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ABSTRACT
Advances in networks, accelerators, and cloud services encourage
programmers to reconsider where to compute—such as when fast
networks make it cost-effective to compute on remote accelerators
despite added latency. Workflow and cloud-hosted serverless com-
puting frameworks can manage multi-step computations spanning
federated collections of cloud, high-performance computing (HPC),
and edge systems, but passing data among computational steps
via cloud storage can incur high costs. Here, we overcome this
obstacle with a new programming paradigm that decouples control
flow from data flow by extending the pass-by-reference model to
distributed applications. We describe ProxyStore, a system that
implements this paradigm by providing object proxies that act as
wide-area object references with just-in-time resolution. This proxy
model enables data producers to communicate data unilaterally,
transparently, and efficiently to both local and remote consumers.
We demonstrate the benefits of this model with synthetic bench-
marks and real-world scientific applications, running across various
computing platforms.
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1 INTRODUCTION
The function-as-a-service (FaaS) and workflow programming para-
digms facilitate the development of scalable distributed applications.
Programmers specify what task (e.g., function or workflow stage)
to perform without regard to where they are executed; the FaaS or
workflow system then handles the mechanics of routing each task
to a suitable processor. FaaS systems often assume that tasks are
independent, while in workflow systems tasks may be linked in
a dependency graph (e.g., a directed acyclic graph). In both cases,
it is common for all data movement to pass via a central location
such as a FaaS service, workflow engine, shared file system, or task
database, where task inputs and outputs can be stored persistently
on stable storage. Such centralized approaches may lead to unnec-
essary communication [9, 52] but facilitate the implementation of
other useful features like re-execution of failed tasks or dynamic
adjustments of task location.
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Figure 1: ProxyStore decouples the communication of object
data from control flow transparently to the application. Data
consumers receive lightweight proxies that act like the true
object when used, while the heavy lifting of object commu-
nication is handled separately.

The passing of data among tasks via a central location become
increasingly problematic when tasks are located on distinct com-
puters. Consider a program that makes a function call x=f() to
produce a value x that is to be consumed by a second function call
g(x). If f() and g() are dispatched to different computers Ca and
Cb, respectively, then x must be transferred from Ca to Cb. Requir-
ing that this transfer pass via a central location (e.g., FaaS service,
workflow controller, shared file system) is inefficient, particularly if
x is an intermediary value of no use to the client. Instead, it would
be preferable to communicate x directly from f() to g(). To do this,
we need methods for: (1) representing x such that f() and g() can
produce and globally reference x and (2) communicating x from f()
to g(), despite f() and g() running in different processes, compute
nodes, or systems.

To address these challenges, we present ProxyStore, an abstrac-
tion for managing the routing of data between processes in dis-
tributed and federated Python applications. ProxyStore allows de-
velopers to focus, when writing and composing distributed applica-
tions, on logical data flow rather than physical details of where data
reside and how data are communicated. This decoupling enables
the dynamic selection of different data movement methods, depend-
ing on what data are moved, where data are moved, or when data
are moved—a long-standing challenge in distributed application
design [18, 29, 37, 39]. The proxy programming model transpar-
ently provides pass-by-reference semantics and just-in-time object
resolution to consumers. A proxy is lightweight and can be com-
municated efficiently via any means while its referenced object is
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communicated transparently via optimal routes. By thus abstracting
the use of specialized communication methods, the proxy paradigm
improves code compatibility, performance, and productivity.

ProxyStore provides interfaces to commonmediated communica-
tion channels (e.g., shared file systems, Globus [6, 16, 28], Redis [49])
and custom implementations that leverage the powerful communi-
cation technologies of high-performance computing (HPC) environ-
ments and enable direct communication between remote systems.

The contributions of this paper are:

• The design and implementation of the proxy model which
is, to the best of our knowledge, the first system that trans-
parently provides both pass-by-reference and pass-by-value
semantics for distributed applications.

• Data transfer mechanisms that enable fast intra- and inter-
site communication in various settings and an extensible
framework for seamless integration of new technologies.

• Component level benchmarks of ProxyStore and compar-
isons to prior works.

• Experiments using ProxyStore to accelerate real-world fed-
erated science applications.

The ProxyStore framework is an open-source Python package
available on GitHub and PyPI [46, 47].

The rest of this paper is as follows: Section 2 discusses related
work in federated and distributed application design; Section 3 out-
lines ProxyStore design goals and introduces the core components;
Section 4 describes the communication channels provided; Section 5
presents component-level benchmarks and real-world use cases;
and Section 6 summarizes our contributions and future plans.

2 BACKGROUND AND RELATEDWORK
Increasing hardware heterogeneity, faster and more reliable net-
works, and shifts in application requirements have motivated fed-
erated application design, i.e., applications that span several cloud,
high-performance (HPC), edge, and personal systems. Here we
discuss technologies that enable the management of computation
across diverse systems.

Communication decoupling: The appropriate design for a
distributed application’s communication fabric depends on the de-
coupling needed among application processes. Eugster et al. [25]
describe how decoupling can occur along space, time, and syn-
chronization dimensions. Processes decoupled in space interact
indirectly via a shared service (e.g., message queue or object store).
A producer and consumer are decoupled in time if they need not
be active at the same time. Decoupling in synchronization means
that data production or consumption does not occur in the primary
control flow, so that, for example, processes need not block on
communication or can be notified asynchronously of events.

Prior work distinguishes direct communication channels from
mediated channels where “the communication between participants
is done over storage or other indirect means” [20]. Direct channels
typically provide for rapid communication but prevent space and
time decoupling among actors. Mediated channels necessarily pro-
vide space decoupling and can also provide time decoupling if the
mediator (e.g., storage) persists for the entirety of the period over
which any producers or consumers exist.

Data fabrics: Tuple spaces, such as in Linda [2], were early
shared data fabrics. In the tuple-space model, producers post data as
tuples in a shared distributed memory space, fromwhich consumers
can retrieve data that match a specified pattern. Tuple spaces have
since been implemented in many languages including Python [10].
DataSpaces [24] provides a tuple-space-like interface to a virtual
shared object space designed to support large-scale workflows com-
posed of coupled applications. The shared space is implemented
with the high-speed remote procedure call (RPC) and transfer pro-
vided by the Margo and Mercury RPC libraries [50, 54, 57]. WA-
DataSpaces [4] extends the DataSpaces model to support data stag-
ing and predictive prefetching to improve data access times. The
InterPlanetary File System (IPFS) is a decentralized, peer-to-peer
file sharing network that provides content-addressing via a flat
global namespace [11].

