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Abstract
Applications are increasingly written as dynamic workflows un-
derpinned by an execution framework that manages asynchronous
computations across distributed hardware. However, execution
frameworks typically offer one-size-fits-all solutions for data flow
management, which can restrict performance and scalability. Proxy-
Store, a middleware layer that optimizes data flow via an advanced
pass-by-reference paradigm, has shown to be an effective mech-
anism for addressing these limitations. Here, we investigate inte-
grating ProxyStore with Dask Distributed, one of the most popular
libraries for distributed computing in Python, with the goal of sup-
porting scalable and portable scientific workflows. Dask provides an
easy-to-use and flexible framework, but is less optimized for scaling
certain data-intensive workflows. We investigate these limitations
and detail the technical contributions necessary to develop a robust
solution for distributed applications and demonstrate improved
performance on synthetic benchmarks and real applications.

CCS Concepts
•Computingmethodologies→Distributed computingmethod-
ologies; • Computer systems organization→ Cloud comput-
ing; • Software and its engineering → Software libraries and
repositories.
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1 Introduction
Contemporary computational science applications executed at scale
are increasingly written as workflows, collections of many distinct
tasks interconnected through data dependencies. This trend has
necessitated the development of advanced computational tools
and frameworks that can glue software components together and
provide a platform for scalable and flexible execution on arbi-
trary hardware. Dynamic workflow execution frameworks, includ-
ing Dask [11], Dragon [10], Parsl [1], Ray [6], and TaskVine [13],
have emerged as powerful solutions to this challenge in the high-
performance Python community. Applications can be expressed
as fine-grained tasks, typically a function, with special constructs,
such as futures, used to implicitly express inter-task data dependen-
cies. The framework then abstracts the complexities of executing
tasks in parallel and managing intermediate data across personal,
cloud, or high-performance computing (HPC) systems.

However, this class of systems, which typically use one-size-fits-
all solutions to facilitate intermediate data movement, often fail to
meet the data flow needs of modern, dynamic, and data-intensive
applications. Workflow systems commonly rely on a shared file sys-
tem, as in Parsl and TaskVine, or peer-to-peer TCP communication,
as in Dask Distributed, due to simplicity and availability of these
approaches. Thus, workflow systems, and therefore applications,
often fail to take advantage of advanced technologies available or
suffer from functional but sub-optimal solutions.

Recent work has used the transparent object proxy paradigm to
decouple data flow complexities from control flow-optimized execu-
tion frameworks [8, 9]. In this case, proxies function as lightweight,
wide area references to objects located in arbitrary data stores. Prox-
ies can be communicated cheaply and are resolved just-in-time via
performant bulk transfer methods in a manner which is transparent
to the consumer code. ProxyStore, a Python framework that imple-
ments this paradigm, has found success in many scientific domains
and with many distributed execution frameworks [2–4, 14, 15].

Here, we investigate how to build scalable and portable scientific
workflows through the careful integration of ProxyStore with Dask
Distributed. Dask, with 12.3k stars on GitHub1 and 4.9M down-
loads per month in September 2024,2 is one of the most popular
libraries for distributed and parallel computing in Python. We first
give a brief overview of Dask Distributed, ProxyStore, and related
efforts in optimizing data flow. We then investigate limitations of
Dask’s data management model and detail the technical contribu-
tions necessary to overcome these limitations with ProxyStore. The
result is a robust and easy-to-use solution for building sophisticated
computational science workflows, which we demonstrate through
synthetic performance evaluations and real-world applications.

2 Background and Motivation
Dask [11] is a parallel computing library in Python that enables
efficient parallel computations on large datasets by breaking them
down into smaller, manageable tasks. Dask Distributed extends the
Dask and Python concurrent.futures APIs to provide a light-
weight and easy-to-use library for distributed computing. A cen-
tralized scheduler manages the dynamic execution of tasks across
local cores or multiple nodes in a cluster and is optimized for low-
latency task dispatching, spending between a 100 𝜇s and 1 ms on
each task. However, this overhead can drastically increase when the

1Dask GitHub: https://github.com/dask/dask.
2Dask Distributed PyPI downloads: https://pypistats.org/packages/distributed.

https://github.com/dask/dask
https://pypistats.org/packages/distributed
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Figure 1: Pass-by-proxy semantics reduce data flow through
the Dask scheduler without altering application behavior.

graph of a task is large, such as when task parameters are large or
complex. Large task graphs can incur significant I/O overheads in
the scheduler for serialization, communication, and deserialization
of messages.

