per GPU is 12 for the second

phase of this BERT implementation [52], and the global batch size is 24,576. For KAISA, a

local batch size of 8 and global batch size of 32,768 is achievable. Note that the accumulation

steps parameter is kept constant. This experiment uses the same hyperparameters as in

§6.3.1, so all cases with LAMB and BERT should converge to the baseline, thus the training
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Figure 6.2: ResNet-50 validation accuracy of the last 10 epochs with K-FAC update intervals
of {10, 100, 500, 1000} iterations. The MLPerf baseline of 75.9% is represented with the
dotted black line.

Table 6.5: ResNet-50, ResNet-101, and ResNet-152 validation accuracy vs. K-FAC update
interval with 64 GPUs.

K-FAC Update Interval
Model SGD 100 500 1000

ResNet-50
Val Accuracy 76.2% 76.2% 76.1% 75.5%

Train Time (min) 178 152 128 124

ResNet-101
Val Accuracy 78.0% 77.7% 77.7% 77.3%

Train Time (min) 244 227 197 195

ResNet-152
Val Accuracy 78.2% 78.0% 78.0% 77.8%

Train Time (min) 345 369 310 300

time is projected using the time measured for the first 100 steps. As the global batch size with

LAMB is 24,576, 2,084 training steps are required to finish three epochs, and the training

time is 2,917.6 minutes. KAISA, with grad-worker-frac = 1/2, takes 3,268.8 minutes to

finish the three epochs. However, KAISA converges to baseline after 800 steps, as shown

in Table 6.3, so the time to converge is 1,702.5 minutes—41.6% faster than LAMB. Setting

grad-worker-frac = 1 takes 1,703.5 minutes to converge for KAISA. The performance is

comparable to the case with grad-worker-frac = 1/2. A detailed study on this convergence

phenomena is conducted for different gradient worker fraction values in §6.5.
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6.4 K-FAC Update Frequency

Key to efficient training with second-order methods is reducing the frequency at which

second-order information is computed. In K-FAC, less frequent K-FAC updates reduce

computation and communication but increase the staleness of the second-order information,

so understanding this tradeoff is necessary to optimally apply K-FAC.

ResNet-50, ResNet-101, and ResNet-152 are trained with K-FAC for 55 epochs and K-

FAC update intervals of {100, 500, 1000}. The top-1 validation accuracy from training on

64 V100 GPUs is presented in Table 6.5 and Figure 6.2. All update intervals except 1000

converge to the MLPerf baseline with ResNet-50, so 500 is chosen to be the optimal K-

FAC update intervals with 64 V100 GPUs for the scaling experiments in §6.6.1. There are

no recognized baselines for ResNet-101 nor ResNet-152 so the 76.4% and 76.6% baselines,

respectively, reported by Keras Application [29] are used. While a 0.2% validation accuracy

decrease with KAISA is observed compared to SGD with ResNet-101 and ResNet-152, the

KAISA results are better than the general baselines.

A similar study is repeated to find a good update interval for BERT. On average, each

BERT K-FAC step takes 25 seconds longer than a Fused-LAMB step with 16 A100 GPUs.

With 7038 steps in phase 1, a K-FAC update interval of 100 steps reduces the training time

by 1750 seconds compared to an interval of 50 steps. This only reduces training time for

phase 1 by 1.58% (total training time is 111,059 seconds with 16 A100 GPUs) which is

not significant. On the other hand, decreasing the K-FAC update interval to 25 steps will

introduce an overhead of 3500 seconds, thus 50 steps is chosen to be an appropriate middle

ground for the K-FAC update interval in phase 1 and phase 2.
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(a) ResNet-18 (FP32) (b) ResNet-50 (FP32) (c) ResNet-101 (FP32)

(d) ResNet-152 (FP32) (e) Mask R-CNN (FP32) (f) BERT-Large Phase 2 (FP16)

Figure 6.3: Average iteration time and K-FAC memory overhead across grad-worker-frac
values on 64 V100 GPUs. Dotted lines are the baseline iteration times without K-FAC.

6.5 Memory vs. Communication

To understand the impact of grad-worker-frac on training times, ResNet-{18, 50, 101, 152},

Mask R-CNN, and BERT-Large are trained with 64 V100 GPUs for grad-worker-frac ∈

{1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1}. For each experiment, the average iteration time,

i.e., time between weight updates, and the GPU memory usage, is recorded. The K-FAC

overhead is the memory required to store the factors and eigen decompositions, and the

K-FAC overhead is computed as the difference between the K-FAC and SGD memory usage.

For all ResNet models, the same hyperparameters are used for ResNet-50 (§6.3.1) except

for ResNet-152 where the local batch size was lowered to 24. The results are presented in

Figure 6.3, and a summary of the memory usage is provided in Table 6.6.

The K-FAC memory overhead increases linearly as a function of grad-worker-frac for all

models. KAISA requires 1.5–45.8% more memory than SGD depending on the application
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Table 6.6: Summary of per-GPU memory usage for training, in MB. Abs. is the absolute
memory required for training. ∆ is the %-increase in memory required over SGD. The K-
FAC overhead is the K-FAC abs. memory minus the SGD abs. memory.

SGD K-FAC Min K-FAC Max

Model Precision Abs. Abs. ∆ Abs. ∆

ResNet-18 FP32 2454 2838 16.7% 3260 32.8%

ResNet-50 FP32 4762 5396 13.3% 6608 38.8%

ResNet-101 FP32 6313 7463 18.2% 8755 38.7%

ResNet-152 FP32 6620 8204 23.9% 9092 37.3%

Mask R-CNN FP32 6553 6650 1.5% 6743 2.9%

BERT-Large FP16 8254 9555 15.8% 12038 45.8%

and value of grad-worker-frac (Table 6.6). The maximum K-FAC overhead (i.e., when grad-

worker-frac = 1) is 1.5–2.9× that of the minimum K-FAC overhead (i.e., when grad-worker-

frac = 1/64).

With respect to iteration times, the ResNet models scale well with the number of gradient

workers with ResNet-50 scaling the best. For ResNet-50, the speedup from a gradient worker

count of 1 to 64 is 24.4% with a 22% increase in total memory usage. The average iteration

times for Mask R-CNN and BERT-Large remain constant as the number of gradient workers

is increased. These promising results for ResNet-50, a de facto standard benchmark for deep

learning systems, are important as the performance characteristics of ResNet-50 represent a

large set of commonly used models (e.g. VGG16, U-Nets, etc.).

To understand why ResNet model performance varies across grad-worker-frac values while

the Mask R-CNN and BERT-Large performance remains constant, consider the bandwidth

requirements of these applications. The bandwidth required by KAISA is a function of the

size of the factors, eigen decompositions, and frequency of K-FAC updates.

With 64 V100s, ResNet-50 calls KFAC.step() frequently (4–6 calls/second) and incurs

a K-FAC memory overhead between 634 MB and 1.8 GB. In comparison, Mask R-CNN

calls KFAC.step() with a lower frequency (3 calls/second) and has a much smaller K-FAC

overhead (100–200 MB). Thus, the changes in how KAISA communicates data with respect to
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grad-worker-frac are less apparent in Mask R-CNN. BERT-Large has the lowest bandwidth

requirements of all applications even though it has the largest K-FAC overhead. BERT-

Large uses gradient accumulation to achieve very large batch sizes (32K for phase 2) and as

a result only calls KFAC.step() every∼120 seconds. These K-FAC overheads are summarized

in Table 6.6.

While the iteration times for low-communication models such as BERT and Mask R-CNN

are invariant to the grad-worker-frac value in KAISA, KAISA still produces faster-than-SGD

training times with small increases in memory-overhead. This is due to KAISA’s unique

features outlined in §4 and §5. Further, practitioners training these models at larger scales,

e.g., 100s or 1000s of GPUs, where communication becomes a greater bottleneck will benefit

more from the flexibility KAISA provides to adapt training to environments with increasing

communication costs.

Tuning the grad-worker-frac hyperparameter, to determine an optimal balance between

iteration time and memory usage, is simple as it only requires profiling the average iteration

time for each grad-worker-frac value over a few iterations.

With respect to training times, grad-worker-frac has the most impact in applications that

spend a larger proportion of time doing communication. To further understand how the grad-

worker-frac impacts training times, the execution time for each section within KFAC.step()

with ResNet-50 on 64 V100s is analyzed. Figure 6.4 provides the time spent in each section

for all layers in the model during a call to KFAC.step(). Times are averaged over 10,000

iterations and across all workers. Eigen decompositions are updated every 500 iterations.

As shown in Figure 6.4, factor computation and communication, eigen decomposition, and

scaling and updating the gradients, are invariant to the grad-worker-frac.

The time required to broadcast the eigen decompositions increases substantially as the

number of gradient workers is increased. Referring back to Figure 4.2, the more gradient

workers there are, the more workers that need to receive the eigen decompositions. However,
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Figure 6.4: Average function execution time during calls to KFAC.step() for ResNet-50 on
64 GPUs.

the eigen decompositions, in this case, are only recomputed every 500 iterations so the eigen

decomposition broadcast has a negligible effect on the average iteration time.

On the other hand, the gradient preconditioning and broadcast occur every iteration

regardless of if the factors or eigen decompositons are updated and have the greatest influence

on average iteration time. The time to precondition the gradients increases with the gradient

worker count because each worker is assigned as a gradient worker for more layers. This

discovery highlights the importance of the gradient preconditioning optimizations made in

§5.2.2. The time to broadcast the preconditioned gradients decreases to 0 as the gradient

worker count approaches world-size, and notably, the time decreases at a faster rate than

the increase in time required in the preconditioning stage. This trend is a result of each

gradient worker needing to send the results to fewer other workers as the gradient worker

count increases.

6.6 Scaling

6.6.1 ResNet Scalability

The time to solution (time to reach the MLPerf baseline validation accuracy) is measured on

{16, 32, 64, 128, 256} V100 GPUs. The average time per epoch is measured over 10 epochs

and then projected to 55 epochs for K-FAC and 90 epochs for SGD. The K-FAC update
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(a) ResNet-50 (b) ResNet-101 (c) ResNet-152

Figure 6.5: Time-to-solution comparison of ResNet models.

interval is scaled inversely to the global batch size to maintain a constant number of K-FAC

updates per epoch. In §6.4, the ideal interval was determined to be 500 for 64 V100 GPUs,

so intervals of {2000, 1000, 500, 250, 125} for {16, 32, 64, 128, 256} V100 GPUs are used,

respectively. All other hyper-parameters are the same as described in §6.3.1.

The ResNet training implementation is a simple data-parallel implementation which con-

tains no additional optimizations for improved training or scaling efficiency. While this

means that the end-to-end training time for the SGD baseline is not state-of-the-art for this

hardware configuration, using a simple implementation showcases that K-FAC can improve

training time and scaling without needing additional complex optimizations.

Here, the COMM-OPT and MEM-OPT strategies of KAISA are compared to training

with SGD. Both KAISA configurations converge to the same 76.2%, 77.7%, and 78.0%

validation accuracies for ResNet-50, ResNet-101, and ResNet-152, respectively, within 55

epochs.

Across GPU and model scales, MEM-OPT outperforms SGD by 2.8-19.1%, and COMM-

OPT outperforms SGD by 17.7-25.2%, as seen in Figure 6.5. The scaling efficiency of

COMM-OPT is 71.8%, a 9.4% improvement over the 62.4% efficiency of MEM-OPT, and

also higher than SGD’s 68.6% scaling efficiency. The better scaling of COMM-OPT is due to

its reduced communication frequency compared to MEM-OPT.While the scaling efficiency at

256 GPUs is below 50% for all three cases, MEM-OPT achieves 2.8% improved performance

over SGD whereas COMM-OPT yields an 18.3% improvement.

47



(a) Mask R-CNN (b) BERT-Large Phase 1 (c) BERT-Large Phase 2

Figure 6.6: Time-to-solution comparison for Mask R-CNN and BERT-Large across scales.

Table 6.7: Iterations required to converge for KAISA and SGD at different scales for Mask
R-CNN.

Optimizer 32 GPUs 64 GPUs 128 GPUs

KAISA 21 000 12 000 6800
SGD 25 640 15 000 7320

6.6.2 Mask R-CNN Scalability

Mask R-CNN training exploits early stopping, that is, the training automatically stops if

the validation metrics reach the baseline target. With a different number of V100 GPUs,

the global batch size changes proportionally, and the required steps to converge also varies.

Such results can be observed from MLPerf v0.6 [48]. Table 6.7 summarizes the number of

steps to converge for KAISA and SGD at the scale of 32, 64, and 128 V100 GPUs.