Network policies: Network access is a core problem in feder-
ated computing because policies vary between networks. Network
address translation (NAT) and firewalls often prohibit outside access
to local devices, thus preventing direct communication between
hosts. These problems are particularly prevalent in scientific com-
puting where experimental instruments are often in different loca-
tions from the data storage and analysis computers. At some sites,
Science DMZs [21] permit bypassing firewalls under programmatic
control [15]. Cross-site data transfer can be performed via cloud ser-
vices (e.g., in Globus Compute [17]), but this adds latency and can
be cost-prohibitive for data-intensive applications. SciStream [19]
addresses these issues by using gateway nodes (e.g., data trans-
fer nodes in a Science demilitarized zone (DMZ)) to facilitate fast
memory-to-memory data transfers between remote hosts.

NAT traversal: A general solution for communication between
two hosts behind separate NATs is via User Datagram Protocol
(UDP) hole punching. In this model, a UDP connection is estab-
lished between hosts by using a third-party, publicly accessible re-
lay server that facilitates the connection [27]. For example, Globus
Transfer uses such a mechanism for transfers between two Globus
Connect Personal endpoints [16]. The FaaS Messaging Interface
(FMI), modeled after the Message Passing Interface (MPI) [43], pro-
vides point-to-point and collective communication for serverless
functions [20]. It supports both mediated channels, which use exter-
nal storage accessible by all functions, and direct channels, which
use Transmission Control Protocol (TCP) connections that, how-
ever, may not be accessible by all function invocations. When direct
TCP communication is not possible, FMI uses a relay server and
hole punching to establish a direct connection between function
invocations. Libp2p defines a modular specification for developing
peer-to-peer applications with support for NAT traversal [38, 53].
Implementations of the protocol are provided or planned for many
popular languages.

Workflows: Scientific workflow systems (e.g., FireWorks [33],
Parsl [9], Pegasus [23], Radical Pilot [7], Swift [62]), often include
both intra- and inter-site data transfer functionality as a core fea-
ture, for movement both of input and output data between clients
and execution environments and of intermediate data between
tasks [5, 22]. Parsl, Pegasus, and Swift all enable transparent intra-
site communication via shared file systems, and provide some sup-
port for inter-site communication via files. For example, Parsl sup-
ports movement of Python objects via ZeroMQ [32] sockets in a
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hub-spoke architecture between the main Parsl process and work-
ers; uni-directional file staging via Hypertext Transfer Protocol
(HTTP) and File Transfer Protocol (FTP) (developers must specify
URLs for downloading or uploading artifacts); and Globus-based
data movement between sites based on user-supplied configuration
information specifying the Globus endpoint for each site, in which
case, Parsl inserts data transfer operations in the workflow graph
and executes movement before/after task execution.

Function-as-a-Service: Cloud-hosted serverless frameworks
(e.g., AmazonWeb Services (AWS) Lambda [8], Azure Functions [44],
Google Cloud Functions [30]) serialize input and output data along
with a function request or result. Functions can also read and write
from cloud object stores (e.g., AWS S3 [13]) and pass object IDs as
function inputs or outputs. Globus Compute [17], formerly funcX,
is a cloud-managed serverless framework that supports remote
execution across federated endpoints such as cloud machines, HPC
clusters, edge nodes, and workstations. The Globus Compute cloud
service routes each client task to a specified target endpoint and
stores results until retrieved by the client. The cloud service is
essential to providing the compute-anywhere features of Globus
Compute but requires that all inputs and results be sent to, and
stored in, the cloud (Redis servers hosted in AWS and S3), even if
the Globus Compute client and endpoints are located in the same
site, which introduces additional latency and costs. Globus Com-
pute enforces a 5 MB task payload size limit to manage storage and
egress costs.

3 DESIGN AND IMPLEMENTATION
Here we describe the goals and design of the framework, and detail
the implementation choices necessary to enable the proxy model.
ProxyStore provides four primary components: the Proxy, Factory,
Connector, and Store. The ProxyStore design enables more fea-
tures and greater flexibility compared to the de facto approaches
for mediated communication in federated applications.

3.1 Assumptions
We make the following assumptions about usage model and tar-
get applications. (1) The application requires some combination of
space, time, and synchronization decoupling (i.e., ProxyStore is not
intended for highly synchronous applications). (2) The application
can be described as a composition of dependent tasks that consume
and produce Python objects. We target Python for its pervasiveness
in the scientific and workflow systems communities and for the lan-
guage features that make the proxy model possible. (3) Intermediate
objects are written only once but may be read many times. Most
task-based workflows fit this paradigm, especially those with pure
functional tasks. (4) Objects need not be moved to a centralized
store, but can stay where they are produced or be moved to where
they are to be consumed. (5) Users may have their own object stor-
age and communication backends that meet their performance and
persistence requirements. Federated applications that employ FaaS
and workflow systems fit these assumptions well.

3.2 Requirements
ProxyStore must support applications with any of the following
attributes: (1) data can be produced in many places and must be

globally accessible (including across NATs); (2) computation can be
performed in many places, and regardless of location must be able
to consume previously produced data and produce new objects that
can then be accessed by others; (3) objects may be persistent (must
be available for future unknown purposes) or ephemeral (e.g., an
intermediate value that is produced by one function and consumed
by another, and then never accessed again) and, thus, must exist
as long as their associated proxies exist; (4) storage locations have
varying reliability (e.g., persistent disk vs. in-memory) and perfor-
mance; (5) multiple storage or communication methods may need
to be employed within a single workload; and (6) data consumers
need not know the communication method required to access data.

3.3 The Proxy and Factory
We meet these design requirements via the use of lazy, transparent
object proxies that act as wide-area object references. The term
proxy in computer programming refers to an object that acts as
the interface for another object. Proxies are commonly used to add
additional functionality to their target object or enforce assertions
prior to forwarding operations to the target. For example, a proxy
can wrap sensitive objects with access control or provide caching
for expensive operations.

Two valuable properties that a proxy can provide are trans-
parency and lazy resolution. A transparent proxy behaves identi-
cally to its target object by forwarding all operations on itself to
the target. For example, given a proxy p of an object x, the types of
p and x will be equivalent: i.e., isinstance(p, type(x)) and any
operation on p will invoke the corresponding operation on x.

A lazy or virtual proxy provides just-in-time resolution of its
target object. The proxy is initialized with a factory rather than the
target object. A factory is an object that is callable like a function
and returns the target object. The proxy is lazy in that it does not call
the factory to retrieve the target until it is first accessed—a process
that is referred to as resolving the proxy. Functionally, proxies have
both pass-by-reference and pass-by-value attributes. The eventual
user of the proxied data gets a copy, but unnecessary copies are
avoided when the proxy is passed among multiple functions.

This factory-proxy paradigm provides powerful capabilities. The
proxy itself is a lightweight reference to the target that can be com-
municated cheaply between processes and systems. The proxy is
self-contained because the proxy always contains its factory and
the factory includes all logic for data retrieval and manipulation.
That is, the proxy does not need any external information to func-
tion correctly. Proxies eliminate the need for shims or wrapper
functions that convert objects into forms expected by downstream
code. Rather, the proxy can be passed to any existing method or
function and the conversion is handled internally by the factory.
The consumer code is unaware that the resulting object is anything
other than what it expected. Proxies also have other advantages.
For example: lazy resolution can help amortize costs and avoids
unnecessary computation/communication for objects that are never
used; nested proxies can enable partial resolution of large objects;
and proxies can be moved in place of confidential data (e.g., patient
health information) while ensuring that the data can be resolved
only where permitted.
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Figure 2: Processes interact with a Store to proxy objects, and
proxy consuming processes will transparently interact with
the local Store instance. The underlying communication is
executed using the Connector interface.

ProxyStore implements lazy transparent object proxies. The
Proxy class implementation is initialized with a factory and in-
tercepts any access to a proxy instance attribute or method; calls
the factory to resolve and cache the target object, if the target has
not yet been resolved; and forwards the intercepted action to the
cached target. The factory used to initialize a proxy can be any
callable Python object (i.e., any object that implements __call__,
such as lambdas, functions, and callable class instances). Proxymod-
ifies its own pickling behavior to include only the factory, not the
target, when serializing the proxy, so as to ensure that (1) proxies
are small when communicated and (2) a proxy can still be resolved
after being communicated to another process.

When a proxy is used, its factory must be able to resolve its
target object efficiently. In a distributed application, this means
a factory must be resolvable when the producer and consumer
processes exist independently in space or time. Facilitating this
property when processes can exist in the same network or across
multiple requires careful consideration for the underlying mediated
communication channels used. We discuss how we achieve this
goal with the Connector in the following section.

3.4 The Connector
The Connector is a low level interface to a mediated communi-
cation channel. In order to support a wide range of application
requirements, we have designed ProxyStore to be extensible to
support various mediated channels that can support different space
and time decoupling patterns. The Connector protocol defines how
a client can connect to or operate on a mediated channel, and a
Connector implementation must provide four primary operations:
evict, exist, get, and put. The operations act on byte-string data
and keys. E.g., put takes a byte-string to put in the mediated chan-
nel and returns a uniquely identifying key (a tuple of metadata); the
byte-string is retrievable by calling get on the key. We chose this
model so that third-party code can easily provide new Connectors
that are plug-and-play with the rest of ProxyStore’s features. A
Connector implementation can be either an interface to an exter-
nal mediated channel (e.g., a Redis server) or a mediated channel
itself. ProxyStore provides many Connector implementations that
fit both of these categories which we describe further in Section 4.

1 from proxystore.connectors.redis import RedisConnector
2 from proxystore.proxy import Proxy
3 from proxystore.store import Store
4

5 def my_function(x: MyDataType) -> ...:
6 # x is resolved from "my-store" on first use
7 assert isinstance(x, MyDataType)
8 # More computation ...
9

10 store = Store('my-store', RedisConnector (...))
11

12 # Store the object and get a proxy
13 my_object = MyDataType (...)
14 p = store.proxy(my_object)
15 assert isinstance(p, Proxy)
16

17 my_function(p) # Succeeds

Listing 1: Example of ProxyStore usage.

3.5 The Store
The Store is the high-level interface used by applications to inter-
act with ProxyStore as shown in Figure 2. A Store is initialized
with a Connector instance (a dependency injection pattern) and
provides additional functionality on top of the Connector. Simi-
lar to the Connector, the Store exposes evict, exist, get, and
put operations; however, these operations act on Python objects
rather than byte strings. The Store (de)serializes objects before
invoking the corresponding operation on the Connector; custom
(de)serialize functions can be registered with the Store if needed.
The Store also provides caching of operations to reduce communi-
cation costs, with caching performed after deserialization to avoid
duplicate deserializations.

However, rather than the application invoking the aforemen-
tioned operations directly, the proxy method, also provided by the
Store, is used. Calling Store.proxy puts an object in the mediated
channel via the Connector instance and returns a proxy (Listing 1).
The object is serialized before being put in the mediated channel; a
factory is generated, containing the key returned by the Connector
and additional information necessary to retrieve the object from
the mediated channel; and then a new proxy, internalized with the
factory, is returned.

An evict flag can be passed when creating a proxy. If set, the
proxy will evict the object from the mediated channel when first
resolved. Subsequently, the proxy operation, alone, is a complete
interface to an object store because the proxy method handles the
put operation and the proxy resolution process handles get/evict.

The Proxy and Factory instances created by a Store provide
functionality for asynchronously resolving the target object in
a background thread using the resolve_async function. This is
useful in code which expects a proxy and wants to overlap the
communication of the proxy resolution with other computations.

Store instances are registered globally within a process by name
so that initialization is performed only once, caches are shared, and
stateful connection objects in the Connector are reused. Consider
a Connector instance 𝐶 and corresponding Store 𝑆 . 𝑆 has been
registered in process 𝑃𝑎 with name “my-store” and is used to create
a proxy 𝑝 . If 𝑝 is resolved on a remote process 𝑃𝑏 where a Store
with name “my-store” has not yet been registered, 𝑝 will initialize
and register a new Store instance named “my-store” with the ap-
propriate Connector when 𝑝 is resolved. This is possible because
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Table 1: Summary of provided Connector implementations.

Connector Storage Intra-Site Inter-Site Persistence

File Disk ✓ ✓
Redis Hybrid ✓ ✓
Margo Memory ✓
UCX Memory ✓
ZMQ Memory ✓
Globus Disk ✓ ✓
Endpoint Hybrid ✓ ✓ ✓

𝑝’s factory, created in process 𝑃𝑎 , includes the appropriate metadata
necessary to recreate 𝐶 and 𝑆 in process 𝑃𝑏 . Subsequent proxies
created by any Store with the same name and resolved in 𝑃𝑏 will
then use the registered Store rather than initializing a new one.

4 SUPPORTED CONNECTORS
All Connector implementations are built on mediated, byte-level
data storage. Data storage methods are broadly classified as in-
memory or on-disk. Mediated channels use one or both methods,
depending on performance and persistence aims. The proxy abstrac-
tion provided by the Store enables a producer to unilaterally (i.e.,
without the agreement of the receiver) choose the best mediated
channel for object communication.

Data storage may be local to the process or machine, within the
same network, or at a remote site. Here, we describe the various
Connector implementations provided out-of-the-box that can be
used with the Store that support in-memory and on-disk data
storage within and between sites (summarized in Table 1). We also
describe an implementation provided MultiConnector abstraction
which enables intelligent routing of objects across connectors.

4.1 Intra-Site Communication
Various technologies, such as shared file systems, TCP/UDP sock-
ets, and remote distributed memory access (RDMA), enable data
transfers between nodes on the same local area network: i.e., not
located behind different NATs.

4.1.1 On-disk Storage. For large objects or data that needs to be
persisted, ProxyStore provides the FileConnector for mediated
communication via a shared file system. The FileConnector is
initialized with a path to a data directory in which proxied objects
can be serialized and written (and then read) as files.

4.1.2 Hybrid Storage. The RedisConnector uses an existing Re-
dis [49] or KeyDB [56] server as the mediator. Redis provides a
hybrid between in-memory and on-disk data storage with low-
latency, easy configuration, persistence, and optional resilience via
replication across nodes. The RedisConnector implementation is
only 31 lines of Python code, exemplifying the ease with which the
proxy model can be extended to other mediated communication
methods via the Connector protocol.

4.1.3 Distributed In-memory Storage. Distributed memory back-
ends for intra-site communication permit applications to benefit
from increased memory capacity and scalability. Two implementa-
tions are provided, MargoConnector and UCXConnector, to lever-
age rapid communication on high-speed networks by using the
Py-Mochi-Margo [48] and UCX-Py [58] libraries, respectively. A
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Figure 3: Data flow when transferring objects via proxies and
PS-endpoints between sites. The proxy gives the appearance
that data flows through the entire application, but the actual
data transfer is performed via a peer connection between the
PS-endpoints at the producing and consuming sites.

third implementation, ZMQConnector, uses ZeroMQ for communi-
cation and is provided as a fallback for compatibility. When one
of these connectors is initialized for the first time in a process, it
spawns a process that acts as the storage server for that node. Thus,
these connectors act as interfaces to these spawned servers which
make up the actual distributed in-memory store. These distributed
storage methods are elastic—expanding as proxies are propagated
to new nodes—and enable the use of state-of-the-art direct commu-
nication methods in a mediated fashion.

4.2 Inter-Site Communication
ProxyStore enables data transfer between computers at different
sites (and also between computers at the same site that are located
behind different NATs) by using disk-to-disk solutions for bulk data
and memory-to-memory solutions for low latency.

4.2.1 On-disk Storage. Bulk file transfers between sites are ubiq-
uitous in scientific applications. To support such transfers, the
FileConnector is extended as the GlobusConnector to use Globus
to move object files between sites. Globus transfer supports effi-
cient, secure, and reliable file movement and is widely adopted
across computing centers with more than 20 000 active endpoints.
Globus Connect software is easily deployed on computers without
an existing endpoint.

The GlobusConnector is initialized with a mapping of host-
name regular expressions to a tuple of (Globus Endpoint UUID,
Endpoint path). A proxy, while resolving itself, will match the
hostname of the current system to the provided hostname regu-
lar expressions to determine the directory on the local endpoint
with the transferred files. GlobusConnector keys are the tuple
(object_id, task_id) where the task_id is the Globus transfer
task ID. A proxy will wait for the transfer task to succeed before
resolving itself or raise an error if there is a Globus transfer failure.

For efficient movement of many objects, the Store provides a
proxy_batch method that will invoke a batch transfer of proxied
objects as a single Globus transfer.

4.2.2 In-memory Storage. A common pattern in inter-site applica-
tions is the use of a centralized orchestrator that can communicate
with all sites and mediates the control flow between actors across
the sites. A simple example is a cloud-hosted queue of tasks, which
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Figure 4: Client requests directed to any PS-endpoint are forwarded to the correct PS-endpoint via a peer connection. The peer
connections are opened by using UDP hole-punching and a publicly accessible relay server. When PS-endpoint A wants to
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session description from R and replies with B’s session description (3 and 4). A and B then generate interactive connectivity
establishment (ICE) candidates [35] (i.e., public IPs and ports to try for the connection) which they exchange via R. Once A and
B have exchanged ICE candidates, they can connect by completing the hole punching process (5).

actors at each site poll to obtain tasks to execute or to place new
tasks on the queue. In this model, data producers may not always
know where data are eventually needed, but it can also be pro-
hibitively expensive (monetary or overhead) to store data in the
cloud or in some other central service. The proxy model allows
applications to pass data by reference across sites and perform
the underlying communication more directly, avoiding additional
overheads of unnecessary data movements. ProxyStore includes a
ProxyStore endpoint (PS-endpoints) model that facilitates direct
data transfer between sites as shown in Figure 3.

PS-endpoints are in-memory object stores, with optional on-disk
storage if host memory is insufficient or data persistence is re-
quired. PS-endpoints are managed with the proxystore-endpoint
command-line interface. Clients use the EndpointConnector to in-
teract with PS-endpoints, and object keys are the tuple (object_id,
endpoint_id). If a PS-endpoint receives an operation request on a
key with an endpoint_id that is not its own, the PS-endpoint es-
tablishes a peer connection to the target PS-endpoint and forwards
the request.

Peer-to-peer communication between PS-endpoints is achieved
via the Web Real-Time Communication (WebRTC) standard [12,
61]—specifically, by using the RTCPeerConnection and RTCDat-
aChannel components of the aiortc open-source WebRTC imple-
mentation [3]. The RTCPeerConnection handles the establishment
of peer connections across firewalls using NAT traversal and hole
punching, as described in Section 2; security; and connection man-
agement. The RTCDataChannels are associated with an RTCPeer-
Connection and enable bidirectional transfer between peers; data
are transported over the channel via SCTP (Stream Control Trans-
mission Protocol) over DTLS (Datagram Transport Layer Security).