Dask provides mechanisms to optimize data transfer: (1) array-
like data can be scattered and gathered directly across workers; (2)
native interfaces optimize common data operations 3 (e.g., through
Dask Arrays, Bags, DataFrames, and Delayed); and (3) objects al-
ready located on workers, such as the results of tasks, will be com-
municated directly between workers rather than through the sched-
uler. The goal of these solutions is to prefer passing task data by
reference rather than embedding data directly in the graph; how-
ever, these solutions do not cover all data types or application
structures. For example, frequently moving large objects between
the client and workers is considered an anti-pattern; Dask prefers
that data remain on the worker cluster. Yet, this is a common pat-
tern in scientific applications (e.g., active learning [14, 15]) that is
not supported as well by Dask.

ProxyStore [9] is a library that facilitates efficient data flow
management in distributed Python applications. The transparent
object proxy, a reference-like object, is the core building block of
ProxyStore, and, unlike traditional references that are only valid
within the virtual address space of a single process, the proxy refers
to an object in distributed storage and can be implicitly dereferenced
in arbitrary processes, even on remote machines. The proxy is
transparent in that it dereferences its target object when used—
referred to a just-in-time resolution—and it forwards all operations
on itself to its target object. This paradigm results in the best of
both pass-by-reference and pass-by-value semantics.

A proxy is initialized with a factory, a self-contained callable ob-
ject that is invoked when the proxy is resolved to retrieve the target
object. This self-contained nature and transparency of the proxy
means a consumer is not aware of the low-level communication
mechanisms used by the proxy; rather, this is unilaterally deter-
mined by the producer of the proxy. This paradigm improves per-
formance and portability by reducing transfer overheads through
intermediaries, abstracting low-level communication methods, and
reducing code-complexity.

ProxyStore separates the high-level interface, the Store, re-
sponsible for creating proxies from the low-level interface, the

3https://docs.dask.org/en/stable/best-practices.html#load-data-with-dask

Connector, responsible for interfacing with the byte-level medi-
ated communication and storage channels. Connectors to many
storage systems (object stores, shared file-systems) and transfer pro-
tocols (Grid FTP, TCP, RDMA, and WebRTC) are provided. These
interfaces have been used to build high-level patterns for distributed
futures, object streaming, and distributed memory management [8].

Related work has investigated ways to improve the perfor-
mance of data-intensive workflows with Dask. Dask provides a
UCX communication protocol implementation as an alternative to
the TCP default to leverage advanced networking technologies such
as Inifiniband or NVLink. Later work developed an MPI-based com-
munication interface for Dask for GPU-accelerated programs [12].
TaskVine [13], a distributed workflow engine that exploits node-
local storage to optimize task placement and execution, and Ray [6],
a popular distributed computing library, provide alternative sched-
uler implementations for Dask workflows. These solutions can
yield considerable performance gains in certain applications but
also have limited deployment scenarios. ProxyStore, in contrast,
provides more fine-grained data flow customization with wider
support for communication protocols and storage mediums.

3 Integration Model
ProxyStore can alleviate data transfer overheads in Dask by prox-
ying large task objects instead of embedding them directly in the
task graph (Fig 1). Importantly, use of ProxyStore does not require
modification to task code and is not mutually exclusive with Dask
optimization options. Here, we discuss the methods for integrating
ProxyStore into Dask applications, the technical challenges over-
come to ensure compatibility and performance, and the features
added to support development of robust applications.

Methods: There are three methods, exemplified in Fig 2, to in-
tegrate ProxyStore into a Dask application: (1) manually proxy
objects using ProxyStore’s existing tooling, (2) use our custom Dask
client to automatically proxy objects; or (3) use our custom execu-
tor interface to intelligently proxy objects and manage memory.
For simple applications, the manual approach works well, but it
can require significant code changes in more sophisticated applica-
tions. The custom client provides a drop-in replacement for existing
Dask applications. The StoreExecutor, which extends Python’s
concurrent.futures interface, is the most powerful approach: it
is compatible with many other executor client types, such as those
provided by Parsl and TaskVine; custom policies can be defined to
determine what objects to automatically proxy and, when combined
with ProxyStore’s MultiConnector, what mediated storage option
to use; and it uses ProxyStore’s ownership model [8], inspired by
Rust’s ownership and borrowing semantics, to perform safe and
automatic memory management of proxies.

Compatibility:Dask performs introspection on objects included
in task graphs to enable optimizations. Each task has an associated
key, a hash of the function and arguments. The scheduler uses the
key to reuse results of previously computed pure functions (func-
tions that always return the same result given the same inputs).
Similarly, Dask inspects task object types to apply specialized seri-
alizers. These optimizations enhance performance but interacted
poorly with proxy types. For example, Dask serialization would
crash when accessing the __module__ property of a proxy, and

https://docs.dask.org/en/stable/best-practices.html#load-data-with-dask
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1 from dask.distributed import Client
2 from proxystore.ex.connectors.daos import DAOSConnector
3 from proxystore.store import Store
4

5 client = Client ()
6 connector = DAOSConnector(pool =..., container =...)
7

8 with Store('example ', connector) as store:
9 proxy = store.proxy([1, 2, 3])

10 future = client.submit(sum , proxy)
11 assert future.result () == 6

(a) A proxy can be manually created via the Store interface and
passed directly to tasks in place of the actual object.

1 from proxystore.ex.plugins.distributed import Client
2 from proxystore.ex.connectors.daos import DAOSConnector
3 from proxystore.store import Store
4

5 connector = DAOSConnector(pool =..., container =...)
6

7 with Store('example ', connector) as store:
8 client = Client(ps_store=store , ps_threshold =1000)
9 future = client.submit(sum , [1, 2, 3])

10 assert future.result () == 6

(b) The custom Dask Distributed Client will automatically proxy
task input and output objects larger than a user-defined threshold
(e.g., 1 kB).

1 import sys
2 from dask.distributed import Client
3 from proxystore.ex.connectors.daos import DAOSConnector
4 from proxystore.store import Store
5 from proxystore.store.executor import StoreExecutor
6

7 client = Client ()
8 connector = DAOSConnector(pool =..., container =...)
9

10 with StoreExecutor(
11 client ,
12 store=Store('example ', connector),
13 should_proxy=lambda x: sys.getsizeof(x) >= 1000,
14 ) as executor:
15 future = executor.submit(sum , [1, 2, 3])
16 assert future.result () == 6

(c) The StoreExecutor can combine a Store and Dask Client and
supports custom policies for what objects should be automatically
proxied (here, objects larger than 1 kB) and automatically manages
proxy lifetimes.

Figure 2: ProxyStore is easily compatible with existing ap-
plications. Here we demonstrate the three integration pat-
terns. The DAOSConnector, introduced in Sec 3, is used, but
this specific connector can be exchanged depending on the
application requirements and execution environment.

hashing or checking the type of a proxy would resolve the proxy,
incurring unexpected I/O costs. We resolved this by creating a
custom implementation of Python’s @property decorator and mod-
ified the proxy to cache common read-only attributes of a proxied
object. These include the module path, the class type, and the hash
of the target object to ensure that a proxy need not be resolved
when Dask accesses common object metadata.

Performance:We improved ProxyStore’s performance for scien-
tific workloads by overhauling the serialization system to minimize
memory copies and support custom serialization mechanisms for
specific data types. We have provided initial support for NumPy

arrays, Pandas DataFrames, and Polars DataFrames. Serialization
of these types is 2–3× faster compared to pickle, which ProxyStore
previously used.

We also extend ProxyStore to support Distributed Asynchronous
Object Storage (DAOS) as a mediated storage system. DAOS is a dis-
tributed object store designed for high-speed non-volatile memory
like Intel Optane [5] and NVMe and is available on next-generation
compute clusters like Aurora at the Argonne Leadership Computing
Facility. DAOS is typically deployed across a machine in a similar
fashion to a shared file system like Lustre. Thus, using the DAOS
within ProxyStore is easy—minimal configuration is required—and
performance is superior to shared file systems. The user need only
provide the name of their DAOS pool and container to use.

Robustness: The introduction of type hints and static type
checkers such as mypy has significantly improved code quality and
maintainability, ultimately leading to more robust software. The
proxy model, however, relies strongly on Python’s duck typing
and, thus, code that uses ProxyStore cannot be statically analyzed
and validated, leading to often cryptic errors when a proxy type
is used incorrectly at runtime. We created a mypy extension that
can statically infer usage of proxy types. For example, mypy can
understand that any attributes or methods on a type T are also avail-
able on a Proxy[T] or that a function that accepts a ProxyOr[T]
should work with a T or Proxy[T]. This tool ensures that scientific
software developers can write code that will work with and without
ProxyStore, improving code compatibility and maintainability.

4 Evaluation
We used the TaPS benchmark suite [7] to evaluate the performance
benefits of using ProxyStore within Dask applications. Experiments
were performed using the Sunspot system at the Argonne Leader-
ship Computing Facility. 4 Sunspot has 128 nodes interconnected by
an HPE Slingshot 11 network and a high-performance DAOS stor-
age system. Each node contains two Intel Xeon Max CPUs with 52
physical cores, 64 GB of high-bandwidth memory, 128 GB of DDR5
memory per CPU, and six Intel Data Center Max GPUs. We used
Python 3.11, Dask Distributed 2024.7.1, ProxyStore 0.7.1, Proxy-
Store Extensions v0.1.4, and TaPS 0.2.1. Analysis, code, and results
are available at https://github.com/proxystore/hppss24-demo.

We performed ProxyStore experiments using Redis due to DAOS
outages on Sunspot at the time of writing; a Redis server was started
on the rank 0 node of each batch job. Configuring ProxyStore to use
DAOS would be even easier, as described in Sec 3, and we expect
comparable performance outcomes due to DAOS leveraging NVMe
storage distributed throughout the racks of the cluster.

Overheads:Wemeasure the round-trip time of no-op tasks with
payloads of varying sizes in Fig 3. This experiment represents a
worst-case scenario for the Dask scheduler: all data is sent between
the client and workers and no data is reused across multiple tasks.
Using ProxyStore’s pass-by-proxy model improves round-trip time
for larger task payloads (> 100 kB) by up to 50%. This improvement
is attributed to (1) smaller messages to be serialized and commu-
nicated, (2) less data transferred through the scheduler, and (3)

4This work was done on a pre-production supercomputer with early versions of the
Aurora software development kit.

https://github.com/proxystore/hppss24-demo
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Figure 3: (Left) No-op task round-trip time with various pay-
load sizes. (Right) Relative improvement in round-trip time
compared to the baseline when using ProxyStore.
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Figure 4: (Left) No-op task throughput with various worker
counts. Tasks consume and produce 1 MB of random data.
(Right) Relative improvement in throughput compared to
the baseline when using ProxyStore. ProxyStore alleviates
data flow burdens from the Dask scheduler, enabling the
scheduler to dispatch tasks faster.

improvements to ProxyStore’s serialization that reduce memory
copies.

Scaling: We measure task throughput with and without Proxy-
Store as a function of the number of Dask workers 𝑛. Each node
hosts up to 104 workers, the number of physical cores per node. We
execute 10 000 tasks that consume and produce 1 MB of random
data (chosen based on the results in Fig 3). An initial batch of 𝑛 tasks
are submitted; as current tasks complete, new tasks are submitted
until all tasks are finished. Tasks are essentially no-ops besides the
result data generation which takes only 𝑂 (1) ms; thus, the goal
of this experiment is to stress the Dask scheduler and understand
its limits. As depicted in Fig 4, task throughput with Dask quickly
plateaus around 170 tasks per second and degrades when utilizing
104 workers. Use of ProxyStore alleviates data transfer burdens
from the scheduler, enabling higher sustained throughput; however
we still observe the same drop in performance at 104 workers which
may indicate the presence of performance limitations in the Dask
scheduler that are independent of data volume.

Applications:We use three reference applications from TaPS
representing an array of data patterns. Cholesky decomposition
has short tasks that consume and produce large arrays, federated
learning has long tasks that consume and produce large models, and
molecular design has short tasks that consume and produce small
datasets and models. We chose these three applications because
they are implemented in a manner which accentuates data transfer
between the client and workers. As demonstrated in Fig 5, Proxy-
Store yields the greatest benefits to Dask applications with larger

Cholesky Fed. Learning Molecular Design
0

100

200

Ru
nt

im
e 

(s
)

116.7

226.5

25.2
63.5

203.5

24.9

Baseline
ProxyStore

Figure 5: ProxyStore can reduce Dask overheads applica-
tions that embed large objects in the task graph, such as
the Cholesky decomposition example and federated learn-
ing simulation provided by TaPS.

tasks payloads and shorter running tasks—applications where task
overheads represent a larger proportion of overall runtime.

5 Conclusion
The pass-by-proxy model of ProxyStore is a viable alternative to
data flow management in distributed Dask applications. We dis-
cussed the ways in which Dask applications can be extended with
ProxyStore, the diverse storage systems and communications chan-
nels supported by ProxyStore, and the technical contributions nec-
essary to make the integration possible. Experiments show that
ProxyStore reduces task overheads when task graphs are large, im-
proves task throughput at scale, and accelerates applications which
suffer from I/O bottlenecks in the Dask scheduler.
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