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ABSTRACT

Advances in networks, accelerators, and cloud services encourage programmers to reconsider

where to compute—such as when fast networks make it cost-effective to compute on re-

mote accelerators despite added latency. Workflow and cloud-hosted serverless computing

frameworks can manage multi-step computations spanning federated collections of cloud,

high-performance computing, and edge systems, but rely on simple abstractions that pose

challenges when building applications composed of multiple distinct software with differing

communication and patterns. This dissertation introduces new techniques for programming

distributed science applications deployed across the computing continuum—research infras-

tructure that spans personal, cloud, edge, and high-performance computing (HPC) systems.

TaPS, a benchmarking suite for reliable evaluation of parallel execution frameworks, is de-

veloped and used to investigate limitations in existing solutions. This investigation motivates

the design of ProxyStore, a library that extends the pass-by-reference model to distributed

applications with the goal of decoupling data flow from control flow. ProxyStore’s ob-

ject proxy paradigm enables the dynamic selection of different data movement methods,

depending on what data are moved, where data are moved, or when data are moved—a

long-standing challenge in distributed applications. Three high-level patterns—distributed

futures, streaming, and ownership—extend the low-level proxy paradigm to support science

applications spanning bioinformatics, federated learning, and molecular design, in which sub-

stantial improvements in runtime, throughput, and memory usage are demonstrated. Last,

Academy, a federated agents system, supports the creation and deployment of pervasive

autonomous agents, decentralizing control flow across stateful entities. These techniques

encompass an open-source toolbox for developing novel and performant science applications

and federated frameworks for the computing continuum.



“Programming (or problem solving in general) is the judicious postponement of

decisions and commitments!” — Edsger W. Dijkstra

“Science is sort of a long, passive-aggressive argument about everything.” — ZeFrank
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CHAPTER 1

INTRODUCTION

Computational methods and data-driven approaches—now pervasive across many scientific

domains—have contributed to advancements that exceed those possible via traditional ex-

perimental methods [148]. These shifts in application requirements, increasing hardware

heterogeneity, and faster and more reliable networks have stimulated the desire to execute

scientific workflows across the computing continuum where applications are seamlessly de-

ployed across federated collections of personal, cloud, edge, and high-performance computing

(HPC) systems. Thus, programmers specify what task (e.g., command, function, or opera-

tion) to perform without regard to where they are executed; an execution engine then handles

the mechanics of routing each task and data to a suitable processor.

Accordingly, the design of modern scientific workflows is increasingly shifting from mono-

lithic programs to applications that are written as a composition of many distinct compo-

nents, referred to as tasks. These task-centric approaches map well onto distributed and

remote execution paradigms, such as function-as-a-service (FaaS) and workflow engines,

that provide the computational flexibility, scalability, and reliability vital to abstracting the

complexities of executing tasks in parallel. Yet, as the scale and ambition of task-parallel

applications grow, they increasingly encounter difficulties managing the exchange of inter-

mediate data among tasks—the data flow—and the autonomous coordination of actions and

state across different resources—the control flow.

This thesis identifies limitations in distributed execution paradigms that inhibit scaling

out science applications across the continuum. These limitations stem from the one-size-fits-

all approaches employed by state-of-the-art execution engines. That is to say, these systems

support a majority of use-cases well—often with impressive performance or simplicity—but

designing and deploying more ambitious science applications poses unique challenges not

well supported by existing systems. The ultimate goal of this thesis is to augment—not
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replace—existing systems with new techniques that better address new challenges.

Paramount to the development of task-centric applications are the frameworks, such as

Dask [219], Parsl [27], and Ray [184], that provide distributed and parallel execution. Re-

search into these frameworks has accelerated as computational sciences increasingly need to

take advantage of parallel compute and/or heterogeneous hardware. However, the lack of

evaluation standards makes it challenging to compare limitations in existing implementations

and to evaluate novel advancements. Thus, I begin by introducing TaPS, the Task Perfor-

mance Suite, to support continued research in parallel task executor frameworks. TaPS

provides (1) a unified, modular interface for writing and evaluating applications using arbi-

trary execution frameworks and data management systems and (2) a set of real-world science

applications and synthetic benchmarks that function as benchmarking workloads.

A key insight learned from TaPS is that centralized systems and shared storage, com-

monly employed both by FaaS systems and workflow engines to facilitate data flow, can fail

or become prohibitively expensive as the number of tasks, the geographic distribution of

tasks, the volume of data exchanged, and the required speed of data exchange grow. An

alternative approach to simplifying data sharing is the object proxy paradigm, which pro-

vides transparent access and management for shared objects in distributed settings and long

used with Java’s Remote Method Invocation (RMI) [40]. This paradigm inspires shifting the

responsibilities of managing data flow from the execution frameworks to the intermediate

objects themselves. This shift is achieved through transparent object proxies implemented

to act as lightweight, wide-area references to objects in arbitrary data stores—references

that can be communicated cheaply and resolved just-in-time via performant bulk transfer

methods in a manner that is transparent to the consumer code. In this paradigm, proxies are

self-contained and have both pass-by-reference and pass-by-value attributes. The eventual

user of the proxied data gets a copy, but unnecessary copies are avoided when the proxy is

passed among multiple processes. The goal of this abstraction is to decouple data flow com-
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plexities from control flow-optimized execution engines, ultimately allowing developers to

focus, when writing and composing distributed applications, on logical data flow rather than

physical details of where data reside and how data are communicated. ProxyStore, de-

scribed here, implements this proxy paradigm, and I apply ProxyStore to accelerate data

flow management in high-performance scientific applications and programming frameworks.

This low-level paradigm raises a logical followup: What high-level patterns can build on

the proxy model to accelerate and simplify the development of advanced applications? To

this end, I design and implement proxy-based patterns for distributed futures, streaming,

and ownership that make the power of the proxy pattern usable for more complex and

dynamic distributed program structures. ProxyFutures enable seamless injection of data

flow dependencies into arbitrary compute tasks to overlap computation and communication;

ProxyStream decouples event notifications from bulk data transfer such that data producers

can unilaterally determine optimal transfer methods; and Proxy Ownership provides client-

side mechanisms for managing object lifetimes and preventing data races in distributed task-

based workflows. These patterns are evaluated extensively through benchmarks and real-

world scientific applications, in which we demonstrate substantial improvements in runtime,

throughput, and memory usage.

Leveraging the computing continuum to execute scientific workflows will accelerate sci-

entific discovery through automation, but at some point humans—rather than compute or

data—become the limiting factor. Humans synthesize knowledge from prior research to pro-

pose hypotheses; design, debug, and deploy experiments and programs; and interpret results

to inform new hypotheses. Intelligent agents, composing larger multi-agent systems, can

be the driving entities instead—ultimately replacing the human in the loop. Enabling this

new class of autonomous, agentic workflows necessitates new middleware and infrastructure

solutions for expressing complex agents and orchestrating their deployment and coordination

across federated resources. This thesis investigates three aspects of building multi-agent sys-
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tems for science: how to program agents, asynchronous communication among agents, and

execution of agents across federated resources. The near-term goal is to develop new tech-

niques and tools that can support continued research in agentic workflows with the long-term

goal of enabling truly autonomous discovery.

1.1 Thesis Statement

This thesis aims to demonstrate the following research statement:

New programming techniques enable and accelerate task-centric science applications exe-

cuted across the computing continuum.

The desire to deploy scientific applications across research cyberinfrastructure and—more

broadly—the computing continuum is apparent, yet key limitations (e.g., cost, features, and

performance) in the frameworks used to coordinate remote execution and distributed data

management lead to sub-optimal solutions or inhibit development entirely. I posit that

new programming techniques are needed to enhance existing solutions and reduce the fric-

tion inherent to developing and deploying sophisticated science applications across diverse,

federated resources. Specifically, I propose benchmarks for evaluating execution and data

management frameworks, paradigms and patterns for coordinating wide-area data flow, and

models and mechanisms for organizing the cooperation of distinct agents across diverse lo-

cations. Thus, by showing that these techniques enable and accelerate scientific discovery,

then I validated my thesis.

1.2 Thesis Contributions

This thesis proposes new methods for the research and development of distributed and

federated applications with the goal of understanding the limitations of existing solutions,

introducing new techniques that enable broad patterns in distributed computing, advancing
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community tools for the development of novel systems, and applying learnings to accelerate

large-scale science. My objective is to develop techniques that enable new endeavors across

the computational sciences, so that we may answer more questions, bigger questions, and

harder questions. In each chapter, I motivate, describe, and evaluate one project that aims

to further this vision.

In Chapter 2, I introduce TaPS, the Task Performance Suite. Task-based execution

frameworks, such as parallel programming libraries, computational workflow systems, and

function-as-a-service platforms, enable the composition of distinct tasks into a single, unified

application designed to achieve a computational goal. As computational sciences increas-

ingly rely on parallel computing and heterogeneous hardware, research into these execution

frameworks has accelerated. However, the absence of standardized evaluation methodologies

makes it difficult to systematically compare new frameworks against existing ones. TaPS

supports continued research in parallel task executor frameworks through reference bench-

marking workloads spanning real-world and synthetic applications and a robust interface

and configuration system for evaluating execution frameworks and data management sys-

tems. Using TaPS, I perform an investigation of the performance characteristics of popular

frameworks. These learning motivate the contributions of later chapters, which aim to ad-

dress key challenges in data and control flow management.

In Chapter 3, I introduce ProxyStore. Advances in networks, accelerators, and cloud

services encourage programmers to reconsider where to compute—such as when fast networks

make it cost-effective to compute on remote accelerators despite added latency. Workflow and

cloud-hosted serverless computing frameworks can manage multi-step computations span-

ning federated collections of cloud, high-performance computing (HPC), and edge systems,

but passing data among computational steps via cloud storage can incur high costs. Here,

I overcome these obstacles with a new programming paradigm that decouples control flow

from data flow by extending the pass-by-reference model to distributed applications. Proxy-
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Table 1.1: Summary of first-author papers composing the primary artifacts of this disserta-
tion. Asterisks denote papers under review when this dissertation was submitted.

Title Ref. Chapter

TaPS: A Performance Evaluation Suite for Task-based Execution Frameworks [196] Chapter 2

Accelerating Communications in Federated Applications with Transparent Object
Proxies

[195] Chapter 3

Accelerating Python Applications with Dask and ProxyStore [198] Chapter 3

Object Proxy Patterns for Accelerating Distributed Applications [197] Chapter 4

Agentic Discovery: Closing the Loop with Cooperative Agents * Chapter 5

Empowering Scientific Workflows with Federated Agents * Chapter 5

Store implements this paradigm by providing object proxies that act as wide-area object

references with just-in-time resolution. This proxy model enables data producers to commu-

nicate data unilaterally, transparently, and efficiently to both local and remote consumers. I

demonstrate the benefits of this model with synthetic benchmarks and real-world scientific

applications, running across various computing platforms, and through the integration of

ProxyStore into frameworks for parallel computing and federated learning.

In Chapter 4, I extend the proxy model to support three high-level proxy patterns—

distributed futures, streaming, and ownership—that enable the proxy paradigm to support

more complex and dynamic distributed program structures. These patterns are motivated

via careful review of downstream application requirements, and the implementations are

evaluated through a suite of benchmarks. Further, I apply the patterns to three motivat-

ing scientific applications, in which substantial improvements in runtime, throughput, and

memory usage are demonstrated.

In Chapter 5, I introduce Academy. Agentic systems, in which diverse agents cooperate

to tackle challenging problems, are exploding in popularity in the AI community. However,

the agentic frameworks used to build these systems have not previously enabled use with re-

search cyberinfrastructure, relying on centralized control flow and cloud-centric deployments.
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Table 1.2: Summary of papers I co-authored that describe applications and frameworks that
utilize the primary artifacts of this thesis.

Title Ref.

Colmena: Scalable Machine-Learning-Based Steering of Ensemble Simulations for High Perfor-
mance Computing

[249]

GenSLMs: Genome-scale Language Models Reveal SARS-CoV-2 Evolutionary Dynamics [267]

Cloud Services Enable Efficient AI-Guided Simulation Workflows across Heterogeneous Resources [251]

Employing Artificial Intelligence to Steer Exascale Workflows with Colmena [248]

Flight: A FaaS-Based Framework for Complex and Hierarchical Federated Learning [138]

Establishing a High-Performance and Productive Ecosystem for Distributed Execution of Python
Functions Using Globus Compute

[18]

MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow [263]

WRATH: Workload Resilience Across Task Hierarchies in Task-based Parallel Programming
Frameworks

[266]

DynoStore: A Wide-Area Distribution System for the Management of Data over Heterogeneous
Storage

[233]

Academy is a modular and extensible middleware designed to deploy autonomous agents

across the federated research ecosystem, including HPC systems, experimental facilities, and

data repositories. To meet the demands of scientific computing, Academy supports asyn-

chronous execution, heterogeneous resources, high-throughput data flows, decentralized con-

trol flow, and dynamic resource availability. It provides abstractions for expressing stateful

agents, managing inter-agent coordination, and integrating computation with experimental

control. I present microbenchmark results that demonstrate high performance and scalability

in HPC environments. To demonstrate the breadth of applications that can be supported

by agentic workflow designs, I also present case studies in materials discovery, decentral-

ized learning, and information extraction in which agents are deployed across diverse HPC

systems.

The contents of each chapter correspond to one or two first-author papers, summarized in

Table 1.1. The artifacts associated with these papers—the code, experiments, and analyses—
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are open source on GitHub: https://github.com/proxystore. These artifacts have

enabled numerous scientific applications spanning diverse domains and resulting in many

papers, summarized in Table 1.2. These applications are used as motivation and evalua-

tion throughout the chapters and highlight the impact that this work has had across the

computational sciences.

8

https://github.com/proxystore


CHAPTER 2

BENCHMARKING TASK-BASED PARALLEL EXECUTORS

Task-based execution frameworks, such as Dask [219], Parsl [27], and Ray [184], have en-

abled many advances across the sciences. These task executors manage the complexities of

executing the tasks comprising an application in parallel across arbitrary hardware. De-

coupling the application logic (e.g., what tasks to perform, how data flow between tasks)

from the execution details (e.g., scheduling systems or communication protocols) simplifies

development and results in applications which are portable across diverse systems. Task

executors come in many forms, from a simple pool of processes to sophisticated workflow

management systems (WMSs), and the rapid increase in the use of task-based applications

across the computational sciences has spurred further research in the area.

Consistent and reliable benchmarking is fundamental to evaluating advances within a

field over time. Benchmarks and other performance evaluation systems offer a common

ground and objective metrics that enable researchers to assess the efficiency, performance,

scalability, and robustness of their solutions under controlled conditions. Benchmarks foster

transparency and reproducibility, ensuring that results can be consistently replicated and ver-

ified by others in the field. This, in turn, accelerates the pace of innovation as researchers can

identify best practices, optimize existing methods, and uncover new areas for improvement.

Benchmarks facilitate meaningful comparisons between competing approaches—a valuable

aspect for researchers, reviewers, and readers alike.

Access to open source benchmarks democratizes research, and many fields have found

great success through the creation of standards. LINPACK [92], for example, is used to

evaluate the floating point performance of hardware systems. The Transaction Processing

Performance Council (TPC) [236] provides a variety of standard benchmarks for database

systems, and UnixBench [241] can evaluate basic performance of Unix-like systems from file

copies to system call overheads. Machine learning (ML) has demonstrated this success with
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benchmarks for every level of the ML stack. For example, MLPerf [173, 217] has continued

to support the development of ML hardware and frameworks, and novel algorithms are

compared against prior work by using open source datasets, as exemplified by the Papers

with Code Leaderboards [192] that comprise results of tens of thousands of papers across

thousands of datasets.

However, the parallel application and workflows communities lack such established bench-

marks. The NAS parallel benchmarks date back to the 1990s [29]. For workflows, with the

exception of a few common applications (e.g., Montage [181, 84]), papers typically evaluate

their solutions on purpose-built synthetic benchmarks or forks of real world science appli-

cations. Unfortunately, the ad hoc nature of these solutions means that the code is often

not open sourced, not maintained beyond publication of the corresponding paper, or so spe-

cific to an implementation that it is challenging to appropriately compare against in later

works. Recent work has introduced a standard for recording execution traces and tools for

analyzing those traces [69], but there remains a need for realistic reference applications for

benchmarking.

To address these challenges, we introduce TaPS, the Task Performance Suite, a standard-

ized framework for evaluating task-based execution frameworks against synthetic and real-

istic science applications. With TaPS, applications can be written in a framework-agnostic

manner, thus turning them into suitable benchmarking workloads. Then, the performance

of task executors and data management systems can be compared using these applications.

We make the following contributions:

1. TaPS, a standardized benchmarking framework for task-based applications with an

extensible plugin system for comparing task executors and data management systems.

TaPS is available on GitHub [234].

2. Support for popular task executors (Dask, Globus Compute, Parsl, Ray, and TaskVine)

and data management systems (shared file systems and ProxyStore, introduced in
10



Chapter 3).

3. Reference implementations within TaPS for seven real (Cholesky factorization, pro-

tein docking, federated learning, MapReduce, molecular design, Montage, and physics

simulation) and two synthetic applications.

4. Insights into the performance of the reference implementations across the supported

task executor and data management systems.

The rest of this chapter is as follows: Section 2.1 discusses related work; Section 2.2

describes the design and implementation details of the TaPS framework; Section 2.3 intro-

duces the initial set of applications provided by TaPS; Section 2.4 presents our experiences

using TaPS to evaluate system components; and Section 2.5 summarizes our contributions

and future directions.

2.1 Background and Related Work

Task executors, which manage the execution of tasks in parallel across distributed re-

sources, come in many forms (see Figure 2.1). A task refers to discrete unit of work, and

tasks are combined into a larger application. Tasks can take data as input, produce output

data, and may have dependencies with other tasks; i.e., a dependent task cannot start un-

til a preceding tasks completes. Dask Distributed, Python’s ProcessPoolExecutor, Globus

Compute [61], Radical Pilot [16], and Ray all provide mechanisms for executing tasks in

parallel across distributed systems.

Workflow management systems (WMSs), a subset of task executors, are designed

to define, manage, and execute workflows represented by a directed acyclic graph (DAG)

of tasks. WMSs commonly provide mechanisms for automating and optimizing task flow,

monitoring, and resource management. WMSs can be categorized as supporting explicit or

implicit dataflow patterns. Explicit systems, such as Apache Airflow [22], Fireworks [141],
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Task Execution Frameworks

Workflow Management Systems
Define, manage, and execute workflows represented by a directed acyclic 

graph (DAG) of tasks

Concurrent Executors
On-demand asynchronous execution of 

tasks

Explicit
DAG defined via configuration 

file or domain specific language

Implicit
Task dependencies derived through 

dynamic evaluation of a procedural script

Figure 2.1: A simple taxonomy of task execution frameworks.

Makeflow [13], Nextflow [89], Pegasus [86], and Swift [256], rely on configuration files or

domain specific languages (DSLs) to statically define a DAG before execution. Implicit sys-

tems, such as Dask Delayed, Parsl, Swift/T [258], and TaskVine [228], derive the application’s

dataflow through the dynamic evaluation of a procedural script.

Performance evaluation of task executors is challenging due to a lack of standards.

Frameworks provide examples designed to aid in learning the framework, but these are often

too trivial to be used in benchmarking. Pegasus provides a catalogue of real, end-to-end

scientific workflows in AI, astronomy, and bio-informatics which are suitable for bench-

marking [200]; Dask maintains a repository of performance benchmarks [79]; WorkflowHub

provides a service for sharing scientific workflows [119]; and Workbench [13], designed for

analyzing workflow patterns, was released alongside Makeflow. However, these reference ap-

plications and benchmarks are typically valid only for evaluating optimizations within the

framework they were implemented in. In other words, the majority of these code bases are

not suitable for comparing different task executors. This also means available benchmarks

are susceptible to code rot if maintenance of the associated framework ceases.

Porting benchmark applications between frameworks is onerous when the structure and
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syntax is completely different. Subtle errors in the ported implementation can lead to inac-

curate comparisons between systems. Access to datasets or sufficient compute resources for

certain applications can further hinder the creation of realistic benchmarking applications.

To assuage these challenges within the workflows community, prior work [101] published a

gallery of execution traces from real workloads using Pegasus, a synthetic workflow generator,

and a simulator framework. WfCommons [69] introduces a standardized format for represent-

ing execution logs (WfFormat), an open source package for analyzing logs and generating

synthetic logs (WfGen), and a workflow execution simulator (WfSim). WfCommons cur-

rently provides 180 execution instances from three workflow systems (Makeflow, Nextflow,

and Pegasus). Similarly, WRENCH [55] provides a WMS simulation framework built on

SimGrid [54]. In contrast, an Application Skeleton supports the design and development of

systems by mimicking the performance of a real application [145].

FunctionBench [149], FaaSDom [169], PanOpticon [230], SeBS [71], and more [28, 264,

242] address a similar set of challenges as TaPS but in the context of cloud-hosted function-

as-a-service (FaaS) platforms. In contrast, Das et al. [78] consider benchmarking serverless

edge computing platforms. Other works investigate serverless workflow services [254], in-

cluding SeBS-Flow [223] which extends SeBS to support serverless workflows (released after

the publication of TaPS). SeBS provides a benchmark specification, a general model of

FaaS platforms, and an implementation of the framework and benchmarks. This model is

valuable because each benchmark is platform agnostic, relying only on the abstract FaaS

model provided by SeBS. Implementing the concrete model for a new platform need only be

performed once, and then any benchmark can be executed on that platform. Part of SeBS’s

platform model is support for persistent and ephemeral cloud storage systems. Supporting

the evaluation of the compute and data aspects of task-based applications is crucial, but

currently lacking outside of specific areas (i.e., SeBS for FaaS).
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2.2 Design and Implementation

TaPS is a Python package that provides a common framework for writing task-based, dis-

tributed applications; a plugin system for running applications with arbitrary task executors

and data management systems; and a benchmarking framework for running experiments in

a reproducible manner. We choose Python for its pervasiveness in task-based, distributed

applications, and we describe here the high level concepts that make the framework pos-

sible and the implementation details. Our goal is to create an easy-to-use framework for

researchers to benchmark novel systems and an extensible framework so future applications

and plugins can be incorporated into TaPS. The examples provided in this section are based

on TaPS v0.2.2.

2.2.1 Application Model

TaPS provides a framework for the creation and execution of application benchmarks. As

described in Section 2.1, applications are composed of tasks which are the remote execution

of a function which takes in some data and produces some data. Tasks can have dependencies

such that the result of one task is consumed by one or more tasks.

Supporting applications written using the explicit and implicit workflow models described

in Section 2.1 is challenging because the two philosophies are fundamentally at odds with

each other and, within the scope of explicit systems, the different configuration formats and

use of DSLs further complicates the design of a unified, abstract task executor interface.

TaPS supports writing applications as Python code using implicit dataflow dependencies.

(Though, it is not a requirement that tasks have dataflow dependencies within an applica-

tion.) We take this approach for two reasons. First, the scope of applications compatible

with implicit models is a super-set of those compatible with explicit models. Specifically,

WFMs which use a static graph for execution are not expressive enough for writing more

dynamic and procedural applications, whereas the implicit model enables arbitrarily com-
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Figure 2.2: Overview of the TaPS stack. Applications are the benchmarking workloads and
plugins are the systems being benchmarked. The framework layer enables any application
to be run using any set of plugins.

plex applications composed through a procedural program. Second, WMFs which use DSLs

require the application design to be tightly coupled to the WMF. This inherently makes it

challenging to construct an application that is compatible with a multitude of frameworks.

2.2.2 Writing Benchmark Applications

In TaPS, an application is composed of two parts: an AppConfig and an App class (see

Figure 2.2). The AppConfig contains all configuration options required to execute the corre-

sponding applications (e.g., hyperparameters, paths to datasets, or flags). AppConfig exposes

a get_app() method which initializes an App instance from the user-specified configuration.

App.run() is the entry point to the application code and is invoked with two arguments: an

Engine instance (discussed in detail in Section 2.2.4) and the path to a unique directory for

the current application invocation. The run() method can contain arbitrary code, provided

application tasks are executed via the provided Engine interface.

TaPS provides a CLI framework for executing application benchmarks (discussed further

in Section 2.2.3). For example, the foo application in Figure 2.3 is started with: python -m
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1 @register('app')
2 class FooAppConfig(AppConfig):
3 name: str = 'foo'
4 sleep: float = Field(description='...')
5 count: int = Field(1, description='...')
6

7 def get_app(self) -> FooApp: ...
8

9 class FooApp:
10 def __init__(self , ...) -> None: ...
11

12 def run(self , engine: Engine , run_dir: Path) -> None: ...
13

14 def close(self) -> None: ...

Figure 2.3: Applications in TaPS are defined via an App and AppConfig class. The config-
uration, provided by the user, is used to instantiate an instance of the app. Command line
arguments are created using the AppConfig.

taps.run –app foo {args}. Applications are registered with this CLI by decorating the

AppConfig with @register(‘app’). This will automatically add the application’s name as

one of the CLI choices and add CLI arguments based on the AppConfig attributes.

2.2.3 Configuring and Executing Benchmarks

Application benchmarks are typically invoked using the CLI. At minimum, this requires

specifying the --app parameter and any required arguments specific to the chosen appli-

cations. The following example command executes the cholesky application, described in

Section 2.3.

> python -m taps.run --app cholesky --app.matrix_size 100 --app.block_size 25

When invoked, the CLI (1) constructs an AppConfig instance from the user’s arguments,

validating that options can be parsed into the correct type and that all required arguments

are present; (2) initializes the App using get_app(); (3) constructs an Engine according to

user-supplied arguments; and (4) invokes App.run() to execute the application benchmark.

The framework automatically writes a configuration file, log files, and task record files to the
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1 [app]
2 name = "cholesky"
3 matrix_size = 100
4 block_size = 25
5

6 [engine]
7 task_record_file_name = "tasks.jsonl"
8

9 [engine.executor]
10 name = "process -pool"
11 max_processes = 10
12

13 [run]
14 dir_format = "runs/{name}_{executor}_{timestamp }"
15

16 [logging]
17 file_level = "WARNING"
18 file_name = "log.txt"
19 level = "INFO"

Figure 2.4: Configuration files in TaPS use the TOML format. This example file runs the
cholesky application with a process pool task executor.

run directory.

The configuration file contains a record of all configuration options used to execute the

application. An example of the TOML configuration file is presented in Figure 2.4. A

configuration file path can be provided to the CLI as an alternative to CLI arguments:

> python -m taps.run --config config.toml

Thus, configuration files can be shared for reproducibility. If multiple configuration files are

provided, keys will be merged with later files taking precedence. CLI arguments supersede

all configuration file options.

More sophisticated benchmarking can be performed by writing custom Python scripts

that use the TaPS API directly rather than via the TaPS CLI, as exemplified in Figure 2.5.
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1 import contextlib
2 import pathlib
3 from concurrent.futures import ProcessPoolExecutor
4 from datetime import datetime
5

6 from taps.apps.cholesky import CholeskyApp
7 from taps.engine import Engine
8 from taps.executor.utils import FutureDependencyExecutor
9 from taps.logging import init_logging
10

11 def main() -> int:
12 init_logging ()
13

14 app = CholeskyApp(matrix_size =100, block_size =25)
15 executor = FutureDependencyExecutor(
16 ProcessPoolExecutor(max_workers =4)
17 )
18 timestamp = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
19 run_dir = pathlib.Path.cwd() / 'runs' / timestamp
20

21 with contextlib.closing(app), Engine(executor) as engine:
22 app.run(engine , run_dir)
23

24 return 0
25

26 if __name__ == '__main__ ':
27 raise SystemExit(main())

Figure 2.5: Example usage of the TaPS API as an alternative to the CLI for running
benchmarks. Here, the cholesky application is executed using a ProcessPoolExecutor.
Use of the API can enable more sophisticated benchmarking, such as to create parameter
matrices.
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2.2.4 Application Benchmark Engine

The Engine is the unified interface used by applications to execute tasks and exposes an

interface similar to Python’s concurrent.futures.Executor. The Engine interface must be

expressive enough to build arbitrary applications yet simple enough to incorporate third-

party task executors and other plugins. We chose to adopt a model similar to Python’s

Executor because it is a de facto standard for managing asynchronous task execution across

the Python ecosystem, and many third-party libraries provide Executor-like implementa-

tions, including Dask Distributed, Globus Compute, Loky, TaskVine, and Parsl. An addi-

tional benefit of this choice is that it is trivial to port applications already using an Executor

interface into a TaPS application.

Executor is an abstract class with two primary methods, submit() and map(), designed

to execute functions asynchronously. The submit() method takes a callable object and as-

sociated arguments, schedules the callable for execution, and returns back to the client a

Future that will eventually contain the result of the callable. Engine implements both of

these methods, but returns TaskFuture objects rather than Future instances. Function-

ally, TaskFuture behaves like Future but includes additional functionality for performance

monitoring and task dependency management.

An Engine is created from four components: Executor, Transformer, Filter, and

RecordLogger. This conceptual hierarchy of components in TaPS is illustrated in Figure 2.2.

The dependency model approach used by the Engine means that component plugins can be

easily created and/or swapped to compare, for example, different task executors or data

management systems. Further, the Engine can be extended with additional components in

the future to enhance benchmarking capabilities.
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Table 2.1: Overview of the task executors supported natively within TaPS.