PS-endpoints use a publicly accessible relay server or signaling
server to facilitate the creation of RTCPeerConnections. The process
of establishing the connection via the relay server is illustrated
in Figure 4. Once a peer connection is established, the PS-endpoints
maintain the connection until one of the PS-endpoints is stopped;
the connection is re-established if lost for any reason, e.g., due to a
PS-endpoint going offline temporarily. The hosting requirements for
the relay server are minimal because establishing a peer connection
only requires the relay server to exchange a few small (𝑂(KB))
messages between the peers. We provide a WebSocket-based [26]
relay server implementation that can be self hosted.

PS-endpoints are single-threaded, asyncio applications. When
started, they connect and register with the relay server, and the
relay server assigns a unique UUID if not already assigned. An asyn-
cio task is created which listens on the WebSocket connection with
the relay server for incoming peering requests and responds ap-
propriately. Once a peer connection is established, the PS-endpoint
also listens for and responds to incoming requests from its peers.

4.3 The MultiConnector Abstraction
Sophisticated applications that employ multiple data communica-
tion patterns can benefit from using multiple types of mediated
communication (i.e., Connector implementations). Rather than cre-
ating multiple Store instances and a policy directing when to use
each instance, ProxyStore provides the MultiConnector abstrac-
tion, which is initialized with a mapping of Connector instances
to policies, to indicate how each Connector should be used. Thus,
an application can use a single Store instance, and operations
will be routed transparently and automatically to the appropriate
Connector. Policy definitions are flexible and can be extended by
developers. An example policy may include minimum and maxi-
mum object sizes, representing the ideal operating range for that
Connector; tags denoting the sites at which the Connector is ac-
cessible (e.g., a MargoConnector is available within a single cluster,
while an EndpointConnector is available at multiple sites); and a
prioritization function for breaking ties when multiple Connector
instances are otherwise suitable for a given object.

Store operations accept additional keyword arguments that are
passed to the corresponding Connectormethod. The put and proxy
methods of MultiConnector take a set of optional constraints on
the data being stored. These constraints, as well as other metadata
(object type or size, location, etc.), are matched against each policy
of each Connector managed by the MultiConnector. If no match
is found then an error is raised, although deployments may often
prefer to provide a low priority fallback with no constraints.

5 EVALUATION
We evaluate the component-level performance of ProxyStore, quan-
tify overhead reductions in compute frameworks when using Prox-
yStore, and demonstrate the use of ProxyStore in three real-world
scientific applications. For brevity, we use the term XStore to mean
we are using a ProxyStore Store initialized with an XConnector
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1 from globus_compute_sdk import Executor
2 from proxystore.connectors.redis import RedisConnector
3 from proxystore.store import Store
4

5 def my_function(x: MyDataType): ...
6

7 store = Store("store -name", RedisConnector (...))
8 data = store.proxy (...)
9

10 with Executor (...) as gce:
11 fut = gce.submit(my_function , data , ...)
12 fut.result ()

Listing 2: Example ProxyStore usage with Globus Compute.

for communication. E.g., RedisStore is a Store initialized with a
RedisConnector.

We performed experiments using six machines: Theta, Polaris,
Perlmutter, Frontera, Midway2, and Chameleon Cloud. Theta and
Polaris are at Argonne National Laboratory. Theta is a 4392-node
Intel Knights Landing (KNL) cluster. The 560-node Polaris has four
NVIDIA A100 GPUs per node. NERSC’s Perlmutter cluster has
1536 NVIDIA A100 GPU nodes and 3072 AMD EPYC CPU nodes.
We use the login nodes of Midway2 at the University of Chicago
and the Texas Advanced Computing Center’s (TACC) Frontera
cluster as clients to distributed applications running on the afore-
mentioned systems. Chameleon Cloud [34] provides bare-metal
compute nodes.

5.1 ProxyStore with FaaS
We first evaluate ProxyStore with the federated FaaS platform
Globus Compute [17], with the goal of quantifying the performance
gains that may be achieved with minimal code changes to the pro-
ducer and no changes to the compute framework.

To quantify the extent to which passing task inputs with prox-
ies can reduce data transfer overheads, we perform experiments
with Globus Compute where we execute no-op and 1 s sleep tasks
with payload sizes from 10 bytes to 100 MB (Figure 5). We use four
different configurations of Globus Compute clients and endpoints.
(1) Theta → Theta: Client and tasks all run on the same Theta
node. (2) Perlmutter Login → Perlmutter Compute: Client runs on
a Perlmutter login node and tasks on a Perlmutter compute node.
(3) Midway2→ Theta: Client runs on a Midway2 login node and
tasks on a Theta compute node. (4) Frontera → Theta: Client runs
on a Frontera login node and tasks on a Theta compute node. In the
first two scenarios, the client and task execute in the same site and
thus we compare the round-trip time when data are moved via the
Globus Compute cloud service to data movement via ProxyStore’s
FileStore, RedisStore, and EndpointStore. In the latter two sce-
narios, the client and task execute in different sites, so we compare
the baseline to ProxyStore’s EndpointStore and GlobusStore. We
also compare with a configuration in which data are moved to the
Globus Compute endpoint by using the InterPlanetary File System
(IPFS) [11]. IPFS is a peer-to-peer distributed file system, so we treat
the Globus Compute client and Globus Compute endpoint as two
nodes of the distributed file system. In no-op tasks, we ensure that
the proxy is resolved even though no computation is performed,
and in the sleep tasks, we begin asynchronously resolving the proxy
before sleeping and then wait on the asynchronous resolve after
the sleep to simulate overlapping proxy resolution with compute.

The baseline round-trip time, where data are transferred along
with the task request to the Globus Compute cloud service, increases
with data size up to the Globus Compute limit. In the first two
scenarios where the client and task execution occur at the same
site, all three ProxyStore options eliminate the Globus Compute
data transfer overhead. This was achieved with only two client-side
lines of code: one to initialize the Store and one to proxy task
inputs before submitting to Globus Compute (Listing 2 lines 7–8).
The asynchronous resolve in the sleep task requires one additional
line of code in the task itself, but the overlap of communication and
compute can yield benefits.

In the inter-site cases where the clients run on Midway2 or Fron-
tera login nodes and execute tasks on Theta, we use the Globus-
Store and EndpointStore. GlobusStore performance is not com-
petitive with the Globus Compute baseline up to Globus Compute’s
payload limit. The performance is a consequence of Globus trans-
fer’s hybrid software-as-a-service model, which results in high
bandwidth for larger transfers but not low latency for small trans-
fers. However, the benefits of Globus transfer become substan-
tial as data sizes grow beyond those used in this experiment. The
EndpointStore outperforms the baseline, except for no-op tasks
between Frontera and Theta where the performance is comparable.
For the largest (100 MB) payloads, EndpointStore performance is
less than the theoretical peak of the connection. We investigate this
discrepancy further in Section 5.3.2.

We also compare to IPFS for inter-site data transfer. Task data
are written to disk, the file is added to IPFS, and the content ID of
the IPFS file is passed as input to the Globus Compute task. When
the Globus Compute task is invoked, IPFS is used to retrieve the
file, and the data are read back into memory. Whereas ProxyStore
required two extra client side lines of code, IPFS support required 13
extra lines of code on both the client and task. The performance of
PS-endpoints and IPFS for no-op tasks between Midway2 and Theta
are within run-to-run variances of each other. PS-endpoints are
faster with the one second sleep tasks because of the asynchronous
resolution of proxies. PS-endpoints outperform IPFS for Frontera
to Theta transfers due to Frontera having a slower file system and
slower transfers between the IPFS peers compared to the Midway2
→ Theta scenario. IPFS and PS-endpoints address a different set of
problems—IPFS is designed for decentralized and persistent sharing
of content-addressable files; however, IPFS has a mature peer-to-
peer transfer protocol which we can use as a point of comparison
to show that PS-endpoints can outperform IPFS.

We repeat these experiments with the distributed in-memory
connectors described in Section 4.1.3 and compare performance
to DataSpaces, a shared-space abstraction designed for large-scale
scientific applications. The experiments were executed on Polaris,
which has a high-performance HPE Slingshot 11 network, and on
two Chameleon Cloud nodes with a Mellanox Connect-X3 40GbE
InfiniBand interconnect. Figure 6 shows that the baseline cloud
transfer and ProxyStore alternatives all exhibit similar performance
at data sizes <1 GB, after which bandwidth dominates performance.

MargoStore and UCXStore, which both leverage RDMA, achieve
the best overall performance on Polaris. However, UCXStore per-
forms measurably worse than MargoStore and RedisStore for
larger data sizes on Chameleon. We suspect the disparity is a result

7



J. G. Pauloski, V. Hayot-Sasson, L. Ward, N. Hudson, C. Sabino, M. Baughman, K. Chard, and I. Foster

100

101

No
-O

p 
Ta

sk
Ti

m
e 

(s
)

Theta  Theta Perl. Login  Perl. Compute Midway2  Theta Frontera  Theta

101 102 103 104 105 106 107 108

Input Size (bytes)

100

101

Sl
ee

p 
Ta

sk
Ti

m
e 

(s
)

Globus Compute Limit Cloud Transfer IPFS FileStore RedisStore EndpointStore GlobusStore

101 102 103 104 105 106 107 108

Input Size (bytes)
101 102 103 104 105 106 107 108

Input Size (bytes)
101 102 103 104 105 106 107 108

Input Size (bytes)

Figure 5: Average performance for round-trip Globus Compute no-op (top) and 1 s sleep tasks (bottom), for intra-site (two
left columns) and inter-site (two right columns) configurations. In intra-site configurations, we compare baseline input data
transfer via cloud to ProxyStore’s FileStore, RedisStore, and EndpointStore. For inter-site, we compare to IPFS and ProxyStore’s
EndpointStore and GlobusStore. Dashed lines denote the 5 MB Globus Compute payload size limit for transfer via the cloud;
ProxyStore can handle >5 MB task payloads without modifying task code to communicate via alternate means. Error bars
denote standard deviation.

100101102103104105106107108109

Input Size (bytes)

100

101

No
-O

p 
Ta

sk
 T

im
e 

(s
)

Polaris Login  Polaris Compute

100101102103104105106107108109

Input Size (bytes)

Chameleon Node  Chameleon Node

Cloud Transfer
DataSpaces
Globus Compute Limit

MargoStore
RedisStore

UCXStore
ZMQStore

Figure 6: Average round-trip performance of no-op Globus
Compute tasks on Polaris and Chameleon Cloud for the
baseline cloud transfer via the Globus Compute service,
ProxyStore centralized stores (RedisStore), ProxyStore dis-
tributed in-memory stores (MargoStore, UCXStore, ZMQStore)
and DataSpaces. Error bars denote standard deviation.

of the network differences between the two systems. While we ex-
pect DataSpaces and MargoStore to perform similarly because both
use Margo for the transport layer, MargoStore outperforms DataS-
paces on both systems. We observed prominent startup overheads,
particularly for smaller transfers, with DataSpaces on Chameleon.

We focus on FaaS for HPC and choose FuncX because it is de-
signed to coordinate computation across federated resources (e.g.,
cloud, HPC, and edge devices). However, ProxyStore is agnostic to
the compute framework and will work with other FaaS systems. We
expect comparable performance characteristics since Globus Com-
pute’s data storage and communication mechanisms are similar to
cloud-specific FaaS systems.

5.2 ProxyStore with Workflow Systems
Colmena is a Python library for steering large ensembles of simu-
lations [60]. Colmena applications contain three components: (1)
a “Thinker,” one or more agents that create tasks and consume
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Figure 7: Percent improvements in task round-trip timewhen
using ProxyStore to move data vs. Colmena’s default method
with Parsl. Each task configuration is repeated 100 times, and
the median time is used to compute the improvement.

results; (2) a “Task Server,” which coordinates tasks to be executed
by using a workflow engine (here, Parsl); and (3) workers which
execute the tasks and return results to the Task Server. We integrate
ProxyStore into Colmena at the library level. Users can register a
Store and associated threshold for each task type. Task inputs or
results greater than the threshold will be proxied before the task is
sent to the Task Server. Passing proxies with the task can alleviate
overheads in the Task Server and underlying workflow system.

We investigate overhead improvements in Figure 7, where we
report the percent improvement over the baseline of median round-
trip task times. We execute a series of no-op tasks using Colmena
and Parsl with varied input and output sizes. The Thinker, Task
Server, and worker are co-located on a single Theta node to isolate
effects of the network. Neither ProxyStore’s caching capabilities
nor asynchronous resolving of proxies are used. For small data sizes
(<100 KB), any improvements in overhead in Colmena are largely
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negated by the additional overhead of proxying the data (i.e., I/O
with storage). However, ProxyStore yields 40–60% improvements
in overhead for 1 MB data sizes and 88–89% for 100 MB data sizes.
This exemplifies why passing by proxy can be invaluable in dis-
tributed systems with many interconnected components. Proxies
can be passed around cheaply while ensuring that data are only
communicated between producer and consumer.

5.3 ProxyStore Endpoint Performance
To better understand the characteristics of PS-endpoints, we next
study the times taken for client-to-PS-endpoint requests and PS-
endpoint-to-PS-endpoint requests.

5.3.1 Client Access. In Figure 8, we show average per-request
times for get and set operations versus the number of concurrent
clients making the same request and for varied payload sizes. Each
client makes 1000 requests, and the experiment was performed with
Python 3.11 on a Perlmutter CPU node. Response times scale lin-
early with number of clients for more than two concurrent clients,
and also scales with payload size. This is reasonable given that the
proof-of-concept PS-endpoint implementation is single-threaded.
Handlingmany concurrentworkerswith low latency is better suited
for another mediated communication channel such as Redis.

5.3.2 Endpoint Peering. The primary use case for PS-endpoints is
transfers between different sites. Thus, we measure request times
between PS-endpoints as a function of payload size (see Figure 9).
We consider three scenarios: requests between two PS-endpoints on
different Theta nodes, which serves as a baseline; requests between
PS-endpoints on Midway2 and Theta; and requests between PS-
endpoints on Frontera and Theta. These scenarios differ in latency—
packets need only travel tens of meters in the first scenario but
1500 kilometers in the third—and bandwidth—the first scenario can
utilize the high bandwidth Aries Dragonfly network of Theta while
the latter must cross multiple network boundaries. While no system
provides equivalent features to PS-endpoints, we compare its per-
formance to that of a Redis server hosted on the target site with a
(manually created) secure shell (SSH) tunnel between the two sites.
While in practice SSH tunnels can be fragile and difficult to config-
ure (e.g., to authenticate automatically), they are commonly used
by workflow systems [9, 62] and the comparison can help highlight
strengths and weaknesses of the PS-endpoint implementation.
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Figure 9: Average get and set times, over 1000 requests, be-
tween two PS-endpoints, with error bars showing the stan-
dard deviation. Comparisons are made to hosting a Redis
server on the target site and opening an SSH tunnel when
the two sites are different. The PS-endpoint configuration
has one more hop (client—local endpoint—remote endpoint)
than Redis (client—remote Redis).

We observe that Redis with SSH is generally faster than PS-
endpoints, a result for which we identify two primary reasons.
First, the PS-endpoint configuration has one more hop than the
Redis configuration because two endpoints must be used in con-
trast to a single Redis server and SSH tunnel. This factor is most
prevalent in the Theta-to-Theta scenario where network latency is
minimal so the overhead of the extra hop dominates. Second, we
discovered that the aiortc RTCDataChannel cannot fully utilize
the available bandwidth between sites. This is why the difference
in performance between PS-endpoints and Redis increases at larger
data sizes. A simple test where we established an RTCDataChan-
nel between a process on Frontera and another on Theta achieved
a maximum bandwidth of 80 Mbps, a fraction of the full band-
width available. This is because computing centers throttle UDP
connections to avoid congestion, and aiortc congestion control
is slower than other congestion control algorithms like Google’s
BBR [14]. We support multiplexing data transfer over multiple
RTCDataChannels; however, the single-threaded asyncio model
is unable to benefit from multiplexing over more than a couple
RTCDataChannels. Despite these networking limitations, the per-
formance of PS-endpoints is still competitive with Redis for long
distance transfers while not requiring SSH tunnels or open ports.

5.4 Application: Real Time Defect Analysis
A common pattern in scientific applications is to transfer data pro-
duced by an experiment to a compute facility for analysis. For
example, Argonne National Laboratory’s transmission electron mi-
croscopy facility uses Globus Compute to invoke a machine-learned
segmentation model to quantify radiation damage in acquired im-
ages, dispatching this computation to an HPC facility for fast GPU
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Table 2: Round-trip task times for the real-time defect anal-
ysis application. The Globus Compute endpoint is hosted
on a Polaris login node and the tasks are executed on a Po-
laris compute node. In the Globus Compute baseline and
FileStore configurations, the client (simulating an experi-
mental setup) is hosted on Theta, and the client is hosted on
Midway2 in the EndpointStore configuration. Transferring
task inputs and outputs via ProxyStore yields >30% perfor-
mance improvements in intra- and inter-site task execution.

Configuration Proxied Time (ms) Improvement

Globus Compute baseline — 3411 ± 389 —

FileStore
Inputs 2318 ± 130 32.1%

Inputs/Outputs 2160 ± 46 36.6%

EndpointStore
Inputs 2375 ± 98 30.4%

Inputs/Outputs 2280 ± 107 33.2%

inference. We modify an open-source real time defect analysis ap-
plication [51] to create and send proxies of images, rather than the
actual images. We create a test deployment to mirror the production
environment with remotely located instruments and compute.

We measure the baseline round-trip task time for inference on
1 MB images and compare to FileStore and EndpointStore (Ta-
ble 2). In all cases, we use a Globus Compute endpoint on a Polaris
login node that executes tasks on a Polaris compute node. In the
Globus Compute baseline and FileStore cases, our client (i.e.,
simulated beam facility) is hosted on a Theta login node, and in
the EndpointStore case, when the client is on Midway2, with PS-
endpoints on both Midway2 and a Polaris login node. We test with
only the input images being proxied and with both the input im-
ages and inference outputs being proxied. Note that in the former,
the code executed on the Globus Compute endpoint is unchanged,
while the latter required two additional lines of task code to proxy
the output by using the same Store that was used to resolve the
input proxy.

We see in Table 2 that ProxyStore improves round-trip task times
by 32.1% and 30.4% with FileStore and EndpointStore, respec-
tively, when only the inputs are proxied. Further improvements of
a few percentage points can be gained if the downstream code also
returns proxies. We note that ProxyStore enabled greater flexibility
in terms of how clients interact with tasks executed on the Globus
Compute endpoint. Each client can choose its preferred communica-
tion method, depending on the mediated communication channels
available from itself to the Globus Compute endpoint.

5.5 Application: Federated Learning
Federated learning (FL) [42] is an increasingly popular approach to
distributemachine learning (ML) training across, often edge [40, 55],
devices. In FL, an aggregator node initializes an ML model and
shares it with edge devices to train the model on their own private
data in small batches. Once the edge training is complete, the locally-
trained models are returned to the aggregator node to “average”
the model to create a new global model. This new global model is
then shared again with the edge devices for further training. In FL
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Figure 10: Average transfer times for the federated learning
use case. PS-endpoints greatly reduce transfer times between
nodes compared to cloud transfer. In addition, without Prox-
yStore, we are unable to transfer models larger than ∼40
hidden blocks due to cloud transfer limits.

only the model is transferred across the network; the distributed
edge devices’ data are never shared.

Here, we demonstrate the applicability and benefit of ProxyStore
not only for FL use cases but edge computing workflows in general.
Due to constrained capacity of edge devices, limited connectivity,
and application requirements, making effective use of networks and
providing low latency is often crucially important [41]. ProxyStore
allows for FL control to be separated from data movement, enabling
aggregation to occur anywhere, and for models to be transferred
directly between edge and aggregation nodes when needed.

Our application is implemented using FLoX [36], a FL frame-
work which uses Globus Compute to orchestrate training of Ten-
sorFlow [1] models. Our application trains a convolutional neural
network for image classification with the Fashion-MNIST bench-
mark dataset [63]. We increase the number of hidden layers of
the neural network to show ProxyStore’s ability to support larger
models compared to a purely FaaS-based approach. We use the
same test bed as used in [36] to deploy our application across four
edge devices. Figure 10 shows the transfer time as we increase the
number of model parameters when using Globus Compute or us-
ing Globus Compute and ProxyStore. We see that ProxyStore both
reduces transfer time and also enables use of larger models. In the
cases where Globus Compute is able to complete the model trans-
fer, ProxyStore is able to reduce transfer time by ∼68% on average.
Further, ProxyStore can be used to implement hierarchical model
aggregation, where sets of edge-trained models are aggregated in a
distributed fashion.

5.6 Application: Molecular Design
We adapt an open source molecular design workflow to use the
MultiConnector for communication between tasks. The workflow
uses a mix of quantum chemistry simulations and surrogate ma-
chine learning models [59] to identify electrolytes with high ion-
ization potentials (IP) in a candidate set.

The workflow comprises: (1) simulation tasks that compute IPs
on CPUs, (2) training tasks that train surrogate models to predict
IPs, and (3) inference tasks that use trained surrogate models to
predict IPs, which are then ranked by confidence and used to guide
future simulation tasks. The simulation tasks run on Theta com-
pute nodes, and the training and inference tasks run on a remote
GPU node (located behind a different NAT and using a different
authentication procedure than Theta). Tasks are orchestrated with a
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Figure 11: Average node utilization of the molecular de-
sign application, with and without ProxyStore. The number
of GPUs used for training and inference tasks is constant
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CPU nodes and GPUs fed with tasks. ProxyStore reduces the
amount of data flowing through the workflow system, thus
reducing the latency between task results being received and
new tasks dispatched.

Colmena Thinker running on a Theta login node and task execution
is managed with Parsl.

To optimize communication of task data, we use the Multi-
Connector configured to use RedisConnector for simulation tasks
and EndpointConnector for training and inference tasks. Redis-
Connector is suitable for low-latency communication between
Theta login and compute nodes and provides persistence when an
application spans multiple batch jobs; PS-endpoints enable peer-to-
peer transfer of model weights (10 MB in this case) to and from a
remote GPU node. Inputs to inference tasks also require peer-to-
peer data transfer to remote GPU nodes. The inference dataset is
static, so while the first round of proxies result in data being moved
to the GPU node; proxies for later inference rounds benefit from
cached data. We also investigated using GlobusConnector for data
movement. While in this case the dataset was not large enough to
benefit fromGlobus transfers, this would be a good option if a larger
dataset were used. This workflow exemplifies how ProxyStore can
coordinate optimal communication in complex workflows. We note
that no task code needed to be modified to work with the diverse
communication methods employed.

In this application, we want to use proxies to reduce overheads
in the workflow system. We evaluate their effectiveness for this
purpose by measuring average node utilization during application
execution as a function of the number of Theta KNL nodes used for
simulations. We see in Figure 11 that the workflow system struggles
to keep nodes fed with new tasks as scale increases. However, use
of ProxyStore removes data movement burdens from the workflow
system and improves scaling, improving utilization by 29% and
43% at 512 and 1024 nodes, respectively. We also observe ProxyS-
tore improves utilization of the remote GPUs by speeding up data
transfer. At 1024 nodes with ProxyStore, computation, rather than
communication, becomes the bottleneck because simulation results
must be processed serially prior to dispatching new simulations.
Processing a simulation result takes 267± 518 ms on average in the
baseline 1024 node run, but ProxyStore improves this time by 25%
to 201 ± 140 ms.

6 CONCLUSION
ProxyStore is a novel framework for facilitating wide-area data
management in distributed applications. The proxy model provides
a pass-by-reference-like interface that can work across processes,
machines, and sites, and enables data producers to change communi-
cation methods dynamically without altering application behavior.
ProxyStore provides a suite of communication channel implemen-
tations intended to meet most requirements and can be extended to
other communication methods. We demonstrated the use of Proxy-
Store with FaaS and workflow systems, synthetic benchmarks, and
real-world scientific applications. We showed that ProxyStore can
accelerate a diverse range of distributed applications and enables
comparable performance to alternative approaches while avoid-
ing the cumbersome code changes and/or manual deployment and
configurations required by alternatives.

In future work, we will investigate support for more communica-
tion methods, advanced data management policies for persistence
and replication, and wide-area reference counting for object evic-
tion. It may be useful to allow for data flow semantics on proxies,
so that readers of an object block until the object is written, as in
Id [45]. We will investigate areas for optimization such as intelligent
prefetching and faster peer-to-peer networking protocols. We plan
to explore extension of the proxy model to other languages and
other problems in distributed computing (e.g., lazy library loading).
We hope thus to encourage further research in data fabrics for fed-
erated applications and enable scientists and engineers to more
easily design sophisticated distributed applications.
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