Figure 6.6(a) illustrates the training time at each scale for KAISA and SGD. All three

KAISA cases converge to above the baseline metrics. With 32 and 64 GPUs, KAISA takes

14.9% and 18.1% less time than SGD to converge, respectively. That reduction drops to

3.0% with 128 GPUs. Even though the number of steps does not decrease with more GPUs,

the scaling efficiency is 74.4%.

6.6.3 KAISA Speedups over the Baseline

The scaling characteristics of KAISA are examined in more detail with ResNet-50 and the

second phase of BERT-Large training. ResNet-50 and BERT-Large are chosen because
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(a) ResNet-50 (b) BERT-Large Phase 2

Figure 6.7: Speedup for the ResNet-50 and BERT-Large applications on A100 nodes.

they represent a high-communication and low-communication model, respectively (see §6.5).

Three KAISA variants are used: COMM-OPT, MEM-OPT, and HYBRID-OPT with a

grad-worker-frac of 1/2, and the projected end-to-end training time speedups for the KAISA

variants over the base optimizers (SGD and LAMB) are reported in Figure 6.7. For ResNet-

50, the training time is projected to 90 epochs for SGD and 55 for KAISA. For BERT-Large,

the phase 2 training time is projected to 1,563 steps for LAMB and 800 for KAISA based

on the study in §6.3.1. The hyperparameters in Table 6.2 are used, and for ResNet-50, the

K-FAC update interval is scaled inversely with the global batch size to keep the number of

K-FAC updates per training samples constant.

In Figure 6.7(a) and 6.7(b), MEM-OPT maintains a constant speedup over SGD and

LAMB, respectively, across all scales. In contrast, the speedup for COMM-OPT improves in

both cases as the scale increases indicating the tradeoff of more memory for reduced commu-

nication does have scaling benefits. HYBRID-OPT sees performance improvements on par

with COMM-OPT with BERT-Large while using less GPU memory. Overall, HYBRID-OPT

has the best balance of scaling and memory usage for large-scale BERT pre-training.

As a whole, KAISA achieves better speedups with BERT-Large which is likely due to

ResNet-50 being more communication bound than BERT-Large as noted in §6.5. Further

scaling experiments on a machine with more GPUs is needed to understand the characteris-

tics and limits of KAISA’s speedup over SGD.
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CHAPTER 7

SUMMARY AND FUTURE WORK

This thesis presents KAISA, a K-FAC-enabled, Adaptable, Improved, and ScAlable second-

order optimizer framework. KAISA incorporates an adaptable layer-wise distribution scheme

to perform K-FAC computations efficiently at scale. This adaptability enables appropri-

ate distribution of the complex K-FAC computations to best suit the model and hard-

ware characteristics. Techniques such as inverse-free second-order gradient preconditioning

to maintain convergence across batch sizes and K-FAC approximation update decoupling

for reduced time per iteration are evaluated. KAISA is designed to be easily incorpo-

rated into existing training scripts and is implemented in the widely adopted PyTorch

framework. The code is open source and available under the permissive MIT license at

https://github.com/gpauloski/kfac_pytorch .

A few directions for future work are apparent. First, extending KAISA to enable dis-

tributed second-order optimization with K-FAC variants such as those described in §3.5

could yield better convergence. To reduce the communication inherent to K-FAC, tensor

bucketing methods for communication operations or lossless and lossy tensor compression

techniques can be incorporated into KAISA.

The fundamental tradeoff between data access on local and remote memory is explored,

and KAISA’s correctness and impact on training time is evaluated with a suite of real-world

applications. With the same global batch size, KAISA provides an 18.1–36.3% training

time reduction for ResNet-50, Mask R-CNN, U-Net, and BERT-Large, while preserving

convergence to the baseline. Under the same memory budget, ResNet-50 and BERT phase

2 converge to the baseline in 32.5% and 41.6% less time compared to momentum SGD and

Fused-LAMB. In high-communication applications, such as ResNet models, extra memory

can be used to improve iteration times by reducing communication. In low-communication

applications, such as Mask R-CNN and BERT-Large, the optimal KAISA usage is shown
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and used to achieve efficient scaling on par with SGD up to 128 GPUs.
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