Scheduler Deployment

Name Reference Languages Distributed Dataflow Locality Distributed Batch Systems

ThreadPoolExecutor [209] Python
ProcessPoolExecutor [209] Python
Dask Distributed [219] Python ✓ ✓ ✓ ✓
Globus Compute [61] Python ✓ ✓
Parsl [27] Python ✓ ✓ ✓
Ray [184] Multiple ✓ ✓ ✓ ✓ ✓
TaskVine [228] C, Python ✓ ✓ ✓ ✓

2.2.5 Task Executor Model

The fundamental component of the Engine is an Executor, an interface to the underlying

task executor. We choose the Executor model again for the same reasons as with the

Engine. In Section 2.2.6, we describe the details of each executor currently supported in

TaPS. Similar to the App model, TaPS has a notion of a ExecutorConfig which can be

registered with the framework to automatically add argument parser groups for the specific

executor. ExecutorConfig has a method, get_executor(), which will initialize an instance

of the executor from the user specified configuration.

A limitation of Python’s Executor interface is the lack of support for dataflow dependen-

cies between tasks. Some Executor implementations (Dask Distributed, Parsl, and TaskVine)

do support implicit dataflow dependencies by passing the future of one task as input to one

or more tasks, but many others (e.g., Python’s ProcessPoolExecutor and Globus Compute)

do not. The Engine requires it’s Executor to support implicit dataflow patterns with fu-

tures, so TaPS provides a FutureDependencyExecutor wrapper to add this functionality if

needed. This wrapper scans task inputs for futures and will delay submission of a task until

the results of all input futures are available (in an asynchronous, non-blocking manner).
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2.2.6 Supported Task Executors

Here, we briefly describe the task executors currently supported by TaPS (summarized in

Table 2.1). As previously mentioned, the plugin system makes it easy to support more ex-

ecutors in the future, but our initial goal is to support a broad range. We support Python’s

ProcessPoolExecutor which provides a good baseline for low-overhead, single-node execu-

tion. We also support the ThreadPoolExecutor, but this is primarily intended to support

development and quick testing because Python’s Global Interpreter Lock prevents true par-

allelism with threading.

Dask Distributed [219] provides dynamic task scheduling and management across worker

processes distributed across cores within a node or across several nodes. Tasks in Dask

are Python functions which operate on Python objects; the scheduler tracks these task

in a dynamic DAG. Globus Compute [61] is a cloud-managed function-as-a-service (FaaS)

platform which can execute Python functions across federated compute systems. Globus

Compute provides an Executor interface but does not manage dependencies between func-

tions. Parsl [27] is a parallel programming library for Python with comprehensive dataflow

management capabilities. Parsl supports many execution models including local compute,

remote compute, and batch scheduling systems. Ray [184] is a general purpose framework

for executing task-parallel and actor-based computations on distributed systems in a scalable

and fault tolerant manner. TaskVine [228] executes dynamic DAG workflows with a focus

on data management features including transformation, distribution, and task data locality.

2.2.7 Task Data Model

Optimizing the transfer of task data and placement of tasks according to where data reside

is a core feature of many task executors. To support further research into data management,

TaPS supports a plugin system for data transformers. A data transformer is an object that

implements the Transformer protocol. This protocol defines two methods: transform which
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1 [engine.filter]
2 name = "object -size"
3 min_size = 1000
4 max_size = 1000000
5

6 [engine.transformer]
7 name = "proxystore"
8

9 [engine.transformer.connector]
10 kind = "redis"
11 options = { hostname = "localhost", port = 6379}

Figure 2.6: Example TaPS configuration that enables the ProxyTransformer using Proxy-
Store’s RedisConnector for objects between 1 kB and 1 MB.

takes an object and returns an identifier, and resolve, the inverse of transform, which takes

an identifier and returns the corresponding object. Data transformer implementations can

implement object identifiers in any manner, provided identifier instances are serializable. For

example, an identifier could simply be a UUID corresponding to a database entry containing

the serialized object.

A Filter is a callable object, e.g., a function, that takes an object as input and returns

a boolean indicating if the object should be transformed by the data transformer. The

Engine uses the Transformer and Filter to transform the positional arguments, keyword

arguments, and results of tasks before being sent to the Executor. For example, every

argument in the positional arguments tuple which passes the filter check is transformed into

an identifier using the data transformer. Each task is encapsulated with a wrapper which

will resolve any arguments that were replaced with identifiers when the task executes. The

same occurs in reverse for a task’s result.

Filter implementations based on object size, pickled object size, and object type are

provided. We initially provide two Transformer implementations: PickleFileTransformer

and ProxyTransformer. The PickleFileTransformer pickles objects and writes the pickled

data to a file. The ProxyTransformer creates proxies of objects using the ProxyStore

library, introduced in Chapter 3. ProxyStore provides a pass-by-reference like model for

22



distributed Python applications and supports a multitude of communication protocols includ-

ing DAOS [131], Globus [106, 15], Margo [206], Redis [218], UCX [240], and ZeroMQ [135].

An example configuration for a filter and transformer are provided in Figure 2.6.

2.2.8 Logging and Metrics

Recording logs and metrics for post-execution analysis is core to any benchmarking frame-

work. TaPS records the high-level application logs and low-level details of each executed

task. The RecordLogger interface is used to log records of all tasks executed by the Engine.

These records include metrics and metadata of the task, such as the unique task ID, the

function name, task IDs of any parent tasks, submission time, completion time, data trans-

formation and resolution times, and execution makespan. By default, TaPS uses the

JSONRecordLogger which logs a JSON representation of the task information to a line-

delimited file. In future work, we would also like to support WfCommon’s WfFormat.

2.2.9 Task Life-cycle

An application creates a task by submitting a Python function with corresponding arguments

to Engine.submit() which returns a corresponding TaskFuture. (Applications can also

create many tasks by mapping a function onto an iterable of arguments via Engine.map().

For simplicity, we discuss single task submission here, but the same process applies with

map.) The Engine generates a unique ID for the task and wraps the function in a task

wrapper. The Transformer is then applied to the arguments according to the Filter. Then,

the wrapped function and arguments (some or all of which may have been transformed) are

passed to the Executor for scheduling and execution. The Executor returns a future specific

to the executor type (e.g., a Globus Compute future for a GlobusComputeExecutor). This

low-level future is then wrapped in a TaskFuture, and the TaskFuture is returned to the

client. If a TaskFuture were passed as input to a task, the Engine will also replace the
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Figure 2.7: Task dependency diagrams for some of the provided applications within TaPS.
The initial set of applications is designed to cover a wide range of patterns. Exact task
graphs depend on the application configuration.

TaskFuture with the low-level future of the Executor. This is necessary to ensuring the

Executor can schedule the tasks according to the implicit inter-task dependencies.

When a task begins execution, the task wrapper will record information about the exe-

cution to propagate back to the Engine. The task wrapper will also resolve any transformed

arguments prior to invoking the original function provided by the client and possibly trans-

form the function result. The completion of a task (i.e., when the result of the future is set)

will trigger a callback which logs all of a task’s information and metrics. If the function result

was transformed, the TaskFuture will resolve the result inside of TaskFuture.result().

2.3 Applications

We initially provide nine applications within TaPS, summarized in Table 2.2 and Figure 2.7.

These distributed and parallel applications are diverse, spanning many domains, datasets,

and structures to support comprehensive performance evaluation of existing and future sys-

tems.
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Table 2.2: Overview of the applications implemented within TaPS.

Name Reference Domain Dataset(s)

cholesky [142] Linear Algebra Randomly Generated
docking [213] Drug Discovery C-ABL Kinase Domain [25], Zinc Ord. Compounds [68]
fedlearn [151] Machine Learning MNIST [87], FEMNIST [261], CIFAR-10/100 [152]
mapreduce [83] Text Analysis Randomly Generated, Enron Corpus [98]
moldesign [250] Molecular Design QM9 [214]
montage [181] Astronomy Montage Images [181]
physics — Physics Randomly Generated
failures [266] — —
synthetic [195] — Randomly Generated

Name Task Types(s) Data Format(s)

cholesky Python Functions In-memory
docking Executable, Python Functions File
fedlearn Python Functions In-memory
mapreduce Python Functions File, In-memory
moldesign Python Functions In-memory
montage Executable File
physics Python Functions In-memory
failures Executable, Python Functions File, In-memory
synthetic Python Functions In-memory

2.3.1 Cholesky Factorization

Cholesky factorization (also referred to as decomposition) is a fundamental linear algebra

operation used in many domains. The tiled version of Cholesky factorization has been studied

extensively, for example, in the context of NUMA machines [142] and from the perspective

of communication overhead [33]. The tiled version produces an arbitrarily complex DAG

depending on the number of tiles, which makes it a good candidate for evaluating task

executors. The 4×4 tiled DAG is portrayed in Figure 2.7.

The cholesky application implements a tiled Cholesky factorization which, given an

input matrix A that is positive-definite, computes L where A = L×LT [142]. The algorithm

comprises four task types: GEMM, a tiled matrix multiplication requiring three inputs;

SYRK, a symmetric rank-k update requiring three inputs; TRSM, which solves a triangular

matrix equation with two inputs; and POTRF, an untiled Cholesky factorization which
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operates on a tile of A.

The cholesky application takes two user-supplied parameters: N , the side length of the

input matrix to generate, and b, the side length of each square block in the tiled matrix.

As b approaches N , the number of blocks in the tiled matrix, and thus the number of tasks

required for the factorization, decreases. Given B, a randomly generated N ×N matrix, the

positive definite input matrix A is computed by using A = (B+BT )+ δI, where δ = N and

I is the N ×N identity matrix.

2.3.2 Protein Docking

Protein docking aims to predict the orientation and position of one molecule to another.

It is commonly used in structure-based drug design as it helps predict the binding affinity

of a ligand (the candidate drug) to the target receptor. Simulations required to compute

docking score are computationally expensive, and the search-space of potential molecules

can be expansive. To improve the time-to-solution, this implementation of protein docking

is parallelized and includes ML-in-the-loop. A model is trained using the results of previous

simulations to predict which molecules are most likely to have strong binding scores, thereby

significantly reducing the search space.

The docking workflow is based on a reference implementation written in Parsl [213].

The workflow uses Autodock Vina [238] for the docking simulations and scikit-learn [199] to

construct a KNN-based transformer for the ML model. It is composed of three task types:

(1) data preparation, (2) simulation, and (3) ML training and inference. The workflow has

two primary parameters: a CSV file containing the search space of candidate ligands and

their associated SMILES strings and a PDBQT file containing the target receptor. One of the

tasks launches a subprocess to execute a set-element.tcl script (provided in the reference

implementation) that adds coordinates to the PDB file using VMD [139], a program used to

display and analyse molecular assemblies.
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2.3.3 Federated Learning

Federated Learning (FL) is a paradigm for deep learning across decentralized devices with

their own private data. FL offloads the task of model training to the decentralized devices

to avoid communicating their raw training data across the network, providing some level

of privacy and reducing data transfer costs. FL is organized into multiple rounds. In each

round, a central server is responsible for collecting locally-updated model parameters from

each device and aggregating the parameters to produce/update a global model. The new

global model is then redistributed to the decentralized devices for further training and the

loop repeats for future rounds [174].

We implement a simple FL application, fedlearn, that simulates a decentralized system

with varying number of simulated devices and data distributions. Fedlearn follows the flow

of execution described above and consists of three tasks: local training, model aggregation,

and global model testing. The first task emulates the local training that is performed on

a simulated remote device. The second task takes the returned locally-trained models for

a given round as input to perform a model aggregation step to update the global model.

The third task takes the recently-updated global model and evaluates it using a test dataset

that was not used during training. All tasks are implemented as pure Python functions with

model training and evaluation performed using PyTorch [194].

The application can be tuned in several ways, including, but not limited to, the total

number of aggregation rounds, the number of simulated devices, the distribution of data

samples across the simulated devices via the Dirichlet distribution, training hyperparameters

(e.g., epochs, learning rate, minibatch size), and fraction of devices randomly sampled to

participate in each round. The application supports four standard deep learning datasets

(MNIST [87], Fashion-MNIST [261], CIFAR-10, CIFAR-100 [152]), each of which is split

into disjoint subsets across each simulated device for local training. A multi-layer perceptron

network with three layers and ReLU activations is used with MNIST and Fashion-MNIST,
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and a small convolutional neural network with ReLU activations is used with CIFAR-10 and

CIFAR-100.

2.3.4 MapReduce

MapReduce [83] is a programming model for parallel big data processing comprised of two

tasks types. Map tasks filter or sort input data, and a reduce task performs a summation

operation on the map outputs. The canonical example for MapReduce is computing words

counts in a text corpus. Here, the map tasks take a subset of documents in the corpus as

input and count each word in the subset. The subset counts are then summed by the reduce

task.

The mapreduce application implements this word frequency example. The goal of this

application is to evaluate system responsiveness when processing large datasets. The imple-

mentation can operate in two modes, one in which a text corpus of arbitrary, user-defined size

is generated, and another in which user-provided text files can be read. For a real dataset,

we use the publicly available Enron email dataset [98]. Beyond specifying the input corpus

or parameters of the randomly generated corpus, the number of mapping tasks and n, the

number of most frequent words to save, are configurable.

The map task, implemented in Python, takes as input either a string of text or a list

of files to read the text string from and returns a collections.Counter object containing

the frequencies of each word. The reduce task takes a list of Counter objects and returns

a single Counter. The application produces an output file containing the n most frequent

words and their frequencies.

2.3.5 Molecular Design

Molecules with high ionization potentials (IP) are important for the design of next-generation

redox-flow batteries [249, 251]. Active learning, a process where a surrogate ML model is used
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to determine which simulations to perform based on previous computations, is commonly

employed to efficiently discover high-performing molecules.

The moldesign application is based on a Parsl implementation of ML-guided molecular

design [250]. The application has three task types. Simulation tasks compute a molecule’s

IP, training tasks retrain an ML model based on the results of simulation tasks, and inference

tasks use the ML model to predict which molecules will have high IPs and should be simu-

lated. This application is highly dynamic and does not have strong inter-task dependencies—

the client processes task results to determine which new tasks should be submitted. Molecules

are sampled from the open-source QM9 dataset [214]. The number of initial simulations to

perform, simulation batch size, and number of molecules to evaluate in total are configurable.

These parameters control the maximum parallelism of the application and the length of the

campaign.

2.3.6 Montage

Montage is a toolkit for creating mosaics from astronomical images [36]. The Montage Mosaic

workflow streamlines the creation of such mosaics by invoking a series of Montage tools on

the provided input data. This workflow was adapted from Montage’s “Getting Started"

tutorial [182].

The montage application is executed using a directory of input images and parameters for

the table and header file names. The 2MASS input images are made available by Montage [3].

The application consists of a series of image processing tasks that will (1) reproject the

images, (2) update metadata, (3) remove overlaps, and (4) combine images into a mosaic.

Parallelism within the workflow occurs during the reprojection of the images, removing

overlaps between two images, and removing the background in each input image. Tasks read

and write intermediate files so all workers require access to a shared file system.
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2.3.7 Physics Simulation

The physics application simulates the trajectory of objects in a randomly generated en-

vironment (e.g., a ball hitting a surface, bouncing, and then rolling to a stop). Physics

simulations are often performed in an embarrassingly parallel fashion, where each simulation

is performed with different initial conditions, and the results aggregated. This application is

a surrogate for this style of workflow, and PyBullet [207] is used as the simulation engine.

2.3.8 Failure Injection

The failures application can inject failures into another TaPS application. Injecting fail-

ures enables analyzing the failure recovery characteristics of executors. Task-level failure

types include runtime exceptions (e.g, divide-by-zero, import error, out-of-memory, open file

limit (ulimit) exceeded, and walltime exceeded) and dependency errors from a failed parent

task. System-level failures include task worker, worker manager, and node failures. The

failure type, failure rate, and base application to inject failures into are configurable.

2.3.9 Synthetic Workflow

The synthetic application is used to create synthetic computational workflows and is useful

for stress testing systems. Tasks in this application are no-op sleep tasks which take in some

random data and, optionally, produce some random data. One of four structures for the

workflow DAG can be chosen: sequential, reduce, bag-of-tasks, and diamond, as described

in Figure 2.7. The number of tasks, input and output data sizes, and sleep times are all

configurable.
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Figure 2.8: Average makespan across three runs for six of the TaPS applications. Error bars
denote standard deviation.

2.4 Evaluation

We showcase the kinds of performance evaluations possible with TaPS using the provided

applications. We draw some general conclusions but do not make an exhaustive comparison

between executors. Rather, we aim to demonstrate the varied performance characteristics

of our supported applications and plugins, highlight the kinds of investigations or analyses

that can be performed with TaPS, and pose interesting questions for future investigations.

We use a compute-zen-3 node, with two 64-core CPUs and 256 GB memory, on Chameleon

Cloud’s CHI@TACC cluster for evaluation [146].

2.4.1 Application Makespan

We first compare application makespan, which includes executor and worker initialization,

application execution, and shutdown, across each task executor. The space of possible con-

figurations for each application and executor is combinatorially explosive. Thus, we choose

application parameters, where possible, which result in high numbers of short tasks to ac-

centuate the effects of overheads in the respective executors. Parameters are summarized
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Table 2.3: Summary of application configurations used in Figure 2.8.

Application Workers Task Count Max Serialized Object Size

cholesky 64 385 24 MB
docking 32 192 O(1) kB
fedlearn 32 48 20 MB
mapreduce 32 33 114 MB
moldesign 32 346 O(1) MB
montage 32 419 O(1) kB

Application Parameters

cholesky Matrix Size: 10 000×10 000, Block Size: 1000×1000
docking Initial Simulations: 3, Batch Size: 8, Rounds: 3
fedlearn Dataset: MNIST, Clients: 16, Batch Size: 32, Rounds: 3, Epochs/Round: 1
mapreduce Dataset: Enron Email Corpus, Map Task Count: 32
moldesign Initial Simulations: 16, Batch Size: 16, Search Count: 64
montage —

in Table 2.3. We also prefer configurations which reduce run-to-run variances, except for

docking which is inherently stochastic (this was changed in a later release of TaPS). For

each executor, we use the respective equivalent of a default local/single-node deployment, but

we note that it is reasonable to expect performance improvements by tuning each executor

deployment to the specific application and hardware.

The results, presented in Figure 2.8, indicate that no executor is optimal and lead us to

ask further questions. Why are the following 2–3× faster than the others: Ray in cholesky,

Dask and Parsl in moldesign, and Dask in montage? How does performance correlate to

average task duration or data flow volume? How do different executors deal with nested

parallelism (i.e., tasks which invoke multi-threaded code)?

We observe that Dask performs the best in applications with small maximum object sizes,

such as docking, moldesign, and montage where, as shown in Table 2.3, the maximum seri-

alized object sizes are less than ∼1 MB. However, Dask is slow with applications that embed

large objects in the task graph, such as the 114 MB mapper outputs in mapreduce. Ray

marks input arrays as immutable enabling optimizations which yield considerable speedups
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Figure 2.9: Executor scaling performance with no-op tasks. Each configuration is repeated
three times and shaded regions represent the standard deviation.

in cholesky. Applications with nested parallelism (the simulation codes in docking and

moldesign and tensor operations in fedlearn) lead to different outcomes. Globus Compute,

Parsl, and ProcessPoolExecutor required setting OMP_NUM_THREADS=1 to prevent resource

contention leading to applications hanging, whereas Dask, Ray, and TaskVine worked im-

mediately with all task types, albeit with varied performance. The Globus Compute service

limits task payloads to 10 MB so the cholesky, fedlearn, and mapreduce applications are

not natively supported and necessitate alternative data management systems (discussed fur-

ther in Section 2.4.3).

2.4.2 Scaling Performance

We evaluate scaling performance of each executor using the synthetic app by executing 1000

no-op, no-data tasks and recording the task completion rate as a function of the number of

workers on a single node. Here, the client submits n initial tasks where n is the number of

workers and submits new tasks as running tasks complete. This configuration is intended to

stress-test all aspects of the system including scheduler throughput, worker overheads, and

client task result latency. We disable task result caching where applicable.

The results are presented in Figure 2.9. The ProcessPoolExecutor performs the best

because, unlike the other executors, there is no scheduler. Thus, this serves as a good

baseline for this single-node scaling setup; however, the lack of scheduler also means the
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Compute service.

ProcessPoolExecutor lacks features useful for optimizing real applications such as multi-

node support, data-aware task placement, and result caching. The general trend for Dask,

Ray, and TaskVine is similar; task throughput increases up to four or eight workers and then

degrades at high worker counts. However, Ray and TaskVine are both faster, with Ray being

5–10× faster than Dask. This can, in part, be attributed to Dask being pure Python while

TaskVine’s core is C and Ray’s core is C++. Parsl, which is pure Python, exhibits superior

scaling efficiency, closing the performance gap to Ray at larger scales. Globus Compute’s task

throughput is limited by its cloud service, but we do observe strong scaling performance with

more workers as task requests and results can be more efficiently batched which amortizes

cloud overheads.

2.4.3 Data Transfer

We examine the effects of data transfer on task latency and evaluate the Transformer plugins

in Figure 2.10. We submit tasks to a pool of 32 workers and measure the average round-trip
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task time using the synthetic application. The client generates b bytes of random data as

input to the task and the task returns b bytes of random data. We compare the baseline

performance of the executors to using two different transformers: PickleFileTransformer,

which writes pickled task data to the local NVMe drive, and ProxyStore, which we

configured to use a Redis server to store intermediate data.

Dask and Parsl exhibit similar behaviour with task payloads greater than 100 kB induc-

ing considerable increases in task latency. Using an alternate mechanism for data transfer

alleviates much of this overhead, leading to 5.8× and 4.4× speedups for Dask and Parsl,

respectively, at the largest data sizes. Globus Compute benefits the most from alternative

data transfer mechanisms such as ProxyStore because the baseline method relies on data

transfer to/from the cloud which is considerably slower. Use of ProxyStore also avoids

Globus Compute’s 10 MB task payload limit. The ProcessPoolExecutor, due to its simplic-

ity, does not benefit much from either alternative transfer mechanisms. Ray and TaskVine

perform well in all scenarios because Ray uses a distributed object store for large task data

and TaskVine communicates intermediate data by files. Thus, these systems already employ

techniques similar to the data transformers we evaluated.

2.5 Summary

We have proposed TaPS, a performance evaluation platform for task-based execution frame-

works. TaPS aims to provide a standard system for benchmarking frameworks. Benchmark-

ing applications can be written in a framework agnostic manner then evaluated using TaPS’

extensive plugin system. TaPS provides many reference applications, a diverse set of sup-

ported task executors and data management systems, and performance and metadata log-

ging. We then showcased TaPS through a survey of evaluations to understand performance

characteristics of the applications and executors, such as task overheads, data management,

and scalability. Our hope is that TaPS will be a long-standing tool used to provide a
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common ground for evaluation and to facilitate the advancement in the state-of-the-art for

parallel application execution.
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CHAPTER 3

A NOVEL WIDE-AREA DATA MANAGEMENT PARADIGM

The function-as-a-service (FaaS) and workflow programming paradigms facilitate the devel-

opment of scalable distributed applications. Programmers specify what task (e.g., function or

workflow stage) to perform without regard to where they are executed; the FaaS or workflow

system then handles the mechanics of routing each task to a suitable processor. FaaS systems

often assume that tasks are independent, while in workflow systems tasks may be linked in

a dependency graph (e.g., a directed acyclic graph). In both cases, it is common for all data

movement to pass via a central location such as a FaaS service, workflow engine, shared file

system, or task database, where task inputs and outputs can be stored persistently on sta-

ble storage. Such centralized approaches may lead to unnecessary communication [27, 222]

but facilitate the implementation of other useful features like re-execution of failed tasks or

dynamic adjustments of task location.

The passing of data among tasks via a central location become increasingly problematic

when tasks are located on distinct computers. Consider a program that makes a function

call x=f() to produce a value x that is to be consumed by a second function call g(x). If

f() and g() are dispatched to different computers Ca and Cb, respectively, then x must be

transferred from Ca to Cb. Requiring that this transfer pass via a central location (e.g.,

FaaS service, workflow controller, shared file system) is inefficient, particularly if x is an

intermediary value of no use to the client. Instead, it would be preferable to communicate

x directly from f() to g(). To do this, we need methods for: (1) representing x such that

f() and g() can produce and globally reference x and (2) communicating x from f() to g(),

despite f() and g() running in different processes, compute nodes, or systems.

To address these challenges, we present ProxyStore, an abstraction for managing the

routing of data between processes in distributed and federated Python applications. Proxy-

Store allows developers to focus, when writing and composing distributed applications, on
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Figure 3.1: ProxyStore decouples the communication of object data from control flow
transparently to the application. Data consumers receive lightweight proxies that act like the
true object when used, while the heavy lifting of object communication is handled separately.

logical data flow rather than physical details of where data reside and how data are communi-

cated. This decoupling enables the dynamic selection of different data movement methods,

depending on what data are moved, where data are moved, or when data are moved—a

long-standing challenge in distributed application design [110, 165, 62, 157]. The proxy pro-

gramming model transparently provides pass-by-reference semantics and just-in-time object

resolution to consumers. A proxy is lightweight and can be communicated efficiently via

any means while its referenced object is communicated transparently via optimal routes.

By thus abstracting the use of specialized communication methods, the proxy paradigm

improves code compatibility, performance, and productivity.

ProxyStore provides interfaces to common mediated communication channels (e.g.,

shared file systems, Globus [106, 15, 59], Redis [218]) and custom implementations that

leverage the powerful communication technologies of high-performance computing (HPC)

environments and enable direct communication between remote systems.

The contributions of this chapter are:

• The design and implementation of the proxy model which is, to the best of our knowl-

edge, the first system that transparently provides both pass-by-reference and pass-by-

value semantics for distributed applications.
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• Data transfer mechanisms that enable fast intra- and inter-site communication in vari-

ous settings and an extensible framework for seamless integration of new technologies.

• Component level benchmarks of ProxyStore and comparisons to prior works.

• Experiments using ProxyStore to accelerate real-world federated science applica-

tions.

• Case studies demonstrating the integration of ProxyStore into existing distributed

computing frameworks.

ProxyStore is an open-source Python package available on GitHub [204] and PyPI [205].

The rest of this chapter is as follows: Section 3.1 explores related work in federated and dis-

tributed application design; Section 3.2 outlines ProxyStore design goals and introduces

the core components; Section 3.3 describes the communication channels provided; Section 3.4

presents synthetic evaluations and component-level benchmarks; Section 3.5 applies Proxy-

Store to real-world use cases; Section 3.6 discusses experiences integrating ProxyStore

into distributed computing frameworks; and Section 3.7 summarizes our contributions and

future plans.

3.1 Background and Related Work

Increasing hardware heterogeneity, faster and more reliable networks, and shifts in applica-

tion requirements have motivated federated application design, i.e., applications that span

several cloud, high-performance (HPC), edge, and personal systems. Here we discuss tech-

nologies that enable the management of computation across diverse systems.

Communication decoupling: The appropriate design for a distributed application’s

communication fabric depends on the decoupling needed among application processes. Eu-

gster et al. [99] describes how decoupling can occur along space, time, and synchronization
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dimensions. Processes decoupled in space interact indirectly via a shared service (e.g., mes-

sage queue or object store). A producer and consumer are decoupled in time if they need

not be active at the same time, entities can go online or offline independently and as needed.

Decoupling in synchronization means that data production or consumption does not occur

in the primary control flow, so that, for example, processes need not block on communication

or can be notified asynchronously of events.

HPC applications built on the Message Passage Interface (MPI) often forgo space and

time decoupling. This rigid design has allowed for the development of efficient MPI imple-

mentations [113, 191], including for heterogeneous systems [107]. Asynchronous operations

allow for some overlapping of computation and communication, but in general MPI applica-

tions are tightly coupled.

Modern application design, such as those using serverless or workflow systems, favors de-

coupling across all dimensions for greater flexibility in deployment. Asynchronous systems

and on-demand computing necessitate flexibility among the entities involved in distributed

applications. Publish/subscribe, message queues, and object stores typically provide space

and time decoupling at a minimum and most implementations provide some form of syn-

chronization decoupling (generally producer-side). Subsequently, significant investment has

been made into services meeting these requirements (e.g., AWS S3 [43], Azure Storage [50],

and KeyDB [229]).

Prior work distinguishes direct communication channels from mediated channels where

“the communication between participants is done over storage or other indirect means” [73].

Direct channels typically provide for rapid communication but prevent space and time de-

coupling among actors. Mediated channels necessarily provide space decoupling and can also

provide time decoupling if the mediator (e.g., storage) persists for the entirety of the period

over which any producers or consumers exist.

Data fabrics: Tuple spaces, such as in Linda [8], were early shared data fabrics. In
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the tuple-space model, producers post data as tuples in a shared distributed memory space,

from which consumers can retrieve data that match a specified pattern. Tuple spaces have

since been implemented in many languages, including Python [32]. DataSpaces [90] provides

a tuple-space-like interface to a virtual shared object space designed to support large-scale

workflows composed of coupled applications. The shared space is implemented with remote

procedure calls (RPC) and transfer provided by the Margo and Mercury RPC libraries [220,

225, 231]. WA-DataSpaces [11] extends the DataSpaces model to support data staging and

predictive prefetching to improve data access times. The InterPlanetary File System (IPFS)

is a decentralized, peer-to-peer file sharing network that provides content-addressing via a

flat global namespace [34].

Network policies: Network access is a core problem in federated computing because

policies vary between networks. Network address translation (NAT) and firewalls often pro-

hibit outside access to local devices, thus preventing direct communication between hosts.

These problems are particularly prevalent in scientific computing where experimental instru-

ments are often in different locations from the data storage and analysis computers. At some

sites, Science DMZs [77] permit bypassing firewalls under programmatic control [60]. Cross-

site data transfer can be performed via cloud services (e.g., in Globus Compute [61]), but

this adds latency and can be cost-prohibitive for data-intensive applications. SciStream [64]

addresses these issues by using gateway nodes (e.g., data transfer nodes in a Science DMZ)

to facilitate fast memory-to-memory data transfers between remote hosts.

NAT traversal: A general solution for communication between two hosts behind sepa-

rate NATs is via User Datagram Protocol (UDP) hole punching. In this model, a UDP con-

nection is established between hosts by using a third-party, publicly accessible relay server

that facilitates the connection [105]. For example, Globus Transfer uses such a mechanism for

transfers between two Globus Connect Personal endpoints [59]. The FaaS Messaging Inter-

face (FMI), modeled after the Message Passing Interface (MPI) [175], provides point-to-point
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and collective communication for serverless functions [73]. It supports both mediated chan-

nels, which use external storage accessible by all functions, and direct channels, which use

Transmission Control Protocol (TCP) connections that, however, may not be accessible by

all function invocations. When direct TCP communication is not possible, FMI uses a re-

lay server and hole punching to establish a direct connection between function invocations.

Libp2p defines a modular specification for developing peer-to-peer applications with support

for NAT traversal [164, 224]; implementations of the protocol are provided or planned for

many popular languages.

Workflows: Contemporary computational science applications executed at scale are in-

creasingly written as workflows, collections of many distinct tasks interconnected through

data dependencies. This trend has necessitated the development of advanced computational

tools and frameworks that can glue software components together and provide a platform

for scalable and flexible execution on arbitrary hardware. Workflow management systems,

including Dask [219], Dragon [212], FireWorks [141], Parsl [27], Pegasus [86], Radical Pi-

lot [16], Ray [184], Swift [256], and TaskVine [228], have emerged as powerful solutions to

this challenge. Applications can be expressed as fine-grained tasks, often a function, with

special constructs, such as futures, used to implicitly express inter-task data dependencies.

The framework then abstracts the complexities of executing tasks in parallel and managing

intermediate data across personal, cloud, or high-performance computing (HPC) systems.

Many of these frameworks include both intra- and inter-site data transfer functionality as

a core feature, for movement both of input and output data between clients and execution

environments and of intermediate data between tasks [85, 12]. Parsl, Pegasus, and Swift all

enable transparent intra-site communication via shared file systems, and provide some sup-

port for inter-site communication via files. For example, Parsl supports movement of Python

objects via ZeroMQ [135] sockets in a hub-spoke architecture between the main Parsl pro-

cess and workers; uni-directional file staging via Hypertext Transfer Protocol (HTTP) and
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File Transfer Protocol (FTP) (developers must specify URLs for downloading or uploading

artifacts); and Globus-based data movement between sites based on user-supplied configu-

ration information specifying the Globus endpoint for each site, in which case, Parsl inserts

data transfer operations in the workflow graph and executes movement before/after task

execution.

Function-as-a-Service: Cloud-hosted serverless frameworks (e.g., Amazon Web Ser-

vices (AWS) Lambda [17], Azure Functions [176], Google Cloud Functions [123]) serialize

input and output data along with a function request or result. Functions can also read and

write from cloud object stores (e.g., AWS S3 [43]) and pass object IDs as function inputs

or outputs. Apache OpenWhisk [24], Fn [104], KNIX MicroFunctions [150], Abaco [116] are

serverless frameworks which can be deployed on existing compute infrastructure. Chain-

FaaS [117] and DFaaS [65] extend the serverless model to enable execution on personal and

edge devices. These systems use Docker for deployment or otherwise require root privileges,

thus making them unsuitable for HPC.

Globus Compute [61], formerly funcX, is a cloud-managed serverless framework that

supports remote execution across federated endpoints such as cloud machines, HPC clusters,

edge nodes, and workstations. The Globus Compute cloud service routes each client task to

a specified target endpoint and stores results until retrieved by the client. The cloud service

is essential to providing the compute-anywhere features of Globus Compute but requires that

all inputs and results be sent to, and stored in, the cloud (Redis servers hosted in AWS and

S3), even if the Globus Compute client and endpoints are located in the same site, which

introduces additional latency and costs. Globus Compute enforces a 5 MB task payload size

limit to manage storage and egress costs.
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3.2 Design and Implementation

Here we describe the goals and design of the framework, and detail the implementation

choices necessary to enable the proxy model. ProxyStore provides four primary compo-

nents: the Proxy, Factory, Connector, and Store. The ProxyStore design enables more

features and greater flexibility compared to the de facto approaches for mediated communi-

cation in federated applications.

3.2.1 Assumptions

We make the following assumptions about usage model and target applications. (1) The

application requires some combination of space, time, and synchronization decoupling (i.e.,

ProxyStore is not intended for highly synchronous applications). (2) The application can

be described as a composition of dependent tasks that consume and produce Python objects.

We target Python for its pervasiveness in the scientific and workflow systems communities

and for the language features that make the proxy model possible. (3) Intermediate objects

are written only once but may be read many times. Most task-based workflows fit this

paradigm, especially those with pure functional tasks. (4) Objects need not be moved to a

centralized store, but can stay where they are produced or be moved to where they are to be

consumed. (5) Users may have their own object storage and communication backends that

meet their performance and persistence requirements. Federated applications that employ

FaaS and workflow systems fit these assumptions well.

3.2.2 Requirements

ProxyStore must support applications with any of the following attributes: (1) data

can be produced in many places and must be globally accessible (including across NATs);

(2) computation can be performed in many places, and regardless of location must be able
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to consume previously produced data and produce new objects that can then be accessed

by others; (3) objects may be persistent (must be available for future unknown purposes) or

ephemeral (e.g., an intermediate value that is produced by one function and consumed by

another, and then never accessed again) and, thus, must exist as long as their associated prox-

ies exist; (4) storage locations have varying reliability (e.g., persistent disk vs. in-memory)

and performance; (5) multiple storage or communication methods may need to be employed

within a single workload; and (6) data consumers need not know the communication method

required to access data.

3.2.3 The Proxy and Factory Objects

We meet these design requirements via the use of lazy, transparent object proxies that act as

wide-area object references. The term proxy in computer programming refers to an object

that acts as the interface for another object. Proxies are commonly used to add additional

functionality to their target object or enforce assertions prior to forwarding operations to

the target. For example, a proxy can wrap sensitive objects with access control or provide

caching for expensive operations.

Two valuable properties that a proxy can provide are transparency and lazy resolution.

A transparent proxy behaves identically to its target object by forwarding all operations

on itself to the target. For example, given a proxy p of an object x, the types of p and x

will be equivalent: i.e., isinstance(p, type(x)) and any operation on p will invoke the

corresponding operation on x.

A lazy or virtual proxy provides just-in-time resolution of its target object. The proxy

is initialized with a factory rather than the target object. A factory is an object that is

callable like a function and returns the target object. The proxy is lazy in that it does not

call the factory to retrieve the target until it is first accessed—a process that is referred to

as resolving the proxy. Functionally, proxies have both pass-by-reference and pass-by-value
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attributes. The eventual user of the proxied data gets a copy, but unnecessary copies are

avoided when the proxy is passed among multiple functions.

This factory-proxy paradigm provides powerful capabilities. The proxy itself is a light-

weight reference to the target that can be communicated cheaply between processes and

systems. The proxy is self-contained because the proxy always contains its factory and

the factory includes all logic for data retrieval and manipulation. That is, the proxy does

not need any external information to function correctly. Proxies eliminate the need for

shims or wrapper functions that convert objects into forms expected by downstream code.

Rather, the proxy can be passed to any existing method or function and the conversion is

handled internally by the factory. The consumer code is unaware that the resulting object

is anything other than what it expected. Proxies also have other advantages. For example:

lazy resolution can help amortize costs and avoids unnecessary computation/communication

for objects that are never used; nested proxies can enable partial resolution of large objects;

and proxies can be moved in place of confidential data (e.g., patient health information)

while ensuring that the data can be resolved only where permitted.

ProxyStore implements lazy transparent object proxies. The Proxy class implemen-

tation is initialized with a factory and intercepts any access to a proxy instance attribute

or method; calls the factory to resolve and cache the target object, if the target has not yet

been resolved; and forwards the intercepted action to the cached target. The factory used

to initialize a proxy can be any callable Python object (i.e., any object that implements

__call__, such as lambdas, functions, and callable class instances), as shown in Figure 3.2.

Proxy modifies its own pickling behavior to include only the factory, not the target, when

serializing the proxy, so as to ensure that (1) proxies are small when communicated and (2)

a proxy can still be resolved after being communicated to another process.

Many computing frameworks perform introspection on objects to enable optimizations.

For example, Dask hashes input arguments to tasks to enable reuse of the results from
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1 import numpy as np
2 from proxystore.proxy import Proxy
3

4 def factory_function () -> list[int]:
5 # Function that when called returns target object
6 return [1, 2, 3]
7

8 p = Proxy(factory_function)
9 assert p == [1, 2, 3]
10

11 class ClassFactory[T]():
12 def __init__(self , obj: T):
13 # Class factory are stateful , enabling more
14 # complex target object resolution
15 self.obj = obj
16

17 def __call__(self) -> T:
18 # Called to resolve the target object
19 return self.obj
20

21 x = np.array([1, 2, 3])
22 p = Proxy(ClassFactory(x))
23

24 assert isinstance(p, Proxy)
25 assert isinstance(p, np.ndarray)
26

27 # Using the proxy is equivalent to using the numpy array directly
28 assert np.array_equal(p, [1, 2, 3])
29 assert np.sum(p) == 6
30 y = x + p
31 assert np.array_equal(y, [2, 4, 6])

Figure 3.2: Proxy instances are created from a factory, a callable Python object such as a
function or class that implements __call__. The proxy will invoke the factory just-in-time
to retrieve the target object, after which the proxy will transparently act as the target.
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previously computed pure functions (functions that always return the same result given

the same inputs). Similarly, Dask inspects task object types to apply specialized serializers.

These optimizations enhance performance but interact poorly with proxy types. For example,

accessing the __module__ property of a proxy to serialize the type by reference (as done by

pickle) will cause an AttributeError, and hashing or checking the type of a proxy would

resolve the proxy, incurring unexpected and hard to debug I/O operations. To resolve this,

the Proxy uses a custom implementation of Python’s @property decorator to cache common

read-only attributes of a proxied object. These include the module path, the class type, and

the hash of the target object to ensure that a proxy need not be resolved when common

object metadata are accessed.

The Proxy relies strongly on Python’s duck typing and, thus, code that uses Proxy-

Store cannot be statically analyzed and validated using static type checkers such as my-

py [186], leading to often cryptic errors when a proxy type is used incorrectly at runtime.

ProxyStore provides a mypy extension to support static inference with proxy types. For

example, mypy can understand that any attributes or methods on a type T are also avail-

able on a Proxy[T] or that a function that accepts a ProxyOr[T] should work with a T or

Proxy[T]. This extension ensures that developers can confidently use Proxy types within

larger, type-annotated code-bases.

When a proxy is used, its factory must be able to resolve its target object efficiently. In

a distributed application, this means a factory must be resolvable when the producer and

consumer processes exist independently in space or time. Facilitating this property when

processes can exist in the same network or across multiple requires careful consideration for

the underlying mediated communication channels used. We discuss how we achieve this goal

with the Connector in the following section.

3.2.4 The Connector Protocol
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1 KeyT = TypeVar('KeyT', bound=NamedTuple)
2

3 class Connector(Protocol[KeyT]):
4 def close(self) -> None: ...
5 def config(self) -> dict[str , Any]: ...
6 def from_config(self , config: dict[str , Any]) -> Connector[KeyT]: ...
7 def evict(self , key: KeyT) -> None: ...
8 def exists(self , key: KeyT) -> bool: ...
9 def get(self , key: KeyT) -> bytes | None: ...
10 def get_batch(self , Sequence[KeyT]) -> list[bytes | None]: ...
11 def put(self , obj: bytes) -> KeyT: ...
12 def put_batch(self , objs: Sequence[bytes]) -> list[KeyT]: ...

Figure 3.3: Description of the Connector protocol.

The Connector is a low level interface to a mediated communication channel. In order

to support a wide range of application requirements, we have designed ProxyStore to

be extensible to support various mediated channels that can support different space and

time decoupling patterns. The Connector protocol defines how a client can connect to or

operate on a mediated channel, and a Connector implementation must provide four primary

operations: evict, exist, get, and put. The complete protocol is described in Figure 3.3,

and includes batched versions of operations and configuration mechanisms. The operations

act on byte-string data and keys. E.g., put takes a byte-string to put in the mediated

channel and returns a uniquely identifying key (a tuple of metadata); the byte-string is

retrievable by calling get on the key. We chose this model so that third-party code can easily

provide new Connectors that are plug-and-play with the rest of ProxyStore’s features.

A Connector implementation can be either an interface to an external mediated channel

(e.g., a Redis server) or a mediated channel itself. ProxyStore provides many Connector

implementations that fit both of these categories which we describe further in Section 3.3.

3.2.5 The Store Interface

The Store is the high-level interface used by applications to interact with ProxyStore

as shown in Figure 3.4. A Store is initialized with a Connector instance (a dependency
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Figure 3.4: Processes interact with a Store to proxy objects, and proxy consuming processes
will transparently interact with the local Store instance. The underlying communication is
executed using the Connector interface.

1 from proxystore.connectors.redis import RedisConnector
2 from proxystore.proxy import Proxy
3 from proxystore.store import Store
4

5 def compute(data , Data) -> ...:
6 # Proxy data is resolved from 'demo -store ' on first use
7 assert isinstance(data , MyDataType)
8 # More computation ...
9

10 with Store('demo -store ', RedisConnector (...)) as store:
11 data = Data (...)
12

13 # Store the object and get a proxy
14 proxy = store.proxy(data)
15 assert isinstance(proxy , Proxy)
16

17 compute(proxy) # Succeeds

Figure 3.5: Example of creating a proxy via the Store.
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injection pattern) and provides additional functionality on top of the Connector. Similar to

the Connector, the Store exposes evict, exist, get, and put operations; however, these

operations act on Python objects rather than byte strings. The Store (de)serializes objects

before invoking the corresponding operation on the Connector; custom (de)serialize functions

can be registered with the Store if needed. The Store also provides caching of operations to

reduce communication costs, with caching performed after deserialization to avoid duplicate

deserializations.

However, rather than the application invoking the aforementioned operations directly, the

proxy method, also provided by the Store, is used. Calling Store.proxy puts an object in the

mediated channel via the Connector instance and returns a proxy (Figure 3.5). The object

is serialized before being put in the mediated channel; a factory is generated, containing the

key returned by the Connector and additional information necessary to retrieve the object

from the mediated channel; and then a new proxy, internalized with the factory, is returned.

An evict flag can be passed when creating a proxy. If set, the proxy will evict the object

from the mediated channel when first resolved. Subsequently, the proxy operation, alone, is

a complete interface to an object store because the proxy method handles the put operation

and the proxy resolution process handles get/evict.

The Proxy and Factory instances created by a Store provide functionality for asyn-

chronously resolving the target object in a background thread using the resolve_async

function. This is useful in code which expects a proxy and wants to overlap the communi-

cation of the proxy resolution with other computations.

Store instances are registered globally within a process by name so that initialization is

performed only once, caches are shared, and stateful connection objects in the Connector are

reused. Consider a Connector instance C and corresponding Store S. S has been registered

in process Pa with name “my-store” and is used to create a proxy p. If p is resolved on

a remote process Pb where a Store with name “my-store” has not yet been registered, p
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1 import io
2 from typing import Any
3

4 import torch
5 from proxystore.serialize import serialize
6 from proxystore.store import Store
7

8 def serialize_torch_model(obj: Any) -> bytes:
9 if isinstance(obj , torch.nn.Module):
10 buf = io.BytesIO ()
11 torch.save(model , buf)
12 return buf.read()
13 else:
14 # Fallback for unsupported types
15 return serialize(obj)
16

17 model = torch.nn.Module ()
18

19 store = Store(serializer=serialize_torch_model)
20 proxy = store.proxy(model)

Figure 3.6: Example of a Store configured to use a custom serializer for PyTorch models.

will initialize and register a new Store instance named “my-store” with the appropriate

Connector when p is resolved. This is possible because p’s factory, created in process Pa,

includes the appropriate metadata necessary to recreate C and S in process Pb. Subsequent

proxies created by any Store with the same name and resolved in Pb will then use the

registered Store rather than initializing a new one.

Providing metrics=True when instantiating a Store enables performance tracking on

operations, such as to inspect the average communication time or number of cache hits.

Metrics will also be recorded on proxies created by that Store. Metrics are local to the

process.

Serialization of large or complex Python objects within the Store can be expensive. The

default ProxyStore serializer aims to be fast and compatible with any Python object. To

achieve this, we minimize memory copies by using specialized serializers for common data

formats in scientific computing, including NumPy arrays, Pandas DataFrames, and Polars

DataFrames. Serialization of these types is 2–3× faster compared to pickle. For unknown
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Table 3.1: Summary of provided Connector implementations.

Connector Storage Intra-Site Inter-Site Persistence

File Disk ✓ ✓
Redis Hybrid ✓ ✓
Margo Memory ✓
UCX Memory ✓
ZMQ Memory ✓
DAOS Hybrid ✓ ✓
Globus Disk ✓ ✓
Endpoint Hybrid ✓ ✓ ✓

data types, pickle is used with a fallback to cloudpickle if pickle fails. Alternatively,

users may override the default serializer for a Store upon initialization, or override the

serializer when creating individual proxies. An example, demonstrating a custom PyTorch

model serializer, is shown in Figure 3.6.

3.3 Mediated Communication Methods

All Connector implementations are built on mediated, byte-level data storage. Data storage

methods are broadly classified as in-memory or on-disk. Mediated channels use one or both

methods, depending on performance and persistence aims. The proxy abstraction provided

by the Store enables a producer to unilaterally (i.e., without the agreement of the receiver)

choose the best mediated channel for object communication.

Data storage may be local to the process or machine, within the same network, or at a

remote site. Here, we describe the various Connector implementations provided out-of-the-

box that can be used with the Store that support in-memory and on-disk data storage within

and between sites (summarized in Table 3.1). We also describe an implementation provided

MultiConnector abstraction which enables intelligent routing of objects across connectors.
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3.3.1 Intra-Site Communication

Various technologies, such as shared file systems, TCP/UDP sockets, and remote distributed

memory access (RDMA), enable data transfers between nodes on the same local area network:

i.e., not located behind different NATs.

On-disk Storage: For large objects or data that needs to be persisted, ProxyStore

provides the FileConnector for mediated communication via a shared file system. The

FileConnector is initialized with a path to a data directory in which proxied objects can be

serialized and written (and then read) as files.

Hybrid Storage: The RedisConnector uses an existing Redis [218] or KeyDB [229]

server as the mediator. Redis provides a hybrid between in-memory and on-disk data storage

with low-latency, easy configuration, persistence, and optional resilience via replication across

nodes. The RedisConnector implementation is only 31 lines of Python code, exemplifying

the ease with which the proxy model can be extended to other mediated communication

methods via the Connector protocol.

The DAOSConnector enables use of DAOS, a distributed object store designed for high-

speed non-volatile memory like Intel Optane [163] and NVMe. DAOS is available on next-

generation compute clusters like Aurora at the Argonne Leadership Computing Facility and

is typically deployed across a machine in a similar fashion to a shared file system like Lustre.

Thus, using the DAOS within ProxyStore is easy—minimal configuration is required—

and performance is superior to shared file systems. The user need only provide the name of

their DAOS pool and container to use.

Distributed In-memory Storage: Distributed memory backends for intra-site commu-

nication permit applications to benefit from increased memory capacity and scalability. Two

implementations are provided, MargoConnector and UCXConnector, to leverage rapid com-

munication on high-speed networks by using the Py-Mochi-Margo [206] and UCX-Py [240]

libraries, respectively. A third implementation, ZMQConnector, uses ZeroMQ for commu-
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nication and is provided as a fallback for compatibility. When one of these connectors is

initialized for the first time in a process, it spawns a process that acts as the storage server

for that node. Thus, these connectors act as interfaces to these spawned servers which make

up the actual distributed in-memory store. These distributed storage methods are elastic—

expanding as proxies are propagated to new nodes—and enable the use of state-of-the-art

direct communication methods in a mediated fashion.

3.3.2 Inter-Site Communication

ProxyStore enables data transfer between computers at different sites (and also between

computers at the same site that are located behind different NATs) by using disk-to-disk

solutions for bulk data and memory-to-memory solutions for low latency.

On-disk Storage: Bulk file transfers between sites are ubiquitous in scientific applica-

tions. To support such transfers, the FileConnector is extended as the GlobusConnector

to use Globus to move object files between sites. Globus transfer supports efficient, secure,

and reliable file movement and is widely adopted across computing centers with more than

20 000 active endpoints. Globus Connect software is easily deployed on computers without

an existing endpoint.

The GlobusConnector is initialized with a mapping of hostname regular expressions to

a tuple of (Globus Endpoint UUID, Endpoint path). A proxy, while resolving itself, will

match the hostname of the current system to the provided hostname regular expressions to

determine the directory on the local endpoint with the transferred files. GlobusConnector

keys are the tuple (object_id, task_id) where the task_id is the Globus transfer task

ID. A proxy will wait for the transfer task to succeed before resolving itself or raise an error

if there is a Globus Transfer failure. For efficient movement of many objects, the Store

provides a proxy_batch method that will invoke a batch transfer of proxied objects as a

single Globus transfer.
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punching and a publicly accessible relay server. When PS-endpoint A wants to connect to PS-
endpoint B, A asks the relay server R to forward a session description protocol (SDP) [127]
to B (1 and 2). This description contains information about how the two peers can connect,
such as what protocols they support. B receives A’s session description from R and replies
with B ’s session description (3 and 4). A and B then generate interactive connectivity
establishment (ICE) candidates [147] (i.e., public IPs and ports to try for the connection)
which they exchange via R. Once A and B have exchanged ICE candidates, they can connect
by completing the hole punching process (5).
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In-memory Storage: A common pattern in inter-site applications is the use of a cen-

tralized orchestrator that can communicate with all sites and mediates the control flow

between actors across the sites. A simple example is a cloud-hosted queue of tasks, which

actors at each site poll to obtain tasks to execute or to place new tasks on the queue. In

this model, data producers may not always know where data are eventually needed, but

it can also be prohibitively expensive (monetary or overhead) to store data in the cloud

or in some other central service. The proxy model allows applications to pass data by

reference across sites and perform the underlying communication more directly, avoiding ad-

ditional overheads of unnecessary data movements. ProxyStore includes a ProxyStore

endpoint (PS-endpoints) model that facilitates direct data transfer between sites as shown

in Figure 3.7.

PS-endpoints are in-memory object stores, with optional on-disk storage if host mem-

ory is insufficient or data persistence is required. PS-endpoints are managed with the

proxystore-endpoint command-line interface. Clients use the EndpointConnector to in-

teract with PS-endpoints, and object keys are the tuple (object_id, endpoint_id). If a

PS-endpoint receives an operation request on a key with an endpoint_id that is not its own,

the PS-endpoint establishes a peer connection to the target PS-endpoint and forwards the

request.

Peer-to-peer communication between PS-endpoints is achieved via the Web Real-Time

Communication (WebRTC) standard [253, 41]—specifically, by using the RTCPeerConnec-

tion and RTCDataChannel components of the aiortc open-source WebRTC implementa-

tion [9]. The RTCPeerConnection handles the establishment of peer connections across

firewalls using NAT traversal and hole punching, as described in Section 3.1; security; and

connection management. The RTCDataChannels are associated with an RTCPeerConnec-

tion and enable bidirectional transfer between peers; data are transported over the channel

via SCTP (Stream Control Transmission Protocol) over DTLS (Datagram Transport Layer
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Security).

PS-endpoints use a publicly accessible relay server or signaling server to facilitate the

creation of RTCPeerConnections. The process of establishing the connection via the relay

server is illustrated in Figure 3.8. Once a peer connection is established, the PS-endpoints

maintain the connection until one of the PS-endpoints is stopped; the connection is re-

established if lost for any reason, e.g., due to a PS-endpoint going offline temporarily. The

hosting requirements for the relay server are minimal because establishing a peer connection

only requires the relay server to exchange a few small (O(KB)) messages between the peers.

We provide a WebSocket-based [102] relay server implementation that can be self hosted,

and we host a public relay server with authentication provided via Globus Auth [239] (widely

adopted in academic communities), which allows users to authenticate with their institutional

credentials.

Continuing with the environment described in Figure 3.7, the flow of data and their

associated proxies is as follows:

1. Host A creates a proxy of the target object. The serialized target is placed in Host A’s

local endpoint (Endpoint 1). The proxy contains the key referencing the target, the

endpoint UUID with the target data (Endpoint 1’s UUID), and the list of all endpoint

UUIDs configured with the EndpointConnector (the UUIDs of Endpoints 1 and 2).

2. Host A communicates the proxy object to Host B. This communication is cheap because

the proxy is a lightweight reference to the object.

3. Host B receives the proxy and attempts to use the proxy initiating the proxy resolution

process. The proxy requests the data from Host B’s local endpoint (Endpoint 2).

4. Endpoint 2 sees that the proxy is requesting data from a different endpoint (Endpoint

1) so Endpoint 2 initiates a peer connection to Endpoint 1 and requests the data.

5. Endpoint 1 sends the data to Endpoint 2.
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6. Endpoint 2 replies to Host B’s request for the data with the data received from End-

point 2. Host B deserializes the target object and the proxy is resolved.

PS-endpoints are single-threaded, asyncio applications. When started, they connect and

register with the relay server, and the relay server assigns a unique UUID if not already

assigned. An asyncio task is created which listens on the WebSocket connection with the relay

server for incoming peering requests and responds appropriately. Once a peer connection

is established, the PS-endpoint also listens for and responds to incoming requests from its

peers.

Over the last couple of years, we have hosted a public relay server that is the default

when using the CLI. To configure and start and endpoint:

$ proxystore-endpoint configure demo

INFO: Configured endpoint: demo <a6c7f036-3e29-4a7a-bf90-5a5f21056e39>

INFO: Config and log file directory: ~/.local/share/proxystore/demo

INFO: Start the endpoint with:

INFO: $ proxystore-endpoint start demo

Users will be prompted to authenticate with Globus Auth, ensuring that endpoints can only

communicate if owned by the same user. Additional CLI tools are provided beyond those for

configuring, starting, and stopping user endpoints: proxystore-endpoint check-nat runs

heuristics to determine if NAT hole-punching is likely to work on the current network, and

proxystore-endpoint test can be used to query endpoint and perform test transfers.

Similarly, a relay server can be started via the CLI.

$ proxystore-relay --config relay.toml

Here, relay.toml defines the serving parameters, including keys for TLS and the authenti-

cation mechansims.
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3.3.3 The MultiConnector Abstraction

Sophisticated applications that employ multiple data communication patterns can benefit

from using multiple types of mediated communication (i.e., Connector implementations).

Rather than creating multiple Store instances and a policy directing when to use each

instance, ProxyStore provides the MultiConnector abstraction, which is initialized with

a mapping of Connector instances to policies, to indicate how each Connector should be

used. Thus, an application can use a single Store instance, and operations will be routed

transparently and automatically to the appropriate Connector. Policy definitions are flexible

and can be extended by developers. An example policy may include minimum and maximum

object sizes, representing the ideal operating range for that Connector; tags denoting the

sites at which the Connector is accessible (e.g., a MargoConnector is available within a single

cluster, while an EndpointConnector is available at multiple sites); and a prioritization

function for breaking ties when multiple Connector instances are otherwise suitable for a

given object.

Store operations accept additional keyword arguments that are passed to the corre-

sponding Connector method. The put and proxy methods of MultiConnector take a set

of optional constraints on the data being stored. These constraints, as well as other meta-

data (object type or size, location, etc.), are matched against each policy of each Connector

managed by the MultiConnector. If no match is found then an error is raised, although

deployments may often prefer to provide a low priority fallback with no constraints.

3.4 Synthetic Evaluations

We evaluate the component-level performance of ProxyStore, quantify overhead reduc-

tions in compute frameworks when using ProxyStore, and demonstrate the use of Proxy-

Store in three real-world scientific applications. For brevity, we use the term XStore to

mean we are using a ProxyStore Store initialized with an XConnector for communication.
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E.g., RedisStore is a Store initialized with a RedisConnector.

We performed experiments using six machines: Theta, Polaris, Perlmutter, Frontera,

Midway2, and Chameleon Cloud. Theta and Polaris are at Argonne National Laboratory.

Theta is a 4392-node Intel Knights Landing (KNL) cluster. The 560-node Polaris has four

NVIDIA A100 GPUs per node. NERSC’s Perlmutter cluster has 1536 NVIDIA A100 GPU

nodes and 3072 AMD EPYC CPU nodes. We use the login nodes of Midway2 at the

University of Chicago and the Texas Advanced Computing Center’s (TACC) Frontera cluster

as clients to distributed applications running on the aforementioned systems. Chameleon

Cloud [146] provides bare-metal compute nodes.

3.4.1 ProxyStore with FaaS

We first evaluate ProxyStore with the federated FaaS platform Globus Compute [61],

with the goal of quantifying the performance gains that may be achieved with minimal code

changes to the producer and no changes to the compute framework.

To quantify the extent to which passing task inputs with proxies can reduce data transfer

overheads, we perform experiments with Globus Compute where we execute no-op and 1 s

sleep tasks with payload sizes from 10 bytes to 100 MB (Figure 3.9). We use four different

configurations of Globus Compute clients and endpoints. (1) Theta → Theta: Client and

tasks all run on the same Theta node. (2) Perlmutter Login → Perlmutter Compute: Client

runs on a Perlmutter login node and tasks on a Perlmutter compute node. (3) Midway2

→ Theta: Client runs on a Midway2 login node and tasks on a Theta compute node.

(4) Frontera → Theta: Client runs on a Frontera login node and tasks on a Theta compute

node. In the first two scenarios, the client and task execute in the same site and thus we

compare the round-trip time when data are moved via the Globus Compute cloud service

to data movement via ProxyStore’s FileStore, RedisStore, and EndpointStore. In the

latter two scenarios, the client and task execute in different sites, so we compare the baseline
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Figure 3.9: Average performance for round-trip Globus Compute no-op (top) and 1 s sleep
tasks (bottom), for intra-site (two left columns) and inter-site (two right columns) config-
urations. In intra-site configurations, we compare baseline input data transfer via cloud to
ProxyStore’s FileStore, RedisStore, and EndpointStore. For inter-site, we compare to
IPFS and ProxyStore’s EndpointStore and GlobusStore. Dashed lines denote the 5 MB
Globus Compute payload size limit for transfer via the cloud; ProxyStore can handle
>5 MB task payloads without modifying task code to communicate via alternate means.
Error bars denote standard deviation but are often smaller than data point markers.

62



1 from globus_compute_sdk import Executor
2 from proxystore.connectors.redis import RedisConnector
3 from proxystore.store import Store
4

5 with Store('example ', RedisConnector (...)) as store:
6 data = store.proxy([1, 2, 3])
7

8 with Executor('<UUID >') as gce:
9 future = gce.submit(sum , data)
10 assert future.result () == 6

Figure 3.10: Example ProxyStore usage with Globus Compute.

to ProxyStore’s EndpointStore and GlobusStore. We also compare with a configuration

in which data are moved to the Globus Compute endpoint by using the InterPlanetary File

System (IPFS) [34]. IPFS is a peer-to-peer distributed file system, so we treat the Globus

Compute client and Globus Compute endpoint as two nodes of the distributed file system. In

no-op tasks, we ensure that the proxy is resolved even though no computation is performed,

and in the sleep tasks, we begin asynchronously resolving the proxy before sleeping and then

wait on the asynchronous resolve after the sleep to simulate overlapping proxy resolution

with compute.

The baseline round-trip time, where data are transferred along with the task request

to the Globus Compute cloud service, increases with data size up to the Globus Compute

limit. In the first two scenarios where the client and task execution occur at the same site,

all three ProxyStore options eliminate the Globus Compute data transfer overhead. This

was achieved with only two client-side lines of code: one to initialize the Store and one

to proxy task inputs before submitting to Globus Compute (Figure 3.10 lines 5–6). The

asynchronous resolve in the sleep task requires one additional line of code in the task itself,

but the overlap of communication and compute can yield benefits.

In the inter-site cases where the clients run on Midway2 or Frontera login nodes and

execute tasks on Theta, we use the GlobusStore and EndpointStore. GlobusStore per-

formance is not competitive with the Globus Compute baseline up to Globus Compute’s
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payload limit. The performance is a consequence of Globus transfer’s hybrid software-as-a-

service model, which results in high bandwidth for larger transfers but not low latency for

small transfers. However, the benefits of Globus transfer become substantial as data sizes

grow beyond those used in this experiment. The EndpointStore outperforms the baseline,

except for no-op tasks between Frontera and Theta where the performance is comparable.

For the largest (100 MB) payloads, EndpointStore performance is less than the theoretical

peak of the connection. We investigate this discrepancy further in Figure 3.4.3.

We also compare to IPFS for inter-site data transfer. Task data are written to disk, the

file is added to IPFS, and the content ID of the IPFS file is passed as input to the Globus

Compute task. When the Globus Compute task is invoked, IPFS is used to retrieve the file,

and the data are read back into memory. Whereas ProxyStore required two extra client

side lines of code, IPFS support required 13 extra lines of code on both the client and task.

The performance of PS-endpoints and IPFS for no-op tasks between Midway2 and Theta

are within run-to-run variances of each other. PS-endpoints are faster with the one second

sleep tasks because of the asynchronous resolution of proxies. PS-endpoints outperform

IPFS for Frontera to Theta transfers due to Frontera having a slower file system and slower

transfers between the IPFS peers compared to the Midway2 → Theta scenario. IPFS and

PS-endpoints address a different set of problems—IPFS is designed for decentralized and

persistent sharing of content-addressable files; however, IPFS has a mature peer-to-peer

transfer protocol which we can use as a point of comparison to show that PS-endpoints can

outperform IPFS.

We repeat these experiments with the distributed in-memory connectors described in Sec-

tion 3.3.1 and compare performance to DataSpaces, a shared-space abstraction designed for

large-scale scientific applications. The experiments were executed on Polaris, which has a

high-performance HPE Slingshot 11 network, and on two Chameleon Cloud nodes with a

Mellanox Connect-X3 40GbE InfiniBand interconnect. Figure 3.11 shows that the baseline
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cloud transfer and ProxyStore alternatives all exhibit similar performance at data sizes

<1 GB, after which bandwidth dominates performance.

MargoStore and UCXStore, which both leverage RDMA, achieve the best overall per-

formance on Polaris. However, UCXStore performs measurably worse than MargoStore and

RedisStore for larger data sizes on Chameleon. We suspect the disparity is a result of the

network differences between the two systems. While we expect DataSpaces and MargoStore

to perform similarly because both use Margo for the transport layer, MargoStore outper-

forms DataSpaces on both systems. We observed prominent startup overheads, particularly

for smaller transfers, with DataSpaces on Chameleon.

We focus on FaaS for HPC and choose Globus Compute because it is designed to coordi-

nate computation across federated resources (e.g., cloud, HPC, and edge devices). However,

ProxyStore is agnostic to the compute framework and will work with other FaaS systems.

We expect comparable performance characteristics since Globus Compute’s data storage and

communication mechanisms are similar to cloud-specific FaaS systems.
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Figure 3.12: Percent improvements in task round-trip time when using ProxyStore to
move data vs. Colmena’s default method with Parsl. Each task configuration is repeated
100 times, and the median time is used to compute the improvement.

3.4.2 ProxyStore with Workflow Systems

Colmena is a Python library for steering large ensembles of simulations [249]. Colmena

applications contain three components (described in more detail in Section 3.6.1: (1) a

thinker, one or more agents that create tasks and consume results; (2) a task server, which

coordinates tasks to be executed by using a workflow engine (here, Parsl); and (3) workers

which execute the tasks and return results to the task server. We integrate ProxyStore

into Colmena at the library level. Users can register a Store and associated threshold for

each task type. Task inputs or results greater than the threshold will be proxied before the

task is sent to the task server. Passing proxies with the task can alleviate overheads in the

Task Server and underlying workflow system.

We investigate overhead improvements in Figure 3.12, where we report the percent im-

provement over the baseline of median round-trip task times. We execute a series of no-op

tasks using Colmena and Parsl with varied input and output sizes. The thinker, task server,

and worker are co-located on a single Theta node to isolate effects of the network. Neither

ProxyStore’s caching capabilities nor asynchronous resolving of proxies are used. For
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Figure 3.13: Average client get and set request times to a single PS-endpoint with respect
to payload size and concurrent clients issuing the same request. Error bars denote standard
deviation.

small data sizes (<100 KB), any improvements in overhead in Colmena are largely negated

by the additional overhead of proxying the data (i.e., I/O with storage). However, Proxy-

Store yields 40–60% improvements in overhead for 1 MB data sizes and 88–89% for 100 MB

data sizes. This exemplifies why passing by proxy can be invaluable in distributed systems

with many interconnected components. Proxies can be passed around cheaply while ensuring

that data are only communicated between producer and consumer.

3.4.3 ProxyStore Endpoint Performance

To better understand the characteristics of PS-endpoints, we next study the times taken for

client-to-PS-endpoint requests and PS-endpoint-to-PS-endpoint requests.

Client Access: In Figure 3.13, we show average per-request times for get and set

operations versus the number of concurrent clients making the same request and for varied

payload sizes. Each client makes 1000 requests, and the experiment was performed with

Python 3.11 on a Perlmutter CPU node. Response times scale linearly with number of

clients for more than two concurrent clients, and also scales with payload size. This is

reasonable given that the proof-of-concept PS-endpoint implementation is single-threaded.

Handling many concurrent workers with low latency is better suited for another mediated
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Figure 3.14: Average get and set times, over 1000 requests, between two PS-endpoints,
with error bars showing the standard deviation. Comparisons are made to hosting a Redis
server on the target site and opening an SSH tunnel when the two sites are different. The
PS-endpoint configuration has one more hop (client—local endpoint—remote endpoint) than
Redis (client—remote Redis).

communication channel such as Redis.

Endpoint Peering: The primary use case for PS-endpoints is transfers between different

sites. Thus, we measure request times between PS-endpoints as a function of payload size (see

Figure 3.14). We consider three scenarios: requests between two PS-endpoints on different

Theta nodes, which serves as a baseline; requests between PS-endpoints on Midway2 and

Theta; and requests between PS-endpoints on Frontera and Theta. These scenarios differ in

latency—packets need only travel tens of meters in the first scenario but 1500 kilometers in

the third—and bandwidth—the first scenario can utilize the high bandwidth Aries Dragonfly

network of Theta while the latter must cross multiple network boundaries. While no system

provides equivalent features to PS-endpoints, we compare its performance to that of a Redis

server hosted on the target site with a (manually created) secure shell (SSH) tunnel between
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the two sites. While in practice SSH tunnels can be fragile and difficult to configure (e.g., to

authenticate automatically), they are commonly used by workflow systems [27, 256] and the

comparison can help highlight strengths and weaknesses of the PS-endpoint implementation.

We observe that Redis with SSH is generally faster than PS-endpoints, a result for which

we identify two primary reasons. First, the PS-endpoint configuration has one more hop

than the Redis configuration because two endpoints must be used in contrast to a single

Redis server and SSH tunnel. This factor is most prevalent in the Theta-to-Theta scenario

where network latency is minimal so the overhead of the extra hop dominates. Second, we

discovered that the aiortc RTCDataChannel cannot fully utilize the available bandwidth

between sites. This is why the difference in performance between PS-endpoints and Redis

increases at larger data sizes. A simple test where we established an RTCDataChannel

between a process on Frontera and another on Theta achieved a maximum bandwidth of

80 Mbps, a fraction of the full bandwidth available. This is because computing centers

throttle UDP connections to avoid congestion, and aiortc congestion control is slower than

other congestion control algorithms like Google’s BBR [51]. We support multiplexing data

transfer over multiple RTCDataChannels; however, the single-threaded asyncio model is

unable to benefit from multiplexing over more than a couple RTCDataChannels. Despite

these networking limitations, the performance of PS-endpoints is still competitive with Redis

for long distance transfers while not requiring SSH tunnels or open ports.

3.5 Application Evaluations

In this section, we demonstrate the performance benefits of ProxyStore using three real-

world scientific applications.
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Table 3.2: Round-trip task times for the real-time defect analysis application. The Globus
Compute endpoint is hosted on a Polaris login node and the tasks are executed on a Polaris
compute node. In the Globus Compute baseline and FileStore configurations, the client
(simulating an experimental setup) is hosted on Theta, and the client is hosted on Midway2
in the EndpointStore configuration. Transferring task inputs and outputs via ProxyStore
yields >30% performance improvements in intra- and inter-site task execution.

Configuration Proxied Time (ms) Improvement

Globus Compute baseline — 3411± 389 —

FileStore
Inputs 2318± 130 32.1%

Inputs/Outputs 2160± 46 36.6%

EndpointStore
Inputs 2375± 98 30.4%

Inputs/Outputs 2280± 107 33.2%

3.5.1 Real Time Defect Analysis

A common pattern in scientific applications is to transfer data produced by an experiment

to a compute facility for analysis. For example, Argonne National Laboratory’s transmission

electron microscopy facility uses Globus Compute to invoke a machine-learned segmentation

model to quantify radiation damage in acquired images, dispatching this computation to

an HPC facility for fast GPU inference. We modify an open-source real time defect anal-

ysis application [247] to create and send proxies of images, rather than the actual images.

We create a test deployment to mirror the production environment with remotely located

instruments and compute.

We measure the baseline round-trip task time for inference on 1 MB images and compare

to FileStore and EndpointStore (Table 3.2). In all cases, we use a Globus Compute

endpoint on a Polaris login node that executes tasks on a Polaris compute node. In the

Globus Compute baseline and FileStore cases, our client (i.e., simulated beam facility) is

hosted on a Theta login node, and in the EndpointStore case, when the client is on Midway2,

with PS-endpoints on both Midway2 and a Polaris login node. We test with only the input
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Figure 3.15: Average transfer times for the federated learning use case. PS-endpoints greatly
reduce transfer times between nodes compared to cloud transfer. In addition, without
ProxyStore, we are unable to transfer models larger than ∼40 hidden blocks due to
cloud transfer limits.

images being proxied and with both the input images and inference outputs being proxied.

Note that in the former, the code executed on the Globus Compute endpoint is unchanged,

while the latter required two additional lines of task code to proxy the output by using the

same Store that was used to resolve the input proxy.

We see in Table 3.2 that ProxyStore improves round-trip task times by 32.1% and

30.4% with FileStore and EndpointStore, respectively, when only the inputs are proxied.

Further improvements of a few percentage points can be gained if the downstream code

also returns proxies. We note that ProxyStore enabled greater flexibility in terms of how

clients interact with tasks executed on the Globus Compute endpoint. Each client can choose

its preferred communication method, depending on the mediated communication channels

available from itself to the Globus Compute endpoint.

3.5.2 Federated Learning

Federated learning (FL) [174] is an increasingly popular approach to distribute machine

learning (ML) training across, often edge [227, 168], devices. In FL, an aggregator node

initializes an ML model and shares it with edge devices to train the model on their own

private data in small batches. Once the edge training is complete, the locally-trained models
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are returned to the aggregator node to “average” the model to create a new global model.

This new global model is then shared again with the edge devices for further training. In

FL only the model is transferred across the network; the distributed edge devices’ data are

never shared.

Here, we demonstrate the applicability and benefit of ProxyStore not only for FL

use cases but edge computing workflows in general. Due to constrained capacity of edge

devices, limited connectivity, and application requirements, making effective use of networks

and providing low latency is often crucially important [171]. ProxyStore allows for FL

control to be separated from data movement, enabling aggregation to occur anywhere, and

for models to be transferred directly between edge and aggregation nodes when needed.

Our application is implemented using FLoX [151], a FL framework which uses Globus

Compute to orchestrate training of TensorFlow [4] models. Our application trains a convo-

lutional neural network for image classification with the Fashion-MNIST dataset [262]. We

increase the number of hidden layers of the neural network to show ProxyStore’s ability

to support larger models compared to a purely FaaS-based approach. We use the same test

bed as used in [151] to deploy our application across four edge devices. Figure 3.15 shows the

transfer time as we increase the number of model parameters when using Globus Compute or

using Globus Compute and ProxyStore. We see that ProxyStore both reduces trans-

fer time and also enables use of larger models. In the cases where Globus Compute is able

to complete the model transfer, ProxyStore is able to reduce transfer time by ∼68% on

average. Further, ProxyStore can be used to implement hierarchical model aggregation,

where sets of edge-trained models are aggregated in a distributed fashion.

3.5.3 Molecular Design

We adapt an open source molecular design workflow to use the MultiConnector for com-

munication between tasks. The workflow uses a mix of quantum chemistry simulations and
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Figure 3.16: Average node utilization of the molecular design application, with and without
ProxyStore. The number of GPUs used for training and inference tasks is constant
while the number of CPU nodes for simulations is increased. Without ProxyStore, the
application struggles to keep all CPU nodes and GPUs fed with tasks. ProxyStore reduces
the amount of data flowing through the workflow system, thus reducing the latency between
task results being received and new tasks dispatched.

surrogate machine learning models [251] to identify electrolytes with high ionization poten-

tials (IP) in a candidate set.

The workflow comprises: (1) simulation tasks that compute IPs on CPUs, (2) training

tasks that train surrogate models to predict IPs, and (3) inference tasks that use trained

surrogate models to predict IPs, which are then ranked by confidence and used to guide

future simulation tasks. The simulation tasks run on Theta compute nodes, and the training

and inference tasks run on a remote GPU node (located behind a different NAT and using

a different authentication procedure than Theta). Tasks are orchestrated with a Colmena

Thinker running on a Theta login node and task execution is managed with Parsl.

To optimize communication of task data, we use the MultiConnector configured to use

RedisConnector for simulation tasks and EndpointConnector for training and inference

tasks. RedisConnector is suitable for low-latency communication between Theta login and

compute nodes and provides persistence when an application spans multiple batch jobs; PS-

endpoints enable peer-to-peer transfer of model weights (10 MB in this case) to and from a

remote GPU node. Inputs to inference tasks also require peer-to-peer data transfer to remote

GPU nodes. The inference dataset is static, so while the first round of proxies result in data
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being moved to the GPU node; proxies for later inference rounds benefit from cached data.

We also investigated using GlobusConnector for data movement. While in this case the

dataset was not large enough to benefit from Globus transfers, this would be a good option

if a larger dataset were used. This workflow exemplifies how ProxyStore can coordinate

optimal communication in complex workflows. We note that no task code needed to be

modified to work with the diverse communication methods employed.

In this application, we want to use proxies to reduce overheads in the workflow system.

We evaluate their effectiveness for this purpose by measuring average node utilization during

application execution as a function of the number of Theta KNL nodes used for simulations.

We see in Figure 3.16 that the workflow system struggles to keep nodes fed with new tasks

as scale increases. However, use of ProxyStore removes data movement burdens from the

workflow system and improves scaling, improving utilization by 29% and 43% at 512 and 1024

nodes, respectively. We also observe ProxyStore improves utilization of the remote GPUs

by speeding up data transfer. At 1024 nodes with ProxyStore, computation, rather than

communication, becomes the bottleneck because simulation results must be processed serially

prior to dispatching new simulations. Processing a simulation result takes 267± 518 ms on

average in the baseline 1024 node run, but ProxyStore improves this time by 25% to

201± 140 ms.

3.6 Framework Integrations

ProxyStore has been integrated into a variety of distributed computing frameworks. This

section highlights the technical motivations and performance results for three of these inte-

grations: Colmena, Dask, and Flight.
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1 from colmena.queue import RedisQueues
2 from proxystore.connectors.redis import RedisConnector
3 from proxystore.store import Store
4

5 store = Store('redis ', RedisConnector (...), register=True)
6

7 queue = RedisQueues(
8 ...,
9 proxystore_name='redis ',
10 proxystore_threshold =100000 ,
11 )

Figure 3.17: Example of ProxyStore usage within Colmena queues.

3.6.1 Colmena

Colmena [249, 251, 248] is a Python library designed to facilitate intelligent task orchestration

for scientific computing workflows. It provides a model for integrating machine learning (ML)

models, simulation codes, and data-driven decision-making into high-performance computing

(HPC) and distributed computing environments.

Applications built using Colmena are formed of three types of independent processes:

a thinker, a task server, and one or more workers. The user-written thinker implements

the decision-making policy used to steer the workflow and generate tasks. The thinker

communicates task requests to the task server; the results of those tasks, once available, are

returned from the task server to the thinker. The thinker makes decisions in response to

results being communicated or other events (e.g., availability of compute resources). The

task server matches each task request to the corresponding task definition (e.g., function)

and dispatches the resulting task to an appropriate worker. Task requests are received from

the thinker and can be executed in any order. Each worker receives tasks from the task

server, executes each task, and provides results back to the task server. Key innovations

within Colmena are focused on maximizing the concurrent and performance of these different

components.

For tasks with large input or result values, Colmena uses ProxyStore to pass values
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directly from the thinker to the worker—bypassing the task server. (ProxyStore was orig-

inally referred to as the “Colmena value server” before being split into a separate project.)

The thinker and task server communicate via message queues, and these queues can be con-

figured to automatically proxy input and result values larger than a user-defined threshold.

Configuration is simple, requiring only a few additional lines of code to initialize a Store

and set queue parameters (see Figure 3.17). Alternatively, users can manually proxy large

objects in their thinker or task implementations. Colmena starts asynchronously resolving

all proxies in a task’s input prior to the task being executed on a worker; thus, ProxyStore

communication is overlapped with the task’s execution. The start of a task often involves

some initialization or importing of libraries, such that by the time a value is needed by the

task, the corresponding proxy has already been resolved in the background.

We built a synthetic application Colmena application to permit the systematic evaluation

of communication overheads in the system. This application uses a thinker plus N workers,

one per node; the Thinker generates T identical tasks, each with duration D, unique (and

thus non-cacheable) input of size I, and producing a result of size O. This thinker first

submits one task per worker and then continues to submit a new task each time that it

receives a result, until T tasks have been submitted. We use this application to measure

costs for different {T , D, I, O, N} combinations.

To evaluate the impact of ProxyStore, we first run the synthetic application for 200

zero-length tasks with 1 MB inputs on eight nodes (i.e., {T=200, D=0, I=1 MB, O=0,

N=8}), both with and without ProxyStore (referred to in figure as the “Value Server”),

while measuring task overheads. We see in Figure 3.18 (top left) that the use of Proxy-

Store reduces, in particular, thinker to task server communication and serialization times.

The cost of transferring input data to the worker is reduced by the use of the asynchronous

proxy resolution. (Note that if input values were all identical, this cost would be largely

eliminated due to caching.)
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Figure 3.18: (Top Left) Median per-task durations for components in the Colmena task life
cycle on the Theta cluster at ALCF, with and without the ProxyStore (i.e., the “Value
Server”), as measured for a synthetic application with eight workers, zero-length tasks, 1 MB
inputs, and 0 B outputs. ProxyStore reduces time spent serializing, communicating, and
deserializing task data. (Bottom Left) Percent reduction in synthetic application overheads
for a similar configuration on Theta, with and without ProxyStore, as a function of
input data size. ProxyStore yields performance benefits when task inputs are larger than
around O(10) kB. (Right) Break-down of median times for different components of the end-
to-end execution of a no-op task with Colmena using the Globus Compute (previously called
“funcX”) task server. ProxyStore reduces communication costs for both small (10 kB) and
large (1 MB) task inputs by avoiding repeated serializations and deserializations of object
transmitted through the task server and Globus Compute cloud service. Figures from Ward
et al. 2021 and 2023.
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Figure 3.19: Machine learning inference task performance (molecule evaluations per second)
on Theta versus number of nodes (one worker per node). The inference rate is measured
starting from the time the first worker begins computation (i.e., after loading libraries) to
when all inference tasks have completed. ProxyStore reduces communication overheads
in the Colmena task server which enables linear scaling at 2048 nodes. Without Proxy-
Store, performance degrades after 512 nodes. Figure from Ward et al. 2021.

To further study how the benefits of ProxyStore vary with input size I, we repeat

the experiments of Figure 3.18 (top) but while varying I from 1 KB to 10 MB. The results,

shown in Figure 3.18 (bottom left) as percentage improvement in communication overhead

time with ProxyStore relative to the time without, show that for small inputs (<10 KB),

the additional cost of communicating data via ProxyStore is larger than the cost of

passing the input data through the task server—but that as the input size increases, the cost

of passing input data through the task server increases rapidly and ProxyStore yields

large improvements.

Next we compare the performance achieved when communicating task inputs with Globus

Compute (referred to as “funcX” in the figure, the former name for Globus Compute) and two

ProxyStore backends: shared file system and Redis. We uses the synthetic app to execute

no-op tasks that return no output to measure task overheads. We perform the experiment

with 10 kB and 1 MB inputs. We chose the input sizes based on the characteristics of

Globus Compute which stores function arguments and results smaller than 20 kB in an

Amazon ElastiCache Redis store and objects greater than 20 kB in Amazon S3. The thinker

and task server are located on a Theta login node, and we use a Globus Compute endpoint
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on Theta which executes tasks on a single Theta KNL node. We execute 50 tasks and record

the time spent in different stages of the task’s life cycle.

We show in Figure 3.18 (right) communication times between the thinker, task server,

and worker, as well as the serialization time, time spent on the worker, and overall task

lifetime. Serialization time is that spent serializing and deserializing tasks on the thinker,

task server, and worker. When serializing a task, Colmena scans for task inputs or outputs

with sizes exceeding the ProxyStore threshold (set to zero for this experiment). If such

large objects are found, the object is proxied and the lightweight proxy is serialized along

with the task instead. Therefore, the serialization time reflects proxying time, which includes

time spent communicating objects to Redis or writing objects to disk. Time on worker is

the time between the task starting on the worker and the worker returning the completed

task; it includes deserialization of the task, possible resolving of proxies, the execution of the

task itself (which in this case is a no-op), and the serialization of the results. Task lifetime

is the time between a task being created by the Thinker and the result being received by the

Thinker.

Task server-to-worker communication dominates the overall task lifetime because inputs

must go through the Globus Compute cloud service. Passing objects via proxies can reduce

this cost by 2–3× for 10 kB inputs and up to 10× for 1 MB inputs. Similar magnitude

speedups are found for the communication between the thinker and task server with larger

objects. The thinker and task server communicate via Redis queues so sending small ob-

jects (e.g., 10 kB) via ProxyStore’s Redis connector performs similar to without Proxy-

Store, but larger objects see significant gains. The task server, upon receiving a task from

the thinker, deserializes the task to determine the endpoint the task needs to be executed

on and then serializes the task again to send to Globus Compute. ProxyStore avoids

additional deserialization and serialization of the input data because the data are replaced

by a lightweight proxy.
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Last, in Figure 3.19, we validate the results of these synthetic evaluations through scaling

ML inference within a molecular design workflow on Theta. At 1024 nodes, the task server

fails to keep workers fed with data for the relatively short ML inference tasks; ProxyStore,

on the other hand, maintains scaling performance at 2048 nodes.

3.6.2 Dask

Dask [219] is a parallel computing library in Python that enables efficient parallel compu-

tations on large datasets by breaking them down into smaller, manageable tasks. With

12.3k stars on GitHub [81] and 4.9M downloads per month in September 2024 [82], Dask

is a de facto standard for numerical workflows. Dask Distributed extends the Dask and

Python concurrent.futures APIs to provide a lightweight and easy-to-use library for dis-

tributed computing. A centralized scheduler manages the dynamic execution of tasks across

local cores or multiple nodes in a cluster and is optimized for low-latency task dispatching,

spending between a 100 µs and 1 ms on each task. However, this overhead can drastically

increase when the graph of a task is large, such as when task parameters are large or com-

plex. Large task graphs can incur significant I/O overheads in the scheduler for serialization,

communication, and deserialization of messages.

When the client submits a task to the scheduler, the function code and arguments that

make up the task are serialized and then encoded into a request with MessagePack, a self-

describing semi-structured format. Once the scheduler receives the request message, a worker

is selected based on heuristics and user-defined requirements and the task is forwarded to the

worker. The worker executes the task and returns to the scheduler a message containing the

size of the task result; the actual result stays on the worker. The scheduler communicates a

message to clients that the task has completed and any futures to the result of the task are

ready.

Dask provides mechanisms to optimize data transfer: (1) array-like data can be scat-
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Figure 3.20: Pass-by-proxy semantics reduce data flow through the Dask scheduler without
altering application behavior.

tered and gathered directly across workers; (2) native interfaces optimize common data

operations [80] (e.g., through Dask Arrays, Bags, DataFrames, and Delayed); and (3) ob-

jects already located on workers, such as the results of tasks, will be communicated directly

between workers rather than through the scheduler. The goal of these solutions is to prefer

passing task data by reference rather than embedding data directly in the graph; however,

these solutions do not cover all data types or application structures. For example, frequently

moving large objects between the client and workers is considered an anti-pattern; Dask

prefers that data remain on the worker cluster. Yet, this is a common pattern in scien-

tific applications (e.g., active learning [249, 251]) that is not supported as well by Dask.

Applications that create large Python objects not explicitly optimized for by Dask will see

severely degraded performance due to serialization and scheduler overheads. Notably, these

large Python objects are pickled as a byte-string then combined into a message with Mes-

sagePack, but MessagePack is slow with large byte-strings and can only support task graphs

up to 4 GB in size.

ProxyStore can alleviate data transfer overheads in Dask by proxying large task ob-

jects instead of embedding them directly in the task graph (Figure 3.20). Importantly, use of

ProxyStore does not require modification to task code and is not mutually exclusive with
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Dask optimization options. Here, we discuss three methods for integrating ProxyStore

into Dask applications. Our experiences integrating Dask and ProxyStore required over-

coming many technical challenges overcome to ensure compatibility and performance; these

challenges motivated the addition of many features aforementioned in ProxyStore, in-

cluding property caching on Proxy instances, custom serializers for common data types, and

the mypy plugin. The result is a robust and easy-to-use solution for building sophisticated

computational science workflows, which we demonstrate through synthetic performance eval-

uations and real-world applications using TaPS.

We outline three methods, exemplified in Figure 3.21, to integrate ProxyStore into a

Dask application: (1) manually proxy objects using ProxyStore’s existing tooling, (2) use

our custom Dask client to automatically proxy objects; or (3) use our custom executor inter-

face to intelligently proxy objects and manage memory. For simple applications, the manual

approach works well, but it can require significant code changes in more sophisticated ap-

plications. The custom client provides a drop-in replacement for existing Dask applications.

The StoreExecutor, which extends Python’s concurrent.futures interface, is the most

powerful approach: it is compatible with many other executor client types, such as those

provided by Parsl and TaskVine; custom policies can be defined to determine what objects

to automatically proxy and, when combined with ProxyStore’s MultiConnector, what

mediated storage option to use; and it uses ProxyStore’s ownership model (introduced

later in Section 4.3.3), inspired by Rust’s ownership and borrowing semantics, to perform

safe and automatic memory management of proxies.

We used TaPS to evaluate the performance benefits of using ProxyStore within Dask

applications. Experiments were performed using the Sunspot system at the Argonne Leader-

ship Computing Facility, a pre-production supercomputer with early versions of the Aurora

software development kit. Sunspot has 128 nodes interconnected by an HPE Slingshot 11

network and a high-performance DAOS storage system. Each node contains two Intel Xeon
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1 from dask.distributed import Client
2 from proxystore.ex.connectors.daos import DAOSConnector
3 from proxystore.store import Store
4

5 client = Client ()
6 connector = DAOSConnector(pool =..., container =...)
7

8 with Store('example ', connector) as store:
9 proxy = store.proxy([1, 2, 3])
10 future = client.submit(sum , proxy)
11 assert future.result () == 6

(a) A proxy can be manually created via the Store interface and passed directly to tasks in place
of the actual object.

1 from proxystore.ex.plugins.distributed import Client
2 from proxystore.ex.connectors.daos import DAOSConnector
3 from proxystore.store import Store
4

5 connector = DAOSConnector(pool =..., container =...)
6

7 with Store('example ', connector) as store:
8 client = Client(ps_store=store , ps_threshold =1000)
9 future = client.submit(sum , [1, 2, 3])
10 assert future.result () == 6

(b) The custom Dask Distributed Client will automatically proxy task input and output objects
larger than a user-defined threshold (e.g., 1 kB).

1 import sys
2 from dask.distributed import Client
3 from proxystore.ex.connectors.daos import DAOSConnector
4 from proxystore.store import Store
5 from proxystore.store.executor import StoreExecutor
6

7 client = Client ()
8 connector = DAOSConnector(pool =..., container =...)
9

10 with StoreExecutor(
11 client ,
12 store=Store('example ', connector),
13 should_proxy=lambda x: sys.getsizeof(x) >= 1000,
14 ) as executor:
15 future = executor.submit(sum , [1, 2, 3])
16 assert future.result () == 6

(c) The StoreExecutor can combine a Store and Dask Client and supports custom policies for
what objects should be automatically proxied (here, objects larger than 1 kB) and automatically
manages proxy lifetimes.

Figure 3.21: ProxyStore is easily compatible with existing applications. Here we demon-
strate the three integration patterns. The DAOSConnector is used, but this specific connector
can be exchanged depending on the application requirements and execution environment.
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Figure 3.22: (Left) No-op task round-trip time with various payload sizes. (Right) Relative
improvement in round-trip time compared to the baseline when using ProxyStore.

Max CPUs with 52 physical cores, 64 GB of high-bandwidth memory, 128 GB of DDR5

memory per CPU, and six Intel Data Center Max GPUs. We used Python 3.11, Dask Dis-

tributed 2024.7.1, ProxyStore 0.7.1, ProxyStore Extensions v0.1.4, and TaPS 0.2.1.

We performed ProxyStore experiments using Redis due to DAOS outages on Sunspot

at the time of writing; a Redis server was started on the rank 0 node of each batch job.

Configuring ProxyStore to use DAOS would be even easier, as described in Section 3.3.1,

and we expect comparable performance outcomes due to DAOS leveraging NVMe storage

distributed throughout the racks of the cluster.

Overheads: We measure the round-trip time of no-op tasks with payloads of varying

sizes in Figure 3.22. This experiment represents a worst-case scenario for the Dask scheduler:

all data is sent between the client and workers and no data is reused across multiple tasks.

Using ProxyStore’s pass-by-proxy model improves round-trip time for larger task payloads

(> 100 kB) by up to 50%. This improvement is attributed to (1) smaller messages to

be serialized and communicated, (2) less data transferred through the scheduler, and (3)

improvements to ProxyStore’s serialization that reduce memory copies.

Scaling: We measure task throughput with and without ProxyStore as a function of

the number of Dask workers n. Each node hosts up to 104 workers, the number of physical

cores per node. We execute 10 000 tasks that consume and produce 1 MB of random data
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Figure 3.23: (Left) No-op task throughput with various worker counts. Tasks consume and
produce 1 MB of random data. (Right) Relative improvement in throughput compared to
the baseline when using ProxyStore. ProxyStore alleviates data flow burdens from
the Dask scheduler, enabling the scheduler to dispatch tasks faster.
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Figure 3.24: ProxyStore can reduce Dask overheads applications that embed large objects
in the task graph, such as the Cholesky decomposition example and federated learning
simulation provided by TaPS.

(chosen based on the results in Figure 3.22). An initial batch of n tasks are submitted;

as current tasks complete, new tasks are submitted until all tasks are finished. Tasks are

essentially no-ops besides the result data generation which takes only O(1) ms; thus, the goal

of this experiment is to stress the Dask scheduler and understand its limits. As depicted

in Figure 3.23, task throughput with Dask quickly plateaus around 170 tasks per second

and degrades when utilizing 104 workers. Use of ProxyStore alleviates data transfer

burdens from the scheduler, enabling higher sustained throughput; however we still observe

the same drop in performance at 104 workers which may indicate the presence of performance

limitations in the Dask scheduler that are independent of data volume.

Applications: We use three reference applications from TaPS representing an array
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of data patterns. Cholesky decomposition has short tasks that consume and produce large

arrays, federated learning has long tasks that consume and produce large models, and molec-

ular design has short tasks that consume and produce small datasets and models. We chose

these three applications because they are implemented in a manner which accentuates data

transfer between the client and workers. As demonstrated in Figure 3.24, ProxyStore

yields the greatest benefits to Dask applications with larger tasks payloads and shorter

running tasks—applications where task overheads represent a larger proportion of overall

runtime.

3.6.3 Flight

Flight (Federated Learning In General Hierarchical Topologies) is a hierarchical federated

learning framework for distributed environments [138]. Typical federated learning frame-

works assume simple two-tier network topologies where edge devices are directly connected

to a centralized aggregation server. While this is a practical mental model, it does not exploit

the inherent topology of real-world distributed systems like the Internet-of-Things. Flight

can construct arbitrary hierarchies of aggregators and workers across arbitrary compute re-

sources using function-as-a-service via Globus Compute and peer-to-peer data transfer via

PS-endpoints, as shown in Figure 3.25.

The purpose of hierarchical federated learning is to improve performance by distributing

model aggregation to different locations. Thus, it would be both inefficient and costly if all

data had to pass through the top-level coordinator (the root of the device hierarchy) rather

than be passed directly between the participating entities. In addition, Globus Compute,

which Flight builds upon, imposes a 5 MB payload limit which prohibits the transfer of even

modestly-sized model parameters.

When defining a hierarchy in Flight, a PS-endpoint can be associated with each Globus

Compute endpoint. The framework will then automatically proxy model parameters dis-
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Figure 3.25: High-level view of the Flight architecture. A Coordinator launches jobs to be
run on Aggregators and Workers via Globus Compute, while data (e.g., model parameters)
are transferred through ProxyStore. Each Worker trains its local copy of the model and
sends back its locally-updated model to its parent (either the Coordinator or an Aggregator).
Each Aggregator aggregates the responses of its children (Workers and other Aggregators
alike). The Coordinator facilitates the entire process.
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Figure 3.26: No-op inference tasks per second in Flight using Parsl to launch tasks on
workers. Use of ProxyStore’s Redis connector reduces transfer overheads and improves
task throughput.

tributed to workers or accumulated by aggregators. While the intended use case for the

ProxyStore integration is to enable peer-to-peer transfer between workers on Globus

Compute endpoints, any ProxyStore connector can be used.

Figure 3.26 measures no-op training tasks per second where tasks are submitted using

Parsl. We compare data transfer with Parsl to Parsl and ProxyStore (configured with

the Redis connector). Out-of-band data transfer of model weights via ProxyStore reduces

overheads in Flight, enabling higher task throughput.

In Hudson et al. [138], we demonstrate that ProxyStore is necessary to achieve compet-

itive performance with state-of-the-art federated learning frameworks (namely, Flower [37]).

Without ProxyStore, as demonstrated in Figure 3.27, Parsl does not scale as well as

Flower for larger model sizes (i.e., ResNet-18, ResNet-50, and ResNet-152), whereas Flight

performs comparably to, if not better than, Flower when using ProxyStore’s Redis con-

nector.
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Figure 3.27: Weak scaling results comparing the runtime of Flower and Flight using Parsl
and Parsl + ProxyStore’s Redis connector for a series of increasingly complex models.
Flight provides better performance and, in some cases, also scales to more workers when
leveraging ProxyStore. Figure from Hudson et al. 2024.

3.7 Summary

ProxyStore is a novel framework for facilitating wide-area data management in distributed

applications. The proxy model provides a pass-by-reference-like interface that can work

across processes, machines, and sites, and enables data producers to change communication

methods dynamically without altering application behavior. ProxyStore provides a suite

of communication channel implementations intended to meet most requirements and can be

extended to other communication methods. We demonstrated the use of ProxyStore with

FaaS and workflow systems, synthetic benchmarks, and real-world scientific applications. We

showed that ProxyStore can accelerate a diverse range of distributed applications and

enables comparable performance to alternative approaches while avoiding the cumbersome

code changes and/or manual deployment and configurations required by alternatives.

In Chapter 4, we investigate support for data flow semantics on proxies, so that readers

of an object block until the object is written, as in Id [187]; high-throughput streaming
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with proxies; and alternatives to wide-area reference counting for automatic object evic-

tion. Other unexplored avenues for investigation include support for more communication

methods, advanced data management policies for persistence and replication, extension to

other programming languages, and optimizations such as intelligent prefetching and faster

peer-to-peer networking protocols. Kamatar et al. [144] applied the proxy model to enable

lazy library loading in HPC environments to address other common problems in distributed

computing. Our work here aims to encourage further research in data fabrics for feder-

ated applications, and to enable scientists and engineers to more easily design sophisticated

distributed applications.
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CHAPTER 4

ADVANCED DATA FLOW PATTERNS FOR DISTRIBUTED

APPLICATIONS

Task-based programming paradigms, such as function-as-a-service (FaaS) and workflows,

have emerged as vital methods for achieving computational flexibility and scalability. Appli-

cations are written as compositions of many distinct components, referred to as tasks, and

FaaS platforms and workflow systems, collectively referred to as execution engines, abstract

the complexities of executing tasks in parallel, whether across personal, cloud, edge, and/or

high-performance computing (HPC) systems [219, 176, 123, 17, 27, 61]. Such execution

engines have enabled a wide variety of innovative applications.

Yet as the scale and ambition of task-parallel applications grows, they increasingly en-

counter difficulties due to the use of shared storage for the exchange of intermediate data

among tasks—an approach commonly employed both by workflow systems (e.g., Parsl [27],

Pegasus [86], Swift [256]) and cloud-hosted FaaS systems (e.g., AWS Lambda [17], Azure

Functions [50], Google Cloud Function [123]). Such uses of shared storage can fail or be-

come prohibitively expensive as the number of tasks, the geographic distribution of tasks,

the quantities of data exchanged, and the required speed of data exchange grow.

Many researchers have investigated alternative mechanisms for distributed and wide-area

data management that circumvent these limitations of shared storage. For example, Linda’s

tuple space model provides unified access to a shared distributed memory space [8], DataS-

paces provides a similar model for large-scale applications [90, 11], and peer-to-peer systems

like the InterPlanetary File System provide decentralized content-addressed file sharing [34].

Another approach to simplifying data sharing is the object proxy paradigm, which provides

transparent access and management for shared objects in distributed settings. This mech-

anism, long used with Java’s Remote Method Invocation (RMI) [40], is also supported in

Python via the ProxyStore system [195]. ProxyStore’s transparent object proxies pro-
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Figure 4.1: Overview of the three proxy-based data flow patterns we design.

vide lightweight, wide-area references to objects in arbitrary data stores—references that can

be communicated cheaply and resolved just-in-time via performant bulk transfer methods in a

manner that is transparent to the consumer code. Recent work has shown how by decoupling

data flow complexities from control flow-optimized execution engines [249, 129, 70, 88, 196],

the object proxy paradigm can simplify implementations of dynamic application structures

such as ML model training and inference.

Yet the object proxy paradigm remains a low-level abstraction that can be hard to use

in practice due to the complexities inherent in managing many references to remote objects.

Thus, we ask: Can we identify common high-level patterns that build on the proxy model to

accelerate and simplify development of advanced applications? To this end, we review in this

chapter three computational science applications previously developed for workflow execution

engines (1000 Genomes, DeepDriveMD, MOF Generation), identify limitations in the data

flow patterns supported by those execution engines, and propose three new programming

patterns that extend the proxy model to overcome these limitations (Figure 4.1):

• A distributed futures system for seamless injection of data flow dependencies into ar-

bitrary compute tasks to overlap computation and communication;

• An object streaming interface that decouples event notifications from bulk data transfer

such that data producers can unilaterally determine optimal transfer methods; and
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• An ownership model that provides client-side mechanisms for managing object lifetimes

and preventing data races in distributed task-based workflows.

Each pattern simplifies building sophisticated task-based applications that are to execute

across distributed or remote compute resources (e.g., using FaaS or workflow systems). For

each, we discuss its requirements and the protocols used to support it. Our reference im-

plementations extend ProxyStore to leverage the existing low-level proxy model within

Python, a popular and pervasive language for task-based distributed applications. The im-

plementations are available within ProxyStore v0.6.5 and later, available on GitHub [204]

and PyPI [205]. We evaluate our reference implementation for each pattern using (1) syn-

thetic benchmarks across various FaaS and workflow systems and (2) our motivating appli-

cations, for which we reduce workflow makespan by 36% in 1000 Genomes, improve inference

latency by 32% in DeepDriveMD, and optimize proxy lifetimes in MOF Generation.

The rest of this chapter is as follows: Section 4.1 introduces our motivating scientific

applications; Section 4.2 summarizes ProxyStore, presented in Chapter 3; Section 4.3

outlines the design and implementation of each pattern; Section 4.4 demonstrates synthetic

evaluations; Section 4.5 presents our experiences applying these patterns to our motivating

applications; Section 4.6 provides context about related work; and Section 4.7 summarizes

our contributions and future directions.

4.1 Motivating Applications

1000 Genomes: This bioinformatics pipeline [2] identifies mutational overlaps within the

2504 human genomes sequenced by the 1000 Genomes Project [1]. It comprises five stages:

(1) fetch files, each containing all Single Nucleotide Polymorphisms (SNPs) in a chromo-

some, chunk, and process them in parallel to extract SNP variants by individual; (2) merge

individuals’ results of the prior stage; (3) score and select SNP variants based on their pheno-

typic effect; (4) compute overlap of selected SNP variants among pairs of individuals and by
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chromosome; and (5) compute frequency of overlapping variants. Executing scientific work-

flows in a FaaS setting may be preferred when access to specialized hardware, such as AI or

quantum accelerators, or the ability to rapidly scale up or down is required, but workflow

execution on a FaaS system poses challenges because FaaS systems rely on control flow to

determine when to submit tasks. From the application perspective, however, the availability

of data—the data flow—is the condition upon which tasks can be submitted. We use the

1000 Genomes workflow as an example of the challenges that arise when executing data flow

oriented applications on control flow-optimized systems.

DeepDriveMD: Molecular dynamics (MD) simulation acts as a computational micro-

scope [95] to enable the study of complex biomolecular systems [53, 91, 237, 202]. However,

many important phenomena are difficult to sample using conventional MD, even with pow-

erful supercomputers [137]. DeepDriveMD [159, 46] implements an emerging HPC paradigm

in which machine learning (ML) methods are used to track a simulated state space and

guide simulations toward a sampling objective. The DeepDriveMD client submits discrete

training, inference, and simulation tasks and receives their results. This pattern causes two

challenges. First, all data must flow through the client which limits performance at scale

(e.g., data volume or task frequency), so a mechanism is needed to alleviate data flow bur-

dens from the client when possible. Second, repeated tasks perform redundant work. For

example, each inference tasks loads the latest ML model from disk, infers using the input

batch, and compiles the results which will later become the input to a simulation task. This

is inefficient because the same model is loaded multiple times across tasks, tasks may execute

on different workers negating cache benefits, and every task incurs non-trivial overheads for

scheduling and execution.

Metal-Organic Framework (MOF) Generation: This workflow [180] uses molecu-

lar diffusion models [193] to generate organic ligands, assemble MOF candidates, and em-

ploy physics models to identify candidates best suited for storing CO2. The workflow uses
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Colmena[249]; the Colmena thinker is a central process that determines which tasks to exe-

cute, and with what parameters. A core computational challenge is ensuring that the thinker

has timely data, such as the latest diffusion model results, when deciding the next task. Ob-

ject proxies have been used to improve thinker response time in similar applications [249, 251]

(as described in Section 3.6.1), but knowing the lifetime of proxied data is challenging in

sophisticated workflows where the types of tasks to be executed are not know ahead of time.

4.2 Background

This section summarizes Chapter 3.

In software design, a proxy is an object that functions as an interface to another object [114].

A simple proxy will forward operations on itself to the real or target object, but often a

proxy is used to provide extra functionality such as caching or access control, in addition

to forwarding operations [195]. For example, distributed applications can use a proxy to

invoke methods on a remote object, and data-intensive applications can use a virtual or lazy

proxy which will perform just-in-time resolution of large objects (i.e., load the object from

a remote location into local memory when first needed).

Lazy transparent object proxies can be used to communicate objects efficiently in dis-

tributed applications [195]. Here, a proxy refers to a target object stored in an arbitrary

mediated communication medium (e.g., an object store, database, file system). The proxy

forwards all operations on itself to the target, but importantly is totally transparent in

that the proxy is an instance of the same type as the target. In Python, this means that

isinstance(p, type(t)) is true for a proxy p and its target t. The proxy is lazy in that it

performs just-in-time resolution of the target. The target is not copied from the mediated

storage into local memory until an operation is invoked on the proxy. This proxy paradigm

has both pass-by-reference and pass-by-value semantics; unused copies of the target object

are not made when the proxy is passed between processes but the actual consumer of the
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proxy is given a copy.

The benefits of moving data via proxies are numerous: pass-by-reference reduces transfer

overheads, no external information is required to resolve a proxy, shims or wrapper func-

tions are eliminated, just-in-time resolution amortizes communication costs and avoids costs

associated with unused objects, and proxies enable automatic access control. As such, this

paradigm has been used to build a diverse suite of robust and scalable scientific applica-

tions [249, 267, 251, 70, 129, 144, 195, 88].

ProxyStore [195] implements this proxy paradigm which we use as the basis for our

patterns’ reference implementations. ProxyStore defines the factory, connector, and store

constructs. The factory is a callable object that returns the target object when invoked.

ProxyStore creates a unique factory for each target object containing the metadata and

logic necessary to retrieve the target from a remote location. This factory is used to initialize

a proxy, and a proxy is resolved once it has invoked its factory to retrieve and cache the

target locally.

The connector is a protocol that defines the low-level interface to a mediated communi-

cation channel. A mediated channel is one where the communication between a producer

and consumer is indirect, such as via a storage system [73]. This indirection is important

because the process that creates a proxy and the process that resolves a proxy may not be

active at the same time, in which case they could not communicate via direct mechanisms.

ProxyStore provides many connectors, including interfaces to external mediated channels

such as shared file systems, object stores (Redis [218] and KeyDB [229]), and peer-to-peer

transfer systems (Globus Transfer [106, 59] and ProxyStore Endpoints [195]) and bespoke

mediated channels that can leverage high-performance networks through the UCX [240] and

Margo [206] libraries.

The high-level store interface, initialized with a connector, is used to create proxies

of objects. A proxy p can be created from a target t by calling Store.proxy(t). This
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method (1) serializes t using the default ProxyStore or user-provided serializer, (2) puts

the serialized t in the mediated channel via the connector, (3) creates a factory with the

appropriate metadata about t and the store/connector used, (4) initializes a proxy with the

factory, and (5) returns the proxy. This process incurs some overhead but is trivial for larger

objects. Prior work [195, 249] found the performance benefits of proxies to outweigh proxy

creation and resolution overhead for objects larger than ∼10 kB; the exact threshold depends

on many factors (e.g., connector choice, execution engine).

4.3 Proxy Patterns

We describe the design of each of the three advanced programming patterns that build on

the aforementioned distributed object proxy base. We discuss the details of our reference

implementations that extend ProxyStore, and Figure 4.2 describes how these patterns fit

into the existing ProxyStore stack. These patterns are not mutually exclusive, but we

discuss each in isolation for clarity.

4.3.1 Distributed Futures

A future represents a value that will eventually be available; the holder of a future
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Figure 4.3: Four tasks executed in a sequential (above) or pipelined (below) fashion. Each
task produces data needed by the following task. The grey region at the start of each task
represents startup overhead before the input data can be used. By enabling a successor task
to start before its predecessor has finished, futures enable overlapping of startup overhead
with computation, a form of pipelining.

can block on it until the value is resolved. Futures simplify writing non-blocking compute

(e.g., remote procedure calls, database queries, or FaaS invocations) and I/O (e.g., network

requests or file system reads) operations. Execution engines use futures to represent eventual

task results, and this is valuable for representing long running remote execution or assembling

applications with asynchronous callbacks. However, the distributed futures provided by

execution engines have three key limitations: (1) these futures perform control and data

synchronization so data flow cannot be optimized independent of control flow, such as to

pipeline task execution as in Figure 4.3; (2) the transfer mechanisms used by the future

cannot be optimized based on the type or location of data; and (3) futures produced by

execution engines are only usable within the context of that execution engine (e.g., a future

from one engine cannot be sent as input to another).

We design a distributed futures system called ProxyFutures that (1) supports explicit

and implicit usage, arbitrary execution engines, arbitrary distributed memory backends, and

seamless injection of data flow dependencies, and (2) addresses a limitation of ProxyStore

that a proxy cannot be created before its target object exists. In ProxyFutures, a future f

is created for an eventual value x, and f can be used to create any number of proxies pf .

Consider an application with a main process M , a data producing process P , and a data

consuming process C. M dispatches two tasks: TP to P and TC to C. TP is to produce

a value x to be consumed by TC ; thus, TC has a data dependency on TP . M can create a
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1 from dask.distributed import Client
2 from proxystore.connectors.foo import FooConnector
3 from proxystore.store import Store
4 from proxystore.store.future import Future
5

6 def producer(future: Future[str]) -> None:
7 future.set_result('value ')
8

9 def consumer(data: Proxy[str]) -> None:
10 assert data is 'value '
11

12 with Store('example ', FooConnector ()) as store:
13 client = Client (...)
14 future: Future[str] = store.future ()
15

16 t1 = client.submit(producer , future)
17 t2 = client.submit(consumer , future.proxy())
18

19 t1.result (), t2.result ()

Figure 4.4: Example usage of the ProxyFuture interface within tasks executed by Dask. A
proxy created from a Future will block implicitly on the result of the future when needed.
This interface abstracts the low-level communication away from the functions which set the
result or consume the proxy.

future f and associated proxy pf , and pass f and pf to TP and TC , respectively. When TC

first resolves pf , it blocks until TP has set the result of f . Importantly, TC can be started

before TP has finished or even started. M , when creating f , can choose the communication

method to be used based on where P and C are located and what communication methods

are available between them; thus, the detailed communication semantics are abstracted from

TP and TC . The implicit nature of pf also means that the code for TC can be invoked either

on a value directly or on a proxy of the value. This equivalence simplifies code and testing

and means that M can inject data flow dependencies via a future into arbitrary third-party

functions that expect to receive data directly.

We implement this behavior by extending ProxyStore’s Store interface to expose a

future() method that returns a Future object. The Future class exposes two main methods:

set_result(obj: T), which sets the result of the future to an object of type T and proxy(),

which returns a Proxy[T]. When a proxy created via Future.proxy() is resolved, the proxy
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blocks until the target value has been set via a call to Future.set_result(), as shown in

Figure 4.4. Use of ProxyFutures does not affect when a successor task starts; scheduling

is still managed by the execution engine and/or user application. ProxyFutures are best

integrated at the application level so that developers can optimize task execution per their

application requirements and to express more complex data dependencies than typically

supported by execution engines.

Internally, communication between a Future and any child proxy(s) is handled via the

Store used to create the Future. Thus, a future and associated proxies can be serialized

and sent to arbitrary processes on arbitrary machines. In contrast, many standard-library

future implementations use non-serializable async, thread, and inter-process synchronization

mechanisms (e.g., std::future in C++ [49], concurrent and async futures in Python [209]),

while RPC-based futures are only resolvable within the RPC framework (Dask futures [219]

or Ray ObjectRefs [246]). The self-contained properties of the proxy mean that all logic for

communication and resolution are embedded within the future and proxy; the future creator

chooses communication methods on behalf of the process(es) which might set or consume

the result of the future.

4.3.2 Object Streaming

High-performance stream processing applications dispatch remote compute tasks on ob-

jects consumed from a stream, but task dispatch can quickly become a bottleneck with high

throughput streams [159, 46, 267]. Consider the application in Figure 4.5, where process A is

a data generator that streams chunks of data (i.e., arbitrary Python objects) to a dispatcher

process B, which for each data chunk dispatches a compute task on a remote process C.

Note that while the dispatcher consumes from the stream, it does not need the actual chunk

of data; rather, it only needs to know that a chunk is ready (and potentially have access to

user-provided metadata) in order to dispatch the task that will actually consume the chunk.
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Figure 4.5: The StreamProducer abstracts low-level communication details from the Stream-
Consumer and transparently decouples metadata from bulk data transfer. Yielding proxies,
rather than objects directly, in the StreamConsumer enables just-in-time resolution and pass-
by-reference optimizations.

1 from globus_compute_sdk import Executor
2 from proxystore.connector.foo import FooConnector
3 from proxystore.store import Store
4 from proxystore.stream import StreamProducer , StreamConsumer
5 from proxystore.stream.shims.kafka import KafkaPublisher , KafkaSubscriber
6

7 def producer () -> None:
8 store = {'topic ': Store (..., FooConnector (...))}
9 publisher = KafkaPublisher (...)
10

11 with StreamProducer(publisher , store) as producer:
12 for item in ...:
13 producer.send('topic ', item)
14

15 def consumer () -> None:
16 subscriber = KafkaSubscriber('topic ', ...)
17

18 with StreamConsumer(subscriber) as consumer:
19 for item in consumer:
20 assert isinstance(item , Proxy)
21

22 with Executor('<Endpoint UUID >') as client:
23 t1 = client.submit(producer)
24 t2 = client.submit(consumer)
25

26 t1.result (), t2.result ()

Figure 4.6: Example using the ProxyStream interfaces to stream data between two tasks
executed remotely using Globus Compute. A Kafka broker is used for metadata and an
arbitrary FooConnector for bulk data transfer.
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We design a system called ProxyStream to enable scalable applications of this pattern. At

its core, ProxyStream uses a stream of proxies, rather than data chunks. Bulk data are

only transmitted between the data generator and the process/node computing on the proxy

of the chunk, bypassing the intermediate dispatching process. ProxyStream optimizes for

both metadata and bulk data transfer, has broad execution engine compatibility, provides a

self-describing data format, and supports various communication modules to take advantage

of high-performance networking stacks.

ProxyStream provides two high-level constructs, the StreamProducer and StreamConsumer,

that combine a message stream broker for low-latency event metadata propagation and a

mediated communication channel for efficient bulk data transfer. A StreamProducer is

initialized with a Publisher and a ProxyStore Store. The Publisher defines a pro-

tocol for sending event messages to a stream. We provide shims to many popular event

streaming systems (Kafka [23], Redis Pub/Sub and Queues [218], ZeroMQ [135]) which im-

plement the Publisher protocol. When a new object and optional metadata are sent to

the StreamProducer, (1) the object is put in the store, (2) a new event containing the user

provided metadata and information about where the object is stored is created, and (3) the

event is published via the Publisher.

A StreamConsumer is initialized with a Subscriber, which, like the Publisher, defines a

protocol for receiving event messages from a stream (Figure 4.6). The StreamConsumer is an

iterable object, yielding proxies of objects in the stream until the stream is closed. Calling

next() on the StreamConsumer waits for a new event metadata message via the Subscriber,

creates a proxy of the object using the event metadata, and returns the proxy to the calling

code. This process is efficient because the bulk object data has not been read at this point;

rather, this will be delayed until the resolution of the proxy.

This model has many benefits: (1) communication mechanisms are abstracted from the

stream consumer, (2) stream objects are resolved only when actually needed (wherever the
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proxy is resolved), (3) event message and bulk data transfer are decoupled, allowing the appli-

cation to better optimize both forms of communication for the given application deployment

environment and object characteristics, and (4) it provides a mechanism for implementing

stateful actors in a workflow.

The ProxyStream interfaces support any combination of single/multi producer/consumer

that is supported by the associated Publisher and Subscriber implementations. The

StreamProducer supports mapping different stream topics to Store instances, enabling fur-

ther optimization of communication mechanisms; batching; and plugins for filtering, sam-

pling, and aggregation. The StreamConsumer supports plugins for filtering and sampling.

ProxyStream is fault-tolerant provided that the broker and communication channel are fault-

tolerant.

ProxyStream can be integrated at the application or framework level. Figure 4.6 depicts

use of ProxyStream within a Globus Compute application; we integrate ProxyStream within

the DeepDriveMD framework for the evaluation in Section 4.5.

4.3.3 Ownership

A limitation of the proxy model is the need to manage explicitly the lifetime of the associated

target object. When a proxy is shared with more than one process, it is challenging to know

when it is safe to free the target object. A ProxyStore proxy acts like a C/C++ pointer

or raw pointer in Rust; thus, one process could prematurely free the target object, causing

what is equivalent to a null pointer exception in the other process(es); delay freeing the

object causing increased memory usage; or forget to free the object causing a memory leak.

ProxyStore provides some guidance on using proxies safely, but ultimately it is up to the

programmer to use proxies safely—a situation similar to C pointers.

To address this difficulty, we extend the proxy model with two features not provided by

ProxyStore: automatic deletion of objects that have gone out of scope and safe support
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for mutating objects. Inspired by Rust’s borrowing and ownership semantics, our design

works in distributed contexts; provides different proxy types that can represent the owned,

reference, and mutable reference types; enforces ownership and borrowing rules at runtime

based on a proxy’s type; and performs automatic dereferencing, coercion, and deletion.

Rust’s borrowing and ownership semantics, designed to ensure memory safety without

garbage collection, can inspire a way of thinking about shared objects in distributed environ-

ments. Rust defines three ownership rules : (1) each value has an owner, (2) there can only

be one owner at a time, and (3) a value is deleted when its owner goes out of scope [235]. A

reference allows a value to be borrowed without relinquishing ownership. The reference rules

are (1) at any given time, a value can have either one mutable reference or any number of

immutable references and (2) references must always be valid. The Rust compiler enforces

these rules, and the language provides data structures for runtime enforcement for more

complex scenarios that the compiler cannot reason about.

Applying these rules in a distributed application, such as a computational workflow, can

make memory management significantly easier without the need to perform global reference

counting. Computations represented as directed acyclic graphs (DAGs) are particularly well

suited to this model. As objects move from a parent DAG node to a child node, ownership

can either be transferred to the child or the child can be given a borrowed reference. Thus, a

node has full information about what operations are safe on objects that it receives. Owner-

ship transfer means that the recipient node has full control over that object; an immutable

reference means that the node can only read the object. A mutable reference means that the

node has sole access to modify the object, but the node cannot create and share additional

references: i.e., it is not allowed to pass a reference to its own child node.

One challenge of this model is knowing when a reference to an object goes out of scope,

because this requires communication between the process that owns the object and the

process that has a reference. However, in a task-based workflow, it is easy to reason that a
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reference passed to a task goes out of scope when the task completes (assuming that the task

is well-behaved; an improperly behaved task would be one that, for example, creates and

stores a memory-to-memory copy of the reference) and workflow systems already propagate

information about task completion.

A second challenge is representing the ownership or borrowing of an object. The Rust

compiler and dot operator abstracts much of the nuance of dealing either with objects directly

or with their references [221]. In Python, for example, an object T could be wrapped in a

Owned[T], Ref[T], and RefMut[T], in a similar manner to some Rust constructs. However,

use of these constructs would be cumbersome, as all referencing, dereferencing, or coercion

would have to be done manually.

The transparent object proxy is well-suited to solve these object scope and reference

representation problems. An object that is proxied by a process becomes a shared object

that is stored on some global object store accessible by all processes in the distributed

environment. The target object is serialized, put in the global store, and an OwnedProxy is

returned. The OwnedProxy contains a reference to the global object and, if the proxy has

been resolved, a local copy of the object upon which the proxy forwards operations to.

An OwnedProxy enforces the following rules [c.f. Rust’s ownership rules]: (1) each object

in the global store has an associated OwnedProxy, (2) there can only be one OwnedProxy for

any object in the global store, and (3) when OwnedProxy goes out of scope, the object is

removed from the global store.

When invoking a task on an OwnedProxy (i.e., calling a local or remote function), the

caller can do one of four things:

• Yield ownership by passing the OwnedProxy to the task.

• Clone OwnedProxy and pass the cloned OwnedProxy to the task. Cloning an OwnedProxy

will create a new copy of the object in the global store that will be owned by the callee

task while the caller still owns the original object.
105



• Make a RefProxy and pass the RefProxy to the task. The caller still retains ownership,

and the task can only read the object via the RefProxy. The callee task can only

mutate its local copy, not the global copy. The caller’s OwnedProxy, used to create the

RefProxy, keeps track of the references that it has created. Any number of tasks can

be invoked on a RefProxy at a time.

• Make a RefMutProxy and pass the RefMutProxy to the task. The caller still retains

ownership (essentially the privilege to delete), but the callee task now has sole access

to modify the object in the global store. The caller’s OwnedProxy marks that it has

created a RefMutProxy and thus cannot mutate itself until the callee task that has the

RefMutProxy completes. Only one task can be invoked on a RefMutProxy at a time

and a RefMutProxy and RefProxy cannot exist at the same time.

The lifetimes of a RefProxy and RefMutProxy are strongly coupled to those of the tasks

they are passed to. Any violation of these rules, such as an OwnedProxy that goes out of

scope or is deleted while a RefProxy or RefMutProxy exists, will raise a runtime error. It is

also possible to extend a static code analysis tool to verify correctness prior to execution.

Execution engines typically use futures to encapsulate the asynchronous execution of

a task. Thus, we use callbacks on the task result futures to indicate that the references

associated with a task have gone out of scope. The primary limitation of this approach is

that each execution engine has a different syntax for submitting a task and getting back a

future. Rather than modify each engine, we provide a set of shims that appropriately parse

task inputs and construct a callback on the task’s future that will propagate the necessary

information about references going out of scope. An example is provided in Figure 4.7.

The StoreExecutor, an interface provided by ProxyStore, wraps an execution en-

gine client (e.g., a Globus Compute, Dask, or Parsl client) and automatically proxies task

parameters and results based on user-defined policies and manages references associated

with tasks [198]. The StoreExecutor is easy to use, as demonstrated in Figure 4.8, but
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1 from concurrent.futures import ProcessPoolExecutor
2 from proxystore.store.base import Store
3 from proxystore.store.ref import borrow
4 from proxystore.store.scopes import submit
5

6 with Store (...) as store , ProcessPoolExecutor () as pool:
7 proxy = store.owned_proxy('value ')
8 borrowed = borrow(proxy)
9

10 future = submit(pool.submit , args=(sum , borrowed))
11 assert future.result () == 6
12 # Task is completed so the owned proxy is no longer borrowed
13

14 # Owned proxy is safe to delete or be garbage collected
15 del proxy

Figure 4.7: Example of creating an OwnedProxy and borrowing to pass to a task exe-
cuted within a ProcessPoolExecutor. Here, references must be manually managed. The
StoreExecutor, shown in Figure 4.8, simplifies this process.

1 from concurrent.futures import ProcessPoolExecutor
2 from proxystore.proxy import Proxy
3 from proxystore.store import Store
4 from proxystore.store.executor import StoreExecutor , ProxyType
5

6 with StoreExecutor(
7 ProcessPoolExecutor (),
8 store=Store (...),
9 ownership=True ,
10 # Only proxy objects of type list
11 should_proxy=ProxyType(list),
12 ) as executor:
13 future = executor.submit(sum , [1, 2, 3])
14 result = future.result ()
15

16 assert isinstance(result , Proxy)
17 assert result == 6

Figure 4.8: Example usage of the StoreExecutor, which automatically manages proxying
task arguments and results and the management of proxy lifetimes.
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1 class Store(Generic[Connector ]):
2 def owned_proxy(obj , ...) -> OwnedProxy: ...
3

4 def into_owned(Proxy) -> OwnedProxy: ...
5 def borrow(OwnedProxy) -> RefProxy: ...
6 def mut_borrow(OwnedProxy) -> RefMutProxy: ...
7 def clone(OwnedProxy) -> OwnedProxy: ...
8 def update(OwnedProxy | RefMutProxy) -> None: ...

Figure 4.9: Proxy ownership model interfaces and functions. Functions are preferred over
methods on the associated proxy reference types to prevent unintentionally clobbering a
method of the same name on the target object.

applications requiring more fine-grain control can use the lower-level API in Figure 4.9.

The ownership model is not fault-tolerant when the client crashes in a manner which

prevents garbage collection, but the model is compatible with fault-tolerant execution engines

such as those that automatically rerun tasks on failure. Since only a single RefMutProxy can

exist, the ownership model is not optimal for applications with many concurrent writers to

the same object; a database, for example, may be more suitable.

So far, we have constricted ourselves to tasks (i.e., function invocations) as the only

region of code over which we can define a lifetime; thus, all references to an object are equal

to the lifetime of the single task invoked on that reference. Yet a workflow application may

employ more complex lifetimes. For example, a lifetime could be assigned to a set of tasks

that are a subgraph of the global DAG, and a programmer might want to define references

to global objects that are associated with this custom lifetime. Using proxy references is a

valid solution but would require additional code to manage and map references to the scopes

contextual to the application.

We provide the Lifetime construct, an alternative to proxy references, for managing

object lifetimes in more complex scenarios. A lifetime, attached to one or more proxies upon

proxy creation, will clean up associated objects once the lifetime has ended. We provide three

Lifetime types and the API can be extended to implement new types. The context-manager

lifetime enables mapping proxy lifetimes to discrete segments of code, the time-leased lifetime
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1 from proxystore.store.base import Store
2 from proxystore.store.lifetimes import ContextLifetime
3

4 with Store (...) as store:
5 with ContextLifetime(store) as lifetime:
6 key = store.put('value ', lifetime=lifetime)
7 proxy = store.proxy('value ', lifetime=lifetime)
8

9 assert not store.exists(key)

1 from proxystore.store import Store
2 from proxystore.store.lifetimes import LeaseLifetime
3

4 with Store (...) as store:
5 lease = LeaseLifetime(store , expiry =10)
6

7 proxy = store.proxy('value ', lifetime=lease)
8 lease.extend (5)
9 time.sleep (20)
10 assert lease.done()
11

12 # Object associated with the proxy has been removed

Figure 4.10: Example usage of lifetimes when creating a proxy. A Lifetime instance rep-
resents a physical or logical scope that will clean up all resources (i.e., objects) that were
associated with the lifetime when closed. (Top) A ContextLifetime defines a block of code
within which a proxy is valid. (Bottom) A LeaseLifetime defines a time-based lease during
which a proxy is valid.
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will clean up associated objects once the lease has expired and not been extended, and the

static lifetime persists objects for the remainder of the program. Figure 4.10 provides a

context-manager and time-leased lifetime example.

4.4 Synthetic Evaluations

We conducted experiments on Polaris at the Argonne Leadership Computing Facility. Polaris

has 560 nodes interconnected by an HPE Slingshot 11 network and a 100 PB Lustre file

system. Each node contains one AMD EPYC Milan processor with 32 physical cores, 512 GB

of DDR4 memory, and four 40 GB NVIDIA A100 GPUs.

4.4.1 Task Pipelining with ProxyFutures

We first evaluate the effectiveness of ProxyFutures for reducing workflow makespan via

pipelining. We define a synthetic benchmark that submits n tasks in sequence, each sleeping

for s seconds and then producing d bytes to be consumed by the next task. As in Figure 4.3,

a fraction f of each task is treated as startup overhead (e.g., library loading, model initializa-

tion, state synchronization). Thus, each task sleeps for f×s seconds, resolves its input data,

and then sleeps for the remaining (1− f)× s seconds to simulate computation. We compare

three deployments: sequential without proxies (No Proxy), sequential with proxies (Proxy),

and pipelined with ProxyFutures (ProxyFuture). In the first two, task ti is submitted once

the result of task ti−1 is available, with in No Proxy, the workflow engine handling data

transfer, and in Proxy, data transfer being offloaded from the workflow engine. In Proxy-

Future, tasks ti−1 and ti share a proxy and future pair and ti is submitted before ti−1 is

complete.

Setup: We run a Dask cluster on a single Polaris compute node. In the Proxy and Prox-

yFuture deployments, a Redis server running on the compute node is used as the mediated

communication channel for the proxies. We run n = 8 tasks with intermediate data of d =
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Figure 4.11: Results for synthetic benchmark with 8 tasks, each sleeping for 1 s and com-
municating 10 MB to its successor, and with overhead fraction f determining how much
of the 1 s can be overlapped with its predecessor task. (Top) Task execution schedules in
four scenarios: sequential no proxy, with delays due to workflow engine submission costs;
sequential proxy, with proxies enabling immediate task start after proxy is resolved; and
two pipelined ProxyFuture cases (f = 0.2 and f = 0.5), in which distributed futures relax
strict inter-task dependencies and enable pipelining to overlap initial task overheads. The
overhead and compute sleeps dominate in all cases, while times to resolve task input data
and receive task results increase, with overhead fraction, while makespan decreases due to
pipelining overlap. (Bottom) Synthetic benchmark makespan vs. overhead fraction, for no
proxy, proxy, and ProxyFuture scenarios. Each value is averaged over five runs; standard
deviations are all less than 20 ms.
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10 MB and task time of s = 1 s; the short task time is to focus on the time spent producing

and waiting on data. We vary overhead fraction f from 0 to 0.9.

Results: We plot in Figure 4.11a the start and end times of each stage in each task’s

lifecycle for each deployment, for f = 0.2, and for ProxyFuture, also for f = 0.5. Each task

incurs fixed overhead and compute costs, of f and (1 −f) s, respectively. Other costs include:

submit, the time to submit and begin execution; generate, the time to produce output data;

and receive, the time to receive the result by the client. Proxy and ProxyFuture also incur

resolve costs associated with the use of proxies. Figure 4.11b shows the implications of these

differences by presenting average makespan as a function of task overhead fraction for the

three deployments. The use of proxies in Proxy improves task submission time relative to

No Proxy, reducing makespan by 12%. The pipeline overlapping in ProxyFuture enables

close to the theoretical limit (dashed line) as determined by inter-task data dependencies.

For example, the ideal makespan reduction of a pipeline execution is 20% when f = 0.2; we

observe 19.6% in ProxyFuture. The increased divergence from the ideal reduction at larger

overhead fractions occurs because task submission and data transfer costs become more

significant as overlapping increases. Thus, a subsequent task begins waiting on its future

slightly before the prior task has set the result of the future.

Outcomes: DAG-based workflow execution models limit optimization of task execution

because a child task cannot start until its parents have finished, even if the programmer

knows it may be beneficial to start it sooner. For example, module loading can account for

a significant portion of overall task runtime. Loading TensorFlow on NERSC’s Perlmutter

takes 5 s in the best case but nearly a minute when many workers read files concurrently [144].

This is particularly noticeable with smaller models where inference time can be measured in

fractions of a second. On Polaris, the machine used here, we found that five common libraries

(NumPy, Scikit-learn, SciPy, PyTorch, TensorFlow) [31] require from 100 ms to 2 s to import

even under ideal conditions with a single worker. Tasks must also often perform other work,
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such as file loading, initializing model weights, or state synchronization, before needing their

input data. The ProxyFutures model provides for seamless encoding of data dependencies

and optimistic task pipelining when tasks have nontrivial initial overheads. While we used

Dask and Redis in this experiment, our approach will work with any task-based execution

engine and mediated communication channel. This engine-agnostic approach will enable

programmers to coordinate tasks across multiple execution engines concurrently.

4.4.2 Scalable Stream Processing

Here we evaluate scalable stream processing with ProxyStream. As in Figure 4.5, there is

one data producer publishing data of size d to the stream with a rate r (items per second). A

dispatch node consumes data from the stream and dispatches a compute task for each data

item on to a cluster of n workers. Each compute task is simulated by a task which sleeps

for s seconds. The dispatcher executes on a login node, and given n workers, one worker is

allocated as the producer while the remaining n − 1 workers are used to execute compute

tasks.

Setup: We compare three streaming configurations. In Redis Pub/Sub, data are pub-

lished directly to a Redis pub/sub topic that is consumed by the dispatcher before being sent

to a worker to be computed on. In ADIOS2, data are written step-by-step to an ADIOS2

stream [120]. The dispatcher iterates on steps and launches worker tasks which will read the

data from the ADIOS2 stream at a specified step. In ProxyStream, data are published to

a StreamProducer which decouples metadata from bulk data, sending metadata to a Redis

Pub/Sub topic and storing bulk data in a Redis Key/Value store. The dispatcher consumes

proxies of stream data via the StreamConsumer and sends proxies to workers to be computed

on. ADIOS2 and ProxyStream avoid data transfers through the dispatcher.

We use Parsl’s HighThroughputExecutor, which can scale to thousands of tasks per

second, to manage task execution. We set the producer’s data publishing rate r = (n− 1)/s
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Figure 4.12: Compute tasks completed per second as a function of stream item data size
and number of workers. One worker generates data consumed by a central dispatcher that
launches simulated compute tasks (one second sleep tasks) for each item across the remaining
n − 1 workers. At small data sizes (≤ 100 KB), data transfer overheads are negligible and
the dispatcher can keep up with incoming stream data; however, at large data sizes and
worker counts, the dispatcher becomes overwhelmed by the size of data transfers required
for each task in the Redis Pub/Sub configuration. ProxyStream transparently decouples
data flow from control flow improving overall system performance as stream data sizes and
the number of workers is increased. Note in many cases the ProxyStream and ADIOS2
markers are overlapped.

items per second, where s = 1 s for all tasks. Assuming no overheads in the system, this rate

would keep each of the n−1 compute workers constantly fed with new data. A range of data

sizes d and workers n are evaluated to understand stream scaling throughput limitations.

We assign one worker per core so there are at most 32 workers per node. We run each

configuration for between five and thirty minutes, depending on the scale, which is long

enough for the processing throughput (i.e., tasks completed per second) to stabilize.

Results: Figure 4.12 shows the average compute tasks completed per second. At the

smallest data size, d = 100 kB, performance is comparable between the three methods

because data are not large enough to stress the system. For larger worker counts n and

data sizes d, the default Redis Pub/Sub deployment slows because the dispatcher becomes

a bottleneck, processing stream data at ∼100 MB/s. This rate is slower than the network

connection between the Redis server and dispatcher because the dispatcher must, for each

stream item, receive and deserialize the item from Redis; compose the task payload, serial-
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izing the item again; and communicate the task payload to a worker. Thus the dispatcher

cannot process the incoming stream data fast enough to keep workers fed with new tasks

when the number of workers or data size is sufficiently high.

ADIOS2 performs better than Redis Pub/Sub because we configured workers to read

items from the stream directly based on a step index provided by the dispatcher, improving

the latency between the dispatcher receiving stream data and launching a new task. However,

ADIOS2 requires changes to the worker task code not needed by the other two methods.

ProxyStream also alleviates data transfer and serialization burdens from the dispatcher

enabling performance on par with or better than ADIOS2 but does so transparently without

needing changes to the worker task code. The peak processing throughput of ProxyStream is

1.7× and 2.0× faster than ADIOS2 for 1 MB and 10 MB item sizes, respectively. Compared

to the Redis Pub/Sub baseline, ProxyStream is 4.6× and 6.2× faster for 1 MB and 10 MB

item sizes, respectively. At d = 100 MB, the largest data size evaluated, and n = 256, Prox-

yStream is 7.3× faster than Redis Pub/Sub. ProxyStream and ADIOS2 perform similarly

at this scale because other aspects of the experimental configuration become bottlenecks.

Namely, task execution overheads and storing the data produced by the generator limit

peak throughput. A faster data storage system or multiple data generators would be needed

to achieve scaling beyond this point, and ProxyStream does support modular data storage

and multi-producer configurations.

Outcomes: Streaming proxies, rather than data directly, ensures that objects in the

stream are only resolved once needed, thus avoiding overheads due to objects passing via

intermediate processes. The StreamProducer and StreamConsumer interfaces provide a mech-

anism for composing arbitrary message brokers and mediated communication methods, per-

mitting developers to optimize application deployments without altering task code. The

resulting distributed applications are more portable and generalizable to new hardware sys-

tems.

115



0 50 100 150 200
Runtime (s)

20

30

40

50

Sy
st

em
 M

em
or

y 
(G

B) No Proxy
Default Proxy
Manual Proxy
Ownership

Figure 4.13: Average system memory usage over three runs of a simulated MapReduce work-
flow. Shaded regions denote standard deviation in memory usage. Memory management
limitations in ProxyStore cause baseline memory utilization to increase over time. Manual
management can alleviate this problem, but requires careful implementation and prior knowl-
edge. In contrast, our ownership model provides automated memory management equal to
a hand-tuned implementation and enforces a set of rules at runtime.

4.4.3 Memory Management

We evaluate the automatic memory management of the proxy ownership model by comparing

system memory usage over a simulated workflow to ProxyStore’s default memory man-

agement and a manual memory management approach which relies on the a priori knowledge

of the programmer to free shared objects. We also compare to a baseline without any proxies

where data are sent directly along with task requests.

Setup: We execute a simulated workflow that imitates a series of map-reduces across

a local Dask cluster on a single compute node of Polaris. We run the workflow using each

of the proxy memory management models, default, manual, and ownership, and a baseline

without proxies using Dask for all data management. We record average memory usage

across three workflow executions for each configuration. Eight consecutive map-reduces are

performed where each of 32 mappers receives 100 MB and produces 10 MB. We choose

100 MB because the value is large enough to be observable in the memory trace (i.e., larger

than the baseline memory usage fluctuations) but is also below the Redis default maximum

value size of 512 MB. A single reducer consumes data produced by all mappers. In addition

to consuming and producing data, each tasks sleeps for 5 s.
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Results: Figure 4.13 presents the system memory usage traces for each memory manage-

ment model. The limited default memory management of ProxyStore results in memory

usage slowly increasing throughout execution as shared objects are created but never freed.

The automated management of our ownership model performs identically to manual man-

agement and appropriately evicts objects as references go out of scope.

The “no proxy" baseline passes data directly to Dask and utilizes Dask’s built-in dis-

tributed memory management. We observe that Dask appropriately frees all task data; how-

ever, the overall runtime is three times slower. The severe slow down is because Dask’s graph

serialization performs poorly with large (>1 MB in our experience) arbitrary Python objects,

as investigated in Section 3.6.2. Dask is optimized for transferring arrays and dataframes,

and we found Dask’s performance to be similar to the proxy cases when data were formatted

as NumPy arrays.

Outcomes: Our ownership model presents a marked improvement in using proxies in

distributed workflows. Enforcing ownership rules at runtime makes it easy to reason about

what operations on shared objects are safe and prevents programming mistakes which may

lead to memory leaks. Our reference implementation is designed to be agnostic to the

underlying task execution engine, but we believe that incorporating this model directly into

execution engines can enable more powerful features.

4.5 Application Evaluations

1000 Genomes: We use the 1000 Genomes workflow to investigate ProxyFutures as a mech-

anism for reducing task overheads and extending data flow dependencies to FaaS systems.

Tasks in the original 1000 Genomes workflow were implemented as Bash scripts. We use

the Python implementation of 1000 Genomes, where tasks are implemented as functions, to

execute the workflow using a FaaS execution engine such as Globus Compute (which we use

in the experiments reported here, due to its integration with HPC systems).
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Figure 4.14: 1000 Genomes Workflow stage start and ends times. ProxyFutures reduces
workflow makespan by starting computations when data are available rather than when
prior tasks complete.

We evaluate the makespan of the resulting workflow, using 5% of the 1000 Genomes

dataset, on a single compute-zen-3 node, with two 64-core CPUs and 256 GB memory, on

Chameleon Cloud’s CHI@TACC cluster [146]. Figure 4.14 shows workflow stage start and

end times for a baseline implementation, which uses Globus Compute’s native futures for

data synchronization between tasks, and a ProxyFutures implementation. As each stage

can contain up to thousands of tasks, we consolidate the tasks within stages for clarity.

ProxyFutures reduce workflow makespan by 36%, by better overlapping task execution and

communication costs across stages. More specifically: (1) tasks within stages 1, 2, and 3 are

better overlapped, reducing the stage makespans by 47–48%; (2) response time, the time

between receiving a task result and submitting another task, is improved (for example, by

54% when starting stage 4); and (3) stages 4 and 5 are 5% faster due to reduced data transfer

overheads. We also note there are no dependencies between tasks within stages 4 or 5, so

these stages do not benefit to the same degree as the earlier stages.

DeepDriveMD: We modify the Parsl implementation of DeepDriveMD [47] to stream

inference batches and results to and from a single, persistent inference task with ProxyS-

tream. A persistent inference task eliminates task overheads and enables reuse of models
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Figure 4.15: Comparison of inference round-trip time between two DeepDriveMD imple-
mentations: baseline and ProxyStream. The size of each batch increases over time as the
application accumulates more data points.

and caches. Streaming with proxies reduces overheads in the DeepDriveMD client because

received inference results are immediately added to a queue of simulation task inputs. In

addition to ProxyStream, ProxyFutures are used to indicate availability of a new ML model

to the inference task and proxy references for management of intermediate task data.

We compare the performance of DeepDriveMD to a version that uses proxy patterns. We

run each version for three hours using 40 GPUs on Polaris, dedicating one GPU for inference,

one for training, and the remainder for simulations. Round-trip inference time, shown in

Figure 4.15, is reduced from an average of 21.9±8.8 s to 15.0±8.4 s, a 32% improvement, and

21% more inference batches were processed in the same wall time. Reducing inference time

is key to enabling greater simulation throughput, such as when the number of simulation

workers is increased or simulation time is reduced.

MOF Generation: We modify the MOF Generation application to communicate all

task input and output data larger than 1 kB via proxies. (The overhead of proxying simple

data types such as boolean flags or configuration strings is greater than sending those objects

directly.) We deploy the application with default settings on ten Polaris nodes. We run the

application twice: with the standard proxy implementation of ProxyStore and with our

proxy ownership model. Here, ownership was sufficient; we did not use the lifetimes model.

We record the number of actively proxied objects during the application’s runtime. As shown
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Figure 4.16: Number of active proxies (i.e., proxies that still have a stored target object)
during the runtime of the MOF Generation application. Our ownership model for proxies
appropriately cleans up proxies when no longer needed while maintaining the benefits of the
pass-by-reference model.

in Figure 4.16, the ownership model appropriately evicts proxied data when the lifetime of

the associated proxy ends without altering the runtime behaviour of the application. Manual

memory management is possible, as discussed in Section 4.4.3, but automated management

is safer and makes adoption of advanced programming practices, such as those we present

here, easier and more appealing.

4.6 Related Work

Futures are a pervasive programming abstraction for asynchronous and concurrent pro-

gramming [30, 111]. Implicit futures act as references; any dereference blocks automatically

until the value is resolved [100]; thus, they typically require language-level support [67, 66,

108, 109, 58]. Explicit futures provide a public interface, such as a get method, that must

be invoked to block and retrieve the value; consequently, they can be provided by languages

and third-party libraries.

Explicit futures require control flow synchronization code, which reduces code flexibility

and complicates functions that want to operate on a future or a value directly. Either

two implementations or multiple execution paths must be present to support each case.

Implicit futures are also inflexible because they require that the language’s type system

120



handle the mechanics of lifting the value out of the future transparently. Thus few languages

support implicit futures, and programmers have limited ability to modify the resolution and

lifting processes. ProxyFutures address these key limitations by providing both an explicit

mechanism, the Future, and an implicit mechanism, the Proxy, for Python applications.

Distributed futures represent values that, when available, may be located in remote

process memory. Distributed futures are often underpinned by a remote procedure call

(RPC) system, such as in Dask [219], PyTorch [210], and Ray [184, 246]. Because these

futures are implemented by the RPC framework, rather than the language, all are necessarily

explicit futures, and their use is limited to the confines of the framework. Thus, for example,

one cannot create a distributed future in Dask or Ray and then invoke a serverless function

with Globus Compute [61] on that future. In contrast, ProxyFutures works across frameworks

and supports many mediated communication methods via a robust and extensible plugin

system.

Streaming applications in which producers and consumers generate and process data

continuously are commonly executed at scale on high-performance and cloud computing

systems. Their persistence and resilience needs may be met by message queuing systems such

as Apache Kafka [23], Redis [218], and RabbitMQ [211]. However, these systems typically

optimize for high-throughput, low-latency transmission of small, structured events, in order

that these events can be aggregated, filtered, or transformed, as in Kafka.

In contrast, high-performance science applications often produce large raw or unstruc-

tured data accompanied by structured metadata [39]. File-oriented distributed applications

often use GridFTP [59, 15]. Dispel4py [103, 161] maps abstract definitions of streaming

workflows onto concrete distributed execution frameworks, such as Python multiprocessing

or MPI [175]. Streamflow [132] extends the DAG-based workflow model to integrate contin-

uous event processing. ADIOS SST [97], a streaming engine for HPC workflows, and ADIOS

WASP [63], a data staging platform for scientific stream processing, use self-describing file
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formats and support advanced networking technologies such as RDMA. The SciStream mid-

dleware [64] enables fast, secure memory-to-memory streaming between nodes that lack

direct network connectivity. CAPIO [172] provides a middleware layer for injecting I/O

streaming capabilities into file-based workflows.

Consuming an entire stream item (data and metadata) is expensive when only metadata

are needed for decision making or data is to be forwarded to another application component.

ProxyStream decouples event metadata notification from bulk data transfer. Streaming

proxies allows data transfers to occur when and where needed, with specifics of the message

broker and data storage abstracted from the program.

Garbage collection in distributed environments is challenging. Automatic techniques

such as reference counting and tracing garbage collectors exist, but often require a priori

knowledge by the application programmer to add custom logic for shared object manage-

ment, and can be inefficient in distributed environments [160, 38, 203, 183]. Maintaining

global reference counts or traces adds network overheads, single sources of failure (if refer-

ence counting is centralized), or atomicity/consistency challenges (if reference counting is

distributed).

Leases, a decentralized, time-based mechanism, can be used to avoid maintaining a shared

state across processes [126]. Task-based execution engines can avoid shared state problems

and the complexities of reference count message passing because the central client or sched-

uler can act as a single source of truth [219, 184]. The notion of ownership uses a program’s

inherent structure to decentralize state management. In PyTorch RPC, each object has a

single owner that maintains the global reference count as remote processes need to access

the data [210]. Related work extends this concept to implement distributed futures and task

recovery in Ray [246].

Our proxy-based approach avoids the complexities of global reference counting by asso-

ciating object lifetimes with tasks, and our framework-agnostic approach means that object
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scopes can be appropriately managed across complex, distributed applications.

4.7 Summary

The lazy object proxy is a powerful construct for building distributed applications, providing

benefits of both pass-by-reference and pass-by-value while abstracting low-level communica-

tion details from consumers. Here, we have applied this construct to realize three powerful

parallel programming patterns: a compute framework agnostic distributed futures system,

a composable streaming interface for data-intensive workloads, and an ownership model for

object management in distributed, task-based applications. We evaluated these patterns

through synthetic benchmarks and showcased three classes of scientific applications that

can benefit from the proxy paradigm powered patterns. Specifically, we reduced the 1000

Genomes workflow makespan by 36%, reduced DeepDriveMD inference latency by 32%, and

optimized memory usage during MOF generation.

These patterns enable the development of robust, scalable, and portable applications.

For example, ProxyFutures empowers data flow dependencies between tasks executed across

different execution engines, such as when one engine is used for local execution on a cluster

and another for remote execution on cloud resources. ProxyStream can support long-running

scientific campaigns by using cloud-hosted message brokers for reliable metadata streaming

and Globus Transfer for federated, persistent bulk storage and efficient transfer. The proxy

ownership model provides automated wide-area memory management for distributed and

cross-site workflows. In the future, we will investigate further programming patterns that

can be enhanced with the proxy paradigm. Our work here serves as a reference for integrating

these design patterns into execution frameworks, such as Dask, Globus Compute, or Parsl,

and other high-performance computing toolkits. By providing first-class support for these

patterns directly within commonly used frameworks, we expect to enable speedups in many

scientific applications.
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CHAPTER 5

ENABLING AGENTIC WORKFLOWS ACROSS FEDERATED

RESOURCES

The desire to automate scientific processes has led to advancements in many fields, from

artificial intelligence (AI) [267] and computational workflows [85] to research data manage-

ment [15] and self-driving laboratories (SDL) [5], but humans typically remain responsible

for core aspects of the iterative research cycle, including hypothesis generation, experimen-

tal design, code development, and data analysis. Often, the human-in-the-loop is the rate-

limiting step in discovery. This friction increases as the scale and ambition of computational

science endeavors grow and leads to inefficient use of research cyberinfrastructure—the fed-

erated ecosystem of experimental and observational facilities, data repositories, and high-

performance computing (HPC) systems [177].

Intelligent agents, either as an individual system or composing larger multi-agent systems

(MAS), rather than humans, can be the driving entities of discovery. Agents are independent,

persistent, stateful, and cooperative—working together to achieve a predefined goal with

only intermittent human oversight. The contemporaneous explosion of interest in multi-

agent systems is largely a consequence of advancements in reasoning capabilities of the

large language models (LLMs) often used to back AI agents. Expressing components of

scientific applications as agents—programs that can perform tasks independently or semi-

autonomously on behalf of a client or another agent—is powerful. An agent manages its own

local state and exposes a well-defined behavior. Agents can perform human roles in iterative

scientific processes [245] or encapsulate research cyberinfrastructure (e.g., computational

resources and procedures, experimental instruments, and data repositories) [115].

Significant progress has been made towards developing AI agents that can act on behalf

of humans for such tasks as literature synthesis [153], hypothesis generation [124], and data

analysis and publication [140]. However, existing agent frameworks (e.g., AutoGen [259])
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Figure 5.1: Cooperative agents, spanning federated research infrastructure (experimental
facilities, computational systems, data storage), can enable agentic workflows that au-
tonomously steer discovery.

are not ready to build and deploy agents that employ federated research cyberinfrastructure.

New middleware is needed to enable agentic workflows that seamlessly integrate experiment,

observation, theory, simulation, AI, analysis, and more, as in Figure 5.1.

Frameworks for building agentic workflows are limited in scope and generally target con-

versational, cloud-native applications (e.g., LLM-based AI chatbots) [155, 259, 189]. The

federated nature of research infrastructure poses unique challenges: distributed resources

have diverse access protocols, interactions between computational and experimental enti-

ties are asynchronous, and the dynamic availability of resources requires fault-tolerant and

adaptive systems. Existing frameworks fail to address these intricacies. They lack abstrac-

tions and mechanisms tailored to support autonomous multi-agent workflows that integrate

computation, data management, and experimental control, which leads to brittle, ad hoc

integrations that are ill-suited for the demands of modern science. Moreover, the inherent

complexity of such workflows is compounded by the need to balance efficiency with scientific

rigor, especially in applications involving real-time decision-making, iterative exploration,

and multi-agent coordination.

These challenges are often orthogonal and span many levels of abstraction, but achieving
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this vision where intelligent agents serve as driving entities in scientific discovery requires a

paradigm shift in how workflows are designed, orchestrated, and executed. We introduce a

novel framework for building agentic workflows, emphasizing modularity, statefulness, and

interoperability across the diverse research infrastructure. Specifically, this work contributes:

• A vision for an era of autonomous discovery steered by federated collections of agents

deployed across research infrastructure (Section 5.1).

• A formalism for agentic workflows as a programming paradigm for autonomous dis-

covery (Section 5.2).

• Academy, a novel, modular, and extensible middleware for expressing agentic work-

flows and deploying multi-agent systems across federated resources. Academy ad-

dresses unique challenges in scientific applications, such as high data volumes, variable

resource availability, and the heterogeneous nature of experimental and computational

systems (Section 5.3).

• Performance analysis of Academy in diverse scenarios yielding insights into the scal-

ability and practical considerations of deploying agentic workflows (Section 5.4).

• Case studies demonstrating the utility of agentic workflow design and highlighting

improvements in automation, resource utilization, and discovery acceleration (Sec-

tion 5.5).

These contributions advance the state of the art in multi-agent systems for scientific discovery

and establish a foundation for future innovations in autonomous research workflows.

5.1 Autonomous Agentic Discovery

Scientific discovery has entered an era of unprecedented complexity. Modern research de-

mands the seamless integration of experiments, observations, models, simulations, artificial
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intelligence (AI), and machine learning (ML)—all while processing ever-growing volumes

of data and leveraging large, diverse, and distributed computing infrastructure. The land-

scape of discovery has been reshaped across disciplines; researchers rely on long-running

experimental observation, expansive data infrastructures, cutting-edge AI models, and high-

performance computing to uncover insights. This observation is emblematic of broader

transformations captured by the fourth and fifth paradigms of science, which describe the

shift towards data-intensive methods and artificial intelligence, respectively, as integral as-

pects of scientific exploration [134, 170]. (The prior paradigms are classified as empirical,

theoretical, and computational, respectively.) Fields ranging from astrophysics to social sci-

ences now rely on vast datasets, AI models, and computational methods to drive innovation.

The challenge lies not just in managing data or building models, but in building systems

that enable researchers to integrate and utilize them at scale. Current approaches to in-

tegrating data-intensive workflows and AI methods have yielded considerable success, but

use techniques that result in siloed solutions that fail to scale or generalize. This paradigm

shift demands more than building increasingly sophisticated tools; it calls for a fundamental

rethinking of how science is conducted.

Many aspects of the iterative research process can be automated (data acquisition and

preparation, workflow orchestration, modeling and simulation, and data visualization); how-

ever, human experts are still required to propose hypotheses, design experiments, write pro-

grams, procure resources, and interpret results. These human-driven aspects require experts

to keep up with state-of-the-art concepts, techniques, and results—a task that is increasingly

impractical. The ability of scientists to remain up-to-date is precluded by the exponential

growth in published data and papers [128]. Sustaining the ever-growing scale of scientific

endeavors will require addressing these human limitations.

Agents—programs capable of independently or semi-autonomously performing tasks on

behalf of a client or another agent—have been studied for decades, but contemporaneous
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advancements in AI have reinvigorated interest. Namely, the reasoning capabilities of large

language models (LLMs) have improved to the point where intelligent agents can steer more

complex processes with the flexibility and autonomy that previously only humans could

provide. A future in which agents play more anthropomorphic roles in iterative research

cycles is tangible. Like human experts, agents are typically specialized and share the au-

tonomous, persistent, stateful, and collaborative attributes necessary to work in unison to

achieve broader goals. Yet, specialized agents can perform their roles more efficiently than

humans—at least to an extent—enabling more autonomous, higher throughput, and arguably

more reliable discovery.

As a programming paradigm, agents are a valuable conceptual model and practical frame-

work for integrating loosely coupled systems that compose large-scale research infrastructure,

and agents can be the missing piece that enable long-running, autonomous use of these re-

sources. An agent-driven future of science requires continued advancements at many levels

of abstraction and attention to both human and technical challenges, but we posit that the

payoff will be immeasurable.

In this section, we review the history of agents from conceptualization with actors through

to modern adoption in AI-based “agentic workflows.” We describe our prediction for an era

of agentic discovery in which federations of agents work cooperatively to augment or replace

humans within scientific processes. We present a case study in materials discovery to orient

our prediction and describe how agents will transform every phase of scientific discovery to

create an autonomous discovery process. We distill key technical challenges that must be

addressed to achieve such visions and outline several uncertainties and risks.

5.1.1 What is an Agent?

Agent-based frameworks have proliferated recently; yet, the reemergence of agents in LLM

contexts obscures the breadth of research encompassed by the term. Contextualizing the
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history, taxonomy, successes, and failures of agents is key to evaluating the impact of agentic

applications for scientific discovery.

The origins of agentic systems are rooted in Carl Hewitt’s actor model [133]. Actors are

independent computational entities that enable concurrent computing (where the lifetimes

of many distinct computations overlap) through asynchronous message passing. In response

to a message, an actor can alter its local state, send messages to other actors, and create

new actors. This conceptual model is simple—lack of global state obviates the need for

locks and other synchronization primitives—and powerful—Hewitt describes that “all of the

modes of behavior can be defined in terms of one kind of behavior: sending messages to

actors.” Laying a formal foundation for distributed systems, the actor model influenced many

early concurrent programming languages (e.g., inter-process communication via mailboxes

in Erlang and tuple-spaces in Linda) and methods for fault-tolerance, state management,

and consistency (e.g., Paxos [154]).

A formal definition of “agent” has been long sought. Abstractly, an agent is an entity—

something or someone—that acts on behalf of another entity; this is rather actor-like within

the context of computer science. However, popular use of the term “agent” emerged through-

out the 1980s within distributed artificial intelligence. Then, and continuing into the 1990s,

AI was often regarded as “the subfield of computer science which aims to construct agents

that exhibit aspects of intelligent behaviour” [257]. For example, reinforcement learning

methods such as Q-learning [252] considered how to develop agents that maximize a reward

through interacting with the environment. Like actors, agents were entities that could com-

municate and manage their own internal state, but exhibited intelligent behavior weakly

defined as operating autonomously, perceiving and reacting to the environment, and taking

goal-oriented actions.

While modern AI methods are dramatically different, multi-agent systems (MAS) were

seen as critical to distributed artificial intelligence. Researchers posited that a MAS would
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exhibit emergent behavior [244], enabling more complex problem solving through internal de-

cision making where agents collaborate by goal setting, planning, negotiating, and reasoning,

as in BDI (belief, desire, and intention) [215].

Despite the theoretical promise of MAS, practical challenges arose. Scalability, robust-

ness, and the complexity of designing intelligent, cooperative agents hindered widespread

adoption in the early 2000s. While some successes were notable, such as agent-based mod-

eling, MAS struggled to deliver on the ambitious vision of emergence at scale. The actor

model remained relevant within distributed computing, but the field of AI was no longer

defined by the practice of constructing agents following the advancements in hardware and

algorithms that lead to the rise of deep learning.

Agents found renewed relevance in the 2020s with the advent of large language models

(LLMs). These systems, pre-trained on vast corpora of text, exhibit emergent capabilities in

natural language understanding and reasoning. By embedding LLMs within agent architec-

tures, researchers revisited earlier visions of autonomous, intelligent agents with newfound

capabilities. Frameworks like AutoGen [259] and OpenAI Swarm [189] leverage LLMs to

create agents that can perform tasks such as information retrieval, summarization, and in-

teractive collaboration with humans and other agents. Tool calling, such as in Claude [21] or

LangChain [156], enables LLMs to invoke user-provided external functions or APIs. Google’s

AI co-scientist [124], built on Gemini 2.0, is a multi-agent AI system designed to collaborate

with scientists by generating novel hypotheses and research proposals. In these MASs, each

agent plays a special role defined by its system prompt; agents then communicate, iteratively

refining the response or mapping messages to actions, to satisfy their goal—the client’s query.

Within computer science, an agent remains—and will likely remain—ill-defined. Rather

than attempt to naively reconcile this history through an (n + 1)th definition of an agent

(c.f. xkcd 927 [185] for a humorous take), we contextualize the remaining discussion by

summarizing the kinds of high-level behaviors that an agent can exhibit. An agent is broadly
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classified as deliberative (often called intelligent) or reactive. A deliberative agent contains

a model of the environment (a state) that is used to reason about what long-term plans to

make in order to achieve its goal [257]. In contrast, reactive agents lack a world model and

only take actions in response to changes in their perceived environment [188].

We can further define more specialized behaviors. Service agents provide predefined

services, including executing computational routines or provided resource access. Embodied

agents interact with the physical world, often via an actuator. Learning agents refine their

behavior over time, typically leveraging reinforcement learning to enhance performance. AI

agents employ an AI model, typically, but not limited to, an LLM, for taking actions or

making decisions. A MAS is composed of cooperative agents that work together toward

high-level system goals by planning and coordinating smaller tasks across agents with the

appropriate behaviors and resources. To a client, a MAS can manifest itself as a single agent,

encapsulating the complexity of the system. We emphasize that nothing precludes an agent

from exhibiting multiple behaviors—in fact, most do!

5.1.2 A Vision of Agentic Discovery

We predict that federations of cooperative agents—deliberative, reactive, embodied, and

more—will augment, and often replace, the human-in-the-loop in scientific endeavors. This

prediction originates from two observations. First, human decision making tasks limit the

rate of discovery, and second, advancements in agentic systems are converging to a point

where the complete scientific method can be carried out autonomously. We explore the first

observation through a case study in the autonomous discovery of carbon capture materials.

Then we describe a future in which specialized agents champion each phase of the scientific

method.

A Case Study in Materials Discovery: The urgency of climate change demands

innovative solutions across multiple fronts. Carbon capture is a crucial component of this
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multi-targeted approach, as reducing atmospheric CO2 levels can mitigate the greenhouse

effect and slow global warming. Traditional methods of carbon capture, such as chemical

scrubbing and geological storage, face challenges in efficiency, scalability, and cost [166].

Metal-organic frameworks (MOFs) offer a promising alternative; these polymers, composed

of inorganic metal clusters and organic ligands, are porous with high surface area. MOFs

can be tuned for selective gas adsorption properties making them highly effective for cap-

turing and storing CO2. The large surface area and pores of these structures makes them

ideal for selectively adsorbing gases; thus, researchers are interested in designing MOFs for

use in catalysis, drug delivery, gas storage, and—particularly—carbon capture to reduce

atmospheric CO2 levels and mitigate climate change. Discovering new MOFs with optimal

properties is a daunting task due to the intractable combinatorial space of possible structures

and the costs associated with synthesis and evaluation. Thus, scientists desire autonomous

methods for screening vast quantities of MOF structures. One such example is MOFA [263],

an online learning framework for generating, screening, and evaluating MOFs that couples

generative AI methods with computation chemistry.

The high-level MOFA workflow is as follows: (1) a specialized AI model generates candi-

date ligands, (2) candidate MOFs are assembled using predefined metal clusters and gener-

ated ligands, (3) candidates are iteratively screened and validated using multiple molecular

dynamics computations, (4) CO2 adsorption of promising candidates is simulated and stored

in a database, (5) the generative AI model is periodically retrained on these results to im-

prove performance. MOFA is representative of a broad class of scientific workflows that

have contributed to advancements in many fields. While these workflows aim to enable

autonomous discovery, their rigid and tightly coupled design means that humans are still

primarily responsible for stewarding their utility in broader scientific endeavors.

MOFA can screen MOFs many orders of magnitude faster than any human could syn-

thesize and evaluate a MOF. Yet, MOFA represents only a small step within the search
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Figure 5.2: The discovery cycle of metal-organic frameworks (MOFs) for carbon capture
is largely human-driven (orange stages). While some aspects have been automated (blue
stages), such the AI generation and simulation of MOFs in the MOFA workflow, human
responsibilities limit the rate of MOF discovery.

for better carbon capture materials so the benefits of this acceleration are poorly realized.

Consider the steps that happen before or after a scientist executes MOFA, also depicted

in Figure 5.2: domain experts distill techniques and results from the literature to inform

hypotheses, programmers design more accurate and faster molecular dynamics simulations,

ML practitioners investigate new generative model architectures, and chemists synthesize

and evaluate MOFs in laboratories. The outcomes of each step influence each other, but

propagation and application of outcomes is human-driven which introduces considerable la-

tency. Accelerating an individual task is good, such as using MOFA for high-throughput

screening, but accelerating decisions can have far greater impacts. Multi-agent systems are

ideal for optimizing these research processes, retaining the autonomy of different research

components while automating decision making.

In traditional workflows, policies dictate what tasks to run, when to run them, and

where they should be executed. Expression of these policies must be global to construct

and execute the task graph. This leads to two significant drawbacks: (1) modifying or
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extending components requires altering global policies, and (2) components cannot improve

their policies over time based on local information. Further, local state must be centrally

aggregated to make updated decisions, which can be inefficient at scale or when components

have high latency. In contrast, agents have autonomy over their policy expression and

evolution. An agent can improve its policies over time and be updated by a human without

needing to alter other agents. In MOFA, for example, this can manifest as agents using active

learning to prioritize queues to better allocate dynamic computational resources towards

MOFs with better heuristics.

Scaling out workflows to enable new capabilities is desirable, particularly by leverag-

ing integrated research infrastructure (IRI), which combines experimental facilities, data

repositories, and high-performance computing (HPC) systems. However, the traditional

tightly coupled workflow model makes this challenging. Dynamic resource availability re-

quires inefficient synchronization, component failures can disrupt dependent tasks, and state

synchronization across federated environments is costly. An agent-based architecture natu-

rally accommodates asynchronous execution, making it more resilient to variable workloads

and resource fluctuations. By decentralizing decision-making and enabling adaptive execu-

tion strategies, multi-agent systems have the potential to revolutionize autonomous scientific

discovery, ensuring that efforts in carbon capture and broader scientific domains are both

efficient and scalable.

Closing the Loop with Agents: Scientific discovery is inherently iterative, involving

goal definition, research, hypothesis generation, experimentation, analysis, and dissemina-

tion. Agents can play specialized roles at each phase while also transcending individual

steps to coordinate broader research objectives. We discuss each of these roles in detail,

including examples within our materials discovery use case, and summarize this ecosystem

of cooperative agents in Figure 5.3.

We show in the figure a set of intelligent learning agents that transcend any one phase
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Figure 5.3: The scientific method is an iterative process (stages depicted in the central loop).
Specialized agents (depicted as boxes with corresponding stages indicated by color) can carry
out the stages autonomously. Agents can also transcend stages to enable long-term planning,
exploration, and safety.

of the method and instead guide the actions of other agents in the MAS. An Exploration

agent steers the system, prioritizing breadth in early phases then transitioning towards more

targeted exploration when promising avenues are discovered. A Planning agent is respon-

sible for managing the environment and inherent tradeoffs in which the agent operates, for

example, to guide allocation of shared resources, follow predefined policies, and so forth. An

Enforcement agent plays the critical role of ensuring that agents’ actions are safe, legal,

and meet other regulatory requirements. These agents interact with many, if not all, of the

agents in each phase. In MOFA, agents can steer exploration of vast chemical design spaces,

plan long-running experiments, allocate resources across specialized agents, and ensure that

actions satisfy safety and technical constraints.

The scientific process is framed around a particular goal. For example, to discover MOFs

that are effective at capturing and storing CO2, to understand the nature of the universe,

or to characterize the molecular pathways that lead to a specific disease. As such, the
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first phase of the method aims to define, with some degree of specificity, the question(s) that

guide the subsequent phases. An Objective agent, when given a high level goal by a human,

can derive a set of questions or pose conjectures. Enabling agent-to-agent or agent-to-human

debate can improve the deliberation process of these agents, producing better or more refined

questions. In MOFA, an LLM-based AI agent can conjecture about possible base metal nodes

of interest or ask questions about the performance impacts of specific structure geometries.

Given a set of questions, the next phase in the process, study, seeks to identify knowledge

that can help address the question. The Knowledge agent must mine literature, identify

relevant prior experimental and simulation results, obtain published data, and establish link-

ages between potentially related information (for example by leveraging embedding databases

and via retrieval augmented generation). In MOFA, a knowledge agent can utilize retrieval

retrieval-augmented generation (RAG) to investigate prior uses of metal nodes of interest,

or leverage embedding databases to find similar structures of interest.

The Prediction agent is a form of intelligent agent that synthesizes the questions, con-

jectures, and knowledge from prior agents into hypotheses that can be tested. This agent

learns over time and incorporates a degree of creativity in its decision making. A key aspect

of the learning process is improving the feasibility of hypotheses using feedback from experi-

mental agents. In MOFA, the prediction agent proposes changes to certain input parameters

that will result in a desired effect.

The experiment phase seeks to gather data that can prove or disprove hypotheses. These

experiments may be conducted by one or more Service agents. They may encompass con-

ducting physical experiments via automated laboratories (embodied agents), simulated ex-

periments using HPC infrastructure (computational or code-generation agents), or observa-

tional data derived from sensors (observational agents). Service agents may self-coordinate

in a peer-to-peer fashion, or depend on planning agents that break up tasks into smaller

actions to be dispatched to the appropriate agent. In MOFA, AI agents can generate candi-
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date ligands, computational agents can perform screening simulations, and embodied agents

can synthesize materials and evaluate them within self-driving laboratories.

Data and observations from experiments are interpreted by Analysis agents. These

agents look for trends or patterns in the data, may train or use models, and will ultimately

interpret the data to derive findings. In MOFA, statistical analysis and causal inference

agents can use results to determine the veracity of hypotheses and review the efficiency of

performed experiments (e.g., which assays were most indicative, resource utilization, etc.).

Finally, the Publish agent will store and disseminate the results in the form of knowledge.

Depending on the consumer, this knowledge may be communicated in different ways, for

example writing to an embedding database or knowledge base for other agents, preparing a

video to share with the public, or publishing a paper to share with experts. Importantly,

this agent must capture the provenance of the research processes in a way that the results

are verifiable, understandable, and ideally, reproducible. In MOFA, the publish agent can

write generated MOFs to a database and disseminates outcomes to the objective, knowledge,

and prediction agents.

Evolving Human Responsibilities: Realizing this world of agent-driven discovery

does not negate the need for nor the utility of scientists. Rather, we envision that the respon-

sibilities of scientists will transition away from mundane tasks, such as experiment execution,

resource provisioning, and monitoring, to higher-level objectives. Strategic decision making,

long-term objective setting, theoretical and conceptual development, interdisciplinary col-

laboration, verification and validation of findings, and general system design remain central

tasks for scientists. The key distinction with these tasks is that they are not responsible for

the overheads that impact the rate of discovery.
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5.1.3 Key Technical Challenges

Achieving this vision of completely autonomous discovery requires addressing several critical

technical challenges. We briefly highlight important challenges below.

Discovery and Interfaces: Composing autonomous discovery processes requires first

identifying the agents that are necessary and perhaps evolving the set of participating agents

over time. New discovery capabilities are needed to allow agents to discover other agents,

determine what those agents can do, and how well they can do it. Agents may also consider

other aspects such as cost, safety, reliability, ethics, and so forth. A second concern then

is how agents may interact with one another, for example, via secure and self-descriptive

interfaces. The significant prior work on actors provides a general basis for such interfaces;

however, recent work with LLM and chat interfaces, agent-based frameworks like AutoGen,

and remote computing, robot, and data interfaces must also be considered.

Access Control and Sharing: By definition, agents will interact with other agents.

In many cases these agents will span resources, facilities, institutions, regions, and even

countries. As a result, it is critical that rules and regulations are followed and enforced,

for example, limiting what resources may be used, how those resources are shared, and

what resources can be used for what purposes. Overarching policies, created by humans

or machines, can be used to define these rules, and agents must incorporate mechanisms to

enforce these policies. Further, it will be important to audit provenance traces to understand

not only what was done, but why it was done and by whom.

Infrastructure: The discovery process may include a broad range of resources—comput-

ation, data, models, people—that span locations and administrative domains. Making effec-

tive use of these resources represents a considerable hurdle with respect to interfaces, poli-

cies, and usage requirements. Further, many scientific problems involve diverse data types

(e.g., images, text, numerical data, sensor readings), unique instruments (e.g., microscopes,

telescopes, gene sequencers), hardware (clusters, edge sensors, AI accelerators), and model
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types that must be leveraged by agents. A final concern is agent resilience as agents may

fail in myriad ways. Detecting, abstracting, and recovering from failures is a long standing

challenge in distributed computing which is amplified by deployment of autonomous agents.

Agent Mobility: Multi-agent systems for autonomous discovery will rarely be static.

Agents must be deployed, terminated, replaced, scaled, and on occasion, moved between

locations. Such mobility must be a cornerstone of the infrastructure and communication

methods described above. Prior work in mobile agents [201], often referred to as mobile code,

provides a foundation for research in this area, considering, for example, code portability, ad

hoc networking, and communication patterns.

Provenance and Reproducibility: The scientific method is one of proof and valida-

tion. It is critical that others be able to not only understand what has been done, but also

to validate the results and methods applied, and to reproduce and extend those methods.

The fact that learning agents may be prone to opaque decision making necessitates efforts

focused on interpretability and explainability of individual decisions. However, considering

the nascent state of scientific reproducibility, there is an opportunity for agentic discovery

to rapidly improve the verifiability and reproducibility or research processes by integrating

provenance as a first-class citizen in the discovery lifecycle. Such capabilities may rely on

verifiable ledgers to document processes and decision making, the ability to introspect agents

and their behaviors, and methods to reuse agents in different settings to reproduce results.

5.1.4 Uncertainties and Risks

Beyond addressing key technical challenges, the transition towards agent-driven discovery

raises several uncertainties and risks. The greatest uncertainty—as with any large-scale

endeavor—is garnering buy-in from stakeholders, the scientists, research institutions, and

funding agencies that will devote time and resources towards enabling this future. We

discuss such risks that, if ignored, will heighten stakeholder uncertainty.
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Prior periods of research into agents, as mentioned earlier, have seen mixed success, and

it is not unreasonable to be weary of history repeating itself. Research then, just as it is

now, is ambitious and the reasons for past failure were complex: AI methods were primitive,

software protocols were more fragmented, and hardware limitations prevented innovation.

We believe that we have reached an inflection point where research in AI, software, and

hardware has advanced to a point where their integration in the form of agents is feasible

and will present a value add to science. Not least, lessons learned from past failures will

inform future decisions.

Worse than absolute failure or success is the illusion of success. Autonomous systems are

susceptible to security and safety risks, including adversarial attacks that could manipulate

results or physical safety when autonomous actions are taken in the real world. These risks

are not unique to agents but require deference as ambition and scale increase. In a similar

vein, bias in any AI system must be characterized and controlled for, otherwise results may

unknowingly be invalid. For example, as in our MOF design application, biases in training

data could lead to skewed discoveries that favor certain materials or methods over others.

Scientific discovery thrives on collaboration, yet autonomous workflows may inadvertently

promote isolation if proprietary models or siloed datasets dominate research. Open-source

initiatives, shared repositories, and cross-disciplinary partnerships must be encouraged to

prevent fragmentation and maximize the collective impact of agents. Collaborations between

human researchers and autonomous agents will pose new challenges to determining proper

attribution of outcomes (just as we have seen with LLMs and writing). Traditional academic

crediting mechanisms may need to evolve to fairly recognize the tightly coupled contributions

of humans and AI.
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5.2 Formalization of Agent Systems

Agents encompass a rapidly expanding front for AI research, yet agent paradigms can address

a breadth of challenges across the computational sciences. We begin with a definition of an

agent—inspired by prior work—that is sufficiently generic to encompass the various semantic

uses of the term. Then, we enumerate common high-level classes of agents and formalize

agentic workflows, both of which we aim to support in the design of Academy in Section 5.3.

An agent is a program that can perform actions independently or semi-autonomously

on behalf of a client or another agent. This definition is imprecise but presents a powerful

conceptual model for distributed computing. The agent concept originates from the actor

model, a concurrent computing paradigm in which actors encapsulate a local state and

communicate through message passing [133]. Agents extend the actor model with the notion

of agency—the ability of the agent to engage independently with its environment.

An agent a is defined by its behavior B and local state S. The behavior of an agent

encompasses a set of actions x ∈ X (procedures that the agent can perform), and a set

of control loops c ∈ C that define the autonomous behavior [121]. Agents are often long-

running, but may also be ephemeral—created to complete a specific task and then exiting.

Clients and agents can request another agent to perform an action on their behalf through

message passing. An action can be atomic or composite, invoking other actions on the same

or remote agents. An agent with actions but no control loops (i.e., |X| > 0 and |C| = 0)

reduces to an actor.

Agents come in many flavors (previously discussed in Section 5.1.1). Intelligent (deliber-

ative) agents are goal-oriented and reason about what actions to take using internal models

and external perception [257]. AI agents, a subset of intelligent agents, use AI methods to

make decisions or perform actions. In contrast, reactive (observer) agents simply perceive

their external environment and react to changes [188]. Service agents provide predefined

services in response to action requests and come in many forms: resource agents manage

141



and grant access to resources, such as compute or storage, and embodied agents can act

in the world, such as through physical actions when paired with a robot body. Learning

agents adapt their behavior over time to improve performance, often through reinforcement

learning [178, 179]. Composite agents exhibit two or more of these behaviors. For example,

deliberative learning agents improve their reasoning or planning capabilities over time, and

reactive service agents perform services in response to environmental changes. A multi-agent

system can enable more complex behaviors than monolithic programs [190], which can lead

to powerful emergent behavior [76].

An agentic workflow can be formalized as a graph of actions—rather than tasks, as in

typical DAG-based workflows—where agents request and perform actions on behalf of one

another, enabling dynamic coordination and the collective pursuit of complex, distributed

objectives. Let the environment E represent the external state space, influencing and influ-

enced by the actions of agents and other entities. Agents in the environment are represented

by a deployment d(A,R) : A → R of agents a ∈ A on to resources r ∈ R. Each agent

implements a behavior, and an agent that knows the behavior of a peer agent can request

the peer to perform an action through message passing. Thus, there exists a directed graph

representing the peer relationships between the agents; an edge e = (ai, aj) in this graph im-

plies that ai knows of aj and can request actions from aj . Sink nodes in the graph represent

agents that only perform atomic actions, whereas source nodes may represent deliberative

or reactive agents that trigger actions on other agents. A cut vertex (articulation point) in

the graph can represent an agent that serves as an interface or gateway to another, possibly

more complex, multi-agent system.

The deployment of agents can execute workflows. An agentic workflow W is modeled

as a directed graph where nodes are a tuple (x, a) of an action to perform and the agent

performing the action, and edges representing the source agent and action that triggered the

subsequent action. A workflow is typically implicitly encoded within the agent behaviors of
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a multi-agent system. I.e., the graph W is not explicitly materialized and agents do not need

to know W in order to execute. An agent only needs to be concerned with its local view of

executing requested actions and requesting actions from peers. Thus, workflows may often

be highly dynamic as agent behaviors react to changing states.

5.3 Academy Design

Designing a middleware that can express the diverse demands of scientific applications and

leverage federated research infrastructure is challenging. In the design of Academy, we aim

to address the following high-level challenges: How to represent, in code, the declaration

of and interaction between agents? How to deploy agents across federated infrastructure?

How to achieve performance across heterogeneous systems, networks, and storage? Thus,

we begin by outlining key requirements, before we introduce the high-level architecture and

detailed implementation choices. The name Academy alludes to societies of artists and

scholars that, while independent, collaborate and share similar goals.

5.3.1 Requirements

Writing scientific applications as agentic workflows, rather than using traditional work-

flow models, can require a considerable shift in conceptual thinking. To reduce developer

friction, our design emphasizes familiarity—using well-known programming patterns—and

simplicity—providing a small set of primitives and inviting users to invent new patterns and

techniques. With these principles in mind, we define requirements in four areas:

• Representation: Agent behavior must be expressed in code, supporting control loops,

actions that can be performed, and local state. Multiple agents may be instantiated

with the same behavior. Agents should not share state.

• Interaction: Agents and clients must be able to interact. They must be able to
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address a specific agent, perform one or more actions, modify local state, or create and

terminate agents.

• Communication: Agents and clients communicate asynchronously and are tempo-

rally decoupled (e.g., a message sent to an offline agent should be read when that agent

is next online). Agents may be deployed in diverse environments with heterogeneous

network environments (e.g., asymmetric networks and firewalls restricting connections).

• Execution: An agent performs actions in response to requests from clients or other

agents. Agent control loops may run in perpetuity or exit before the end of the agent’s

lifetime. Agents may be launched using different mechanisms that are dependent on

the application or environment.

These requirements are an extension of actor systems; therefore, our system inherits prop-

erties including simplified concurrency, message processing ordering, loose coupling, error

isolation, and modularity [133].

Our implementation focuses on mechanism rather than policy. That is, we discuss how ap-

plications can use Academy to achieve certain outcomes without prescribing what agents,

or more generally, applications should do. This avoids constraining, or worse, alienating

possible use cases and results in a flexible framework suitable for solving many disparate

problems. Further, we describe the components within the architecture in terms of abstract

interfaces (i.e., without mandating implementation details such as message protocols, state

formats, or ordering) to enable further experimentation and optimization, but we still aim

to provide implementations that are suitable for most use cases (as demonstrated in the

evaluation). Features such as fault tolerance and resilience, resource allocation, and authen-

tication and authorization, while important, are not listed as explicit requirements because

applications have varying demands that preclude one-size-fits-all solutions.
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Figure 5.4: Agents and clients in Academy interact via handles to invoke actions asyn-
chronously. Agents implement a behavior, defined by their actions, control loops, and state.
Academy decouples the control and data planes through the launcher and exchange com-
ponents that manage spawning agents and communication, respectively.

5.3.2 Architecture

Academy is a middleware for expressing agentic workflows and deploying multi-agent sys-

tems across federated resources. Its architecture strongly decouples the implementation of

agent behavior from execution and communication to simplify the development of new agents

while maintaining flexibility in deployment.

As depicted at a high level in Figure 5.4, an Academy deployment includes one or more

agents and zero or more clients. An agent is a process that executes a behavior, where a

behavior is defined by a local state, a set of actions, and a set of control loops. Agents are

executed remotely using a launcher. Once running, an agent concurrently executes all of its

control loops and listens for messages from clients, which can be other agents or programs.

A client interacts with an agent through a handle, a term we borrow from actor frame-

works. A handle acts like a reference to the remote agent and translates method calls into

action request messages. Each entity (i.e., client or agent) has an associated mailbox that
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1 import time , threading
2 from academy.behavior import Behavior , action , loop
3

4 class Example(Behavior):
5 def __init__(self) -> None:
6 # State stored as attributes
7 self.count = 0
8

9 def on_setup(self) -> None:
10 pass
11

12 def on_shutdown(self) -> None:
13 pass
14

15 @action
16 def square(self , value: float) -> float:
17 return value **2
18

19 @loop
20 def count(self , shutdown: threading.Event) -> None:
21 while not shutdown.is_set ():
22 self.count += 1
23 time.sleep (1)

Figure 5.5: Example agent behavior definition. State is stored as instance attributes, @action
decorated methods define actions that other clients and agents can invoke, and @loop dec-
orated methods define control loops that run when the agent starts. The on_setup() and
on_shutdown() methods define callbacks invoked when the agent starts and stops, respec-
tively.

maintains a queue of messages sent to that entity by other entities. Mailboxes are maintained

by an exchange such that any client with access to a given exchange can send messages to the

mailbox of another agent in the exchange and receive a response through its own mailbox.

5.3.3 Implementation Details

Academy is implemented as an open-source Python library, available on GitHub [6]. We

target Python for its broad compatibility with scientific workflow codes and libraries, but

both the architecture and individual components could be implemented in other languages.

Behavior: An agent behavior is implemented as a Python class that inherits from

the base Behavior type, as shown in Figure 5.5. This class-based approach is simple, so

146



existing code can be easily transformed into agents, and extensible through inheritance

and polymorphism. Instance attributes maintain the agent’s state, and methods define the

actions and control loops.

The @action decorator marks a method as an action, allowing other entities to invoke it

remotely. (In the future, we plan to support adding metadata to the @action behavior to aid

discovery discussed in Figure 5.3.3.) A behavior can invoke actions on itself, as actions are

simply Python methods. Methods not decorated as @action are private to the behavior. The

@loop decorator marks a method as a control loop. Control loops are executed in separate

threads, so a shared threading.Event is passed as an argument to each loop that signals

when the agent is shutting down so that control loops can gracefully exit. A control loop

can terminate early and the agent will remain running. Commonly, control loops are used to

execute a routine on a regular interval, such as to check the state of the environment, or in

response to an event. We provide two special control loop decorators, @timer and @event,

that simplify behavior implementations for these scenarios.

Two special methods, on_setup() and on_shutdown(), allow behaviors to define callbacks

when starting or shutting down, such as to load/store state or initialize/destroy resources.

Multiple inheritance of behaviors enables the creation of composite agents.

Agent: An Agent is a multithreaded entity that executes a behavior and manages com-

munication with other entities. It is instantiated with a behavior, unique identifier (the ad-

dress of the agent’s mailbox in the exchange), and exchange interface. An agent is a callable

object that when run: (1) invokes the on_setup() callback of the behavior, (2) starts each

@loop method in a separate thread, (3) spawns a thread to listen for new messages in the

agent’s mailbox, and (4) waits for the agent to be shut down. An @action method is ex-

ecuted in a thread pool when requested remotely so as to not block the handling of other

messages. Behaviors can optionally specify the maximum action concurrency.

Agents are designed to be long-running, but can be terminated by sending a shutdown
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request. Upon shutdown, the shutdown Event, passed to each @loop, is set; running threads

are instructed to shutdown and waited on; and the on_shutdown() callback is invoked.

Alternatively, an agent can terminate itself by setting the shutdown event. Similarly, an

exception raised in an @loop method will shutdown the agent by default but can optionally

be suppressed to keep the agent alive. Exceptions raised when executing @action methods

are caught and returned to the remote caller.

The use of multi-threading means that behavior implementations must be aware of the

caveats of Python’s global interpreter lock (GIL). Compute-heavy actions can dispatch work

to other parallel executors, such as process pools, Dask Distributed [219], Parsl [27], or

Ray [184]. We discuss these patterns in more detail in Section 5.3.4. In the future, we

would like to support async behaviors and exchanges for improved I/O performance, but

scientific computing libraries in Python are not typically async compatible. In Python 3.13

and later, we support free-threading builds, which disable the GIL, enabling full multi-core

performance. At this time, however, third-party library support for free-threading builds is

limited.

Our decision to decouple behavior definitions from agent execution is deliberate. As

behaviors encode application-level logic, we want them to be easily testable and reusable,

independent of deployment details. Existing code bases can trivially transition an existing

class definition into an agent by inheriting from Behavior and decorating with @action as

needed, and behavior classes can still be used independently (i.e., not as a running agent).

Handles: Interacting with an agent is asynchronous; an entity sends a message to the

agent’s mailbox and waits to receive a response message in its own mailbox. A handle is

a client interface to a remote agent used to invoke actions, ping, and shutdown the agent.

Each handle acts as a reference to that agent, translating each method call into a request

message that is sent via the exchange and returning a Future. The handle also listens for

response messages and accordingly sets the result on the appropriate Future. Rather than
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creating a return mailbox and listener thread for each handle that a client or agent may

have, Academy will multiplex communication for multiple handles within a single process

through a single mailbox. This multiplexing ensures that only one mailbox listener thread is

needed per process (i.e., agent or client). For example, consider an agent A with n handles

to n other agents. It would be inefficient to create a new mailbox for each of A’s n handles,

so each handle is bound to A’s mailbox at runtime.

Exchange: Entities communicate by sending and receiving messages to and from mail-

boxes. An exchange hosts these mailboxes, and the Exchange protocol defines the interface

to an exchange. Namely, the Exchange defines methods for registering new agent or client

mailboxes, sending and receiving messages, and creating handles to remote agents. Register-

ing an agent or client involves creating a unique ID for the entity, which is also the address

of its mailbox, and initializing that mailbox within the exchange.

A mailbox has two states: open and closed. Open indicates that the entity is accepting

messages, even if, for example, an agent has not yet started or is temporarily offline. Closed

indicates permanent termination of the entity and will cause MailboxClosedError to be

raised by subsequent send or receive operations to that mailbox.

Exchanges also provide mechanisms for agent discovery by querying based on agent be-

haviors. This also works with superclasses of behaviors. Consider, for example, a behav-

ior ProteinFolder that can fold proteins [19] and another behavior OpenProteinFolder

that inherits from ProteinFolder and specifically uses the OpenFold model [7]. Query-

ing for ProteinFolder would return the IDs of all agents inheriting from ProteinFolder

whereas querying for OpenProteinFolder would return only specific agents using the Open-

Fold model. In the future, agents could provide additional metadata to enhance discovery.

Users can define custom exchanges to address specific hardware or application characteris-

tics. We provide two exchange implementations for local and distributed agent deployments.

The local exchange stores messages in-memory and is suitable for agents running in separate
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threads of a single process, such as when testing.

The distributed exchange enables communication between entities across wide-area net-

works. Core to the distributed exchange is an object store that persists information about

registered entities. A hybrid approach is used for message passing: direct messaging is pre-

ferred, and indirect message passing via the object store is available as a fallback. Upon

startup, an entity writes its location (i.e., address and port) to the object store; peers that

want to send a message can attempt to send directly to the entity’s address. If the peer is of-

fline or a direct connection fails, such as in the presence of NAT (network address translation)

or firewall restrictions, messages are appended to the list of pending messages in the object

store. Entities continuously listen to incoming messages from peers and pending messages

in the object store. Entities cache successful communication routes locally to reduce queries

to the object store. Our implementation use TCP (transmission control protocol) sockets

for direct messaging and a Redis server as the object store. Redis provides low-latency com-

munication and optional replication, but applications that need greater fault-tolerance could

consider DHT-based (distributed hash table) object stores.

We optimize the exchange for low latency, as control messages are typically small: O(100)

bytes. However, action request and response messages can contain arbitrarily sized serialized

values for arguments and results that can induce considerable overheads when messages are

sent indirectly via the object store. To alleviate these overheads, we pass large values by ref-

erence and perform out-of-band data transfers by using ProxyStore [195, 197], introduced in

Chapter 3 and which provides pass-by-reference semantics in distributed computing through

proxy objects. Proxy objects act like references (cheap to serialize and communicate) and

automatically de-reference themselves to the true object using performant data storage and

communication methods. For example, ProxyStore can leverage RDMA (remote direct mem-

ory access) transfers via Mochi [220] and UCX [226], GridFTP via Globus Transfer [59], and

reliable peer-to-peer UDP (user datagram protocol) through NAT hole-punching. ProxyS-
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1 from academy.exchange.thread import ThreadExchange
2 from academy.launcher.thread import ThreadLauncher
3 from academy.manager import Manager
4

5 with Manager(
6 exchange=ThreadExchange (), # Can be swapped with
7 launcher=ThreadLauncher (), # other implementations
8 ) as manager:
9 behavior = Example () # From Listing 1
10 handle = manager.launch(behavior)
11

12 future = handle.square (2)
13 assert future.result () == 4
14

15 handle.shutdown () # Or via the manager
16 manager.shutdown(handle.agent_id , blocking=True)

Figure 5.6: Example of initialization, spawning, using, and shutting down and agent using
the Manager interface.

tore also provides two key optimizations useful within Academy: proxies can be forwarded

to actions executed on other agents without incurring additional data transfers and proxies

can be asynchronously resolved to overlap communication and computation.

Launcher: An agent can be run manually, but the intended method of execution is via

a launcher, which manages the initialization and execution of agents on remote resources.

The Launcher protocol defines a launch() method with parameters for the behavior, ex-

change, and agent ID and returns a handle to the launched agent. Users can create custom

implementations; we provide the following four that cover most use cases:

• Thread: Runs agents in separate threads of the same process. Useful for local devel-

opment and testing or for light-weight or I/O bound agents.

• Process: Runs agents in separate processes on same machine.

• Parsl: Runs agents across the workers of a Parsl Executor [27]. Parsl supports execu-

tion across local, remote, and batch compute systems.

• Globus Compute: Runs agents across Globus Compute Endpoints [61]. Globus
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Compute is a cloud-managed function-as-a-service (FaaS) platform which can execute

Python functions across federated compute systems.

The last three launchers support mechanisms to automatically restart agents if they exit

unexpectedly. It is common for different agents in an application to be executed with different

launchers, but all agents must be registered to the same exchange to interact.

A Manager combines an exchange and one or more launchers to provide a single interface

for launching, using, and managing agents. Each manager has a single mailbox in the ex-

change and multiplexes that mailbox across handles to all of the agents that it manages. This

reduces boilerplate code, improves communication efficiency, and ensures stateful resources

and threads are appropriately cleaned up. An end-to-end example is provided in Figure 5.6.

5.3.4 Common Patterns

We have introduced basic building blocks necessary to build multi-agent systems and de-

ploy agents across federated infrastructure. Now we discuss several common patterns that

highlight features of Academy and guide users in building new agentic workflows.

State Checkpoints: Research infrastructure can fail; thus, agents may want to perform

periodic state checkpointing. The framework does not enforce a specific checkpointing mech-

anism, as the format, location, and frequency of checkpoints are highly application specific,

but on_startup() callbacks can be used to restore state automatically. For convenience, we

provide a State API that provides a dictionary-like interface and persists values to the local

file system.

Migration: Research infrastructure is typically static, so Academy does not require

that the launcher provide mechanisms for automatic agent migration. Some launchers, such

as Parsl, will restart agents on different workers if node-level failures cause agents to crash.

Applications can also manually migrate agents across different launchers using agent shut-

down and checkpointing mechanisms. These features are sufficient for users to implement
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custom launchers that enable automatic migration, such as to load-balance across resource

pools.

Agent Hierarchies: Agents may dynamically need to create and manage child agents,

either to offload tasks or to access new behaviors. A parent agent can create new child agents

by using the same launcher used to create the parent, or by creating a new launcher. The

use of different launchers is common in scenarios where parent agents want to initialize a

local multi-agent system. For example, a client may launch an initial set of agents across

federated resources using Globus Compute, and then those initial agents spawn more agents

on local resources through Parsl.

Resource Pools: High-performance workflows may need to distribute work across many

computers. In an agentic model, resource pool allocation can take two forms: agent managed

resource pools or agents as resource pools. In the former, an agent allocates a pool of resources

using a parallel computing framework, such as Parsl or Ray, and the agent’s actions dispatch

work to resources in the pool. In the second pattern, we deploy identical agents across a set

of resources and then route action requests across this agent pool (akin to worker pools in

HTTP frameworks).

Process-as-a-Service: FaaS systems, such as Globus Compute, provide optimized exe-

cution of short-lived, stateless, and ephemeral functions. Academy agents can extend FaaS

systems with process-as-a-service capabilities [72], enabling applications to utilize longer-

lived, stateful, and isolated processes on-demand.

5.4 Evaluation

We studied the performance characteristics of Academy to answer key questions including:

How well does the system scale? How fast can agents be deployed? What is the messaging

latency? We also make comparisons to Dask and Ray, two popular frameworks with support

for distributed actors in Python. Although Academy agents provide a superset of features
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provided by actors, these evaluations contextualize the performance of the framework. In

these comparisons, we use the terms agent and actor interchangeably.

We conducted experiments using the Aurora supercomputer at the Argonne Leadership

Computing Facility (ALCF), unless otherwise stated. Aurora has 10 624 nodes intercon-

nected by an HPE Slingshot 11 network and a high performance DAOS storage system.

Aurora nodes contain two Intel Xeon Max CPUs, each with 52 physical cores and 64 GB

of high-bandwidth memory; 512 GB of DDR5 memory per socket; and six 128 GB Intel

Data Center Max GPUs. In some cases we also use the Polaris supercomputer at ALCF

and the compute-zen-3 nodes of Chameleon Cloud’s CHI@TACC cluster [146]. Polaris has

560 nodes interconnected by an HPE Slingshot 11 network and a 100 PB Lustre file system.

Polaris nodes contains one AMD EPYC Milan processor with 32 physical cores, 512 GB of

DDR4 memory, and four 40 GB NVIDIA A100 GPUs. Each compute-zen-3 node contains

two 64-core CPUs and 256 GB memory. Experiments were performed using Python 3.10,

AutoGen 0.5.1, Dask 2025.2.0, Globus Compute 3.5.0, Parsl 2025.03.03, and Ray 2.43.0.

5.4.1 Weak Scaling

We measure weak scaling performance from two aspects: agent startup and action completion

time. The object store of the exchange is located on the head node of the Aurora batch job

to best match the behavior of Dask and Ray.

Agent Startup Time: We measure the time to spawn n agents in Figure 5.7 (top). We

pre-warm the worker processes by starting and stopping n agents, then record the average

startup time over five runs. Specifically, we measure the time between submitting the first

agent to receiving a ping from all agents to ensure that they have finished their startup

sequence. We configured Academy to use Parsl’s High-throughput Executor as the launcher.

Ray always spawns a new process per actor and thus does not benefit from pre-warmed

workers leading to high startup overheads at smaller scales. The cold start time with Acad-
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Figure 5.7: (Top) Warm-start time for n agents/actors between Academy (using the Parsl
launcher), Dask Actors, and Ray Actors. Ray does not benefit from warm-starts because a
new process is spawned for each actor. (Bottom) Time to execute 30 actions per agent/actor
(weak scaling). Each action sleeps for 1 s. Note the Academy and Ray lines are overlapped.
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emy and Dask is comparable to that of Ray and dominated by loading libraries from the

shared file system. With warm starts, Academy starts a single actor in 5.5 ms, 2.8× faster

than Dask. Academy scales well, starting 3328 actors in 7.6 s compared to Dask’s 23.4 s,

but Ray demonstrates an advantage at this scale with a 3.2 s startup. Since Academy can

leverage many launcher types, applications requiring frequent startup of agents can utilize

Parsl for low-latency, and applications launching thousands of long-running agents could use

Ray.

Action Completion Time: In Figure 5.7 (bottom), we execute 30 sleep tasks (1 s) per

agent and record the total completion time. We set the maximum concurrency to 1 for all

agents to ensure that tasks are processed sequentially. Completion time remains constant

for Academy and Ray up to 3328 agents while the performance of Dask degrades starting

at 104 actors.

5.4.2 Distributed Exchange

Next, we study the performance of the distributed exchange.

Data Transfer: We first investigate the pass-by-reference and direct communication

optimizations of the distributed exchange. In baseline, all message data are communicated

indirectly between peers via the exchange’s object store. The object store is located remotely

on a Chameleon Cloud node. In pass-by-ref, messages are still communicated with the

object store, but action arguments and results are replaced with references using ProxyStore.

ProxyStore is configured to use ZeroMQ (see Section 3.3.1) and ProxyStore’s P2P endpoints

(see Section 3.3.2) for intra-site and inter-site transfer of referenced objects, respectively. In

direct, messages are communicated directly between peers, circumventing the cloud-hosted

object store; this is only possible when peers are located within the same site.

In Figure 5.8 (top), we measure the time it takes for a client to invoke a no-op action

on an agent as a function of input and output payload size. We compare baseline, pass-
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Figure 5.8: (Top) Time for a client to invoke a no-op action on an actor as a function of input
and output payload size with different optimizations enabled on the distributed exchange.
Two scenarios are considered: client and agent are at the same site (left) and different sites
(right). (Bottom) Time for a client to invoke a chain of n actions across n agents with a
payload size of 10 MB. Each action in the chain is a no-op that passes the input data along to
the next agent, and returns the resulting data. The pass-by-reference optimization reduces
communication costs among intermediate actions.
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by-ref, and direct across two scenarios: Aurora → Aurora, where the client and the agent

are located on two different Aurora nodes, and Workstation → Aurora, where the client is

located on a personal workstation and the agent is located on an Aurora node. The latencies

between the three sites are Aurora to Chameleon: 31 ms; Aurora to Workstation: 12 ms;

and Workstation to Chameleon: 42 ms. The workstation is limited to an 800 Mbps internet

connection.

We observe that network latency to the exchange object store limits performance at

smaller payload sizes (≤ 100 KB). Direct, which is possible only in the intra-site scenario,

circumvents these latencies. In both scenarios, pass-by-ref alleviates overheads of data trans-

fer to and from the object store by communicating data directly between the client and agent

via ProxyStore. For intra-site transfers, pass-by-ref and direct improve action latency com-

pared to the baseline by 91.2% and 97.6%, respectively, with 100 MB payloads. For inter-site

transfers, pass-by-ref improves action latency by 78.8%.

Pass-by-ref also reduces overheads when actions pass data to subsequent actions, a com-

mon pattern in multi-agent systems. We evaluated this optimization by measuring the

round-trip time of action chains in which data are passed through n actions, each invoked

on a separate agent, and results are returned through each agent as well. Pass-by-ref reduces

the size of messages communicated via the exchange, as indicated by the shallower slope in

Figure 5.8 (bottom). Data are only communicated once to the agent that uses the data

(here, the last agent in the chain).

Handle Multiplexing: As described in Figure 5.3.3, the communication of multiple

handles within a process is multiplexed through a single mailbox. Without this optimization,

each handle held by a client process or agent would create a thread for communication. We

evaluated this optimization in Figure 5.9 by creating one agent that submits a bag-of-tasks to

n worker agents and comparing the task throughput with (multiplex ) and without (baseline)

mailbox multiplexing. Multiplexing improves throughput by 41.7% with 52 worker agents
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Figure 5.9: Maximum no-op action throughput for a single agent requesting actions from n
worker agents. The handle multiplexing optimization improves performance by reducing the
number of mailbox listener threads from n to 1.

due to reduced threading overheads.

5.4.3 Agent Messaging

Here, we investigate the performance of agent messaging. As in Section 5.4.1, the object

store of the exchange is located on the head node of the Aurora batch job.

Action Latency: In Figure 5.10 (top), we show action latency—the time between send-

ing an action request and receiving a result— between two agents on different nodes. We vary

the input/output payload size to understand data transfer overheads. The mean and stan-

dard deviation roundtrip latencies are 385±301 µs in Academy, 1186±1059 µs in Dask, and

526±308 µs in Ray for the smallest 10 KB payloads, with latencies increasing with payload

size.

Action Throughput: We measure the maximum action throughput for a single agent

by submitting a bag of no-op tasks to a pool of worker agents (following the “agents as

process pools” pattern from Section 5.3.4) in Figure 5.10 (middle). Increasing the number of

agents in the pool ensures that each worker agent is not over-saturated with work. That is,

the single submitter agent is the limiting factor for performance. Academy, Dask, and Ray

achieve maximum throughputs of 3.6K, 280, and 17.6K action/s, respectively. Academy is

13× faster than Dask but 5× slower than Ray; however, this is a worst case scenario and we
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Figure 5.11: Memory used by n agents/actors. We encountered Ray crashes when deploying
104 actors on a single Aurora node (i.e., all cores on both sockets).

believe this performance to be sufficient to not limit realistic applications using Academy.

Agent Conversations: In Figure 5.10 (bottom), we simulate a common pattern in

LLM agents where two agents have a back-and-forth conversation. We compare Academy

to AutoGen, a popular framework for creating multi-agent AI applications. Each agent is

run in a different process on the same node. Agents send ten messages back-and-forth,

and we repeat with varying message sizes to simulate different kinds of conversations (i.e.,

text-only versus multi-modal). AutoGen’s distributed agent runtime uses gRPC which has

a maximum message size of 4 MB. Academy has comparatively lower overhead messaging

in distributed settings.

5.4.4 Memory Overhead

We show memory used as a function of number of agents in Figure 5.11; for Academy,

we compare two launchers: a low-overhead but single-node process-pool and Parsl’s High-

throughput Executor. For fairness, we disable features in Dask and Ray that may reduce

performance, such as dashboards, and set the initial Ray object store size to the smallest

possible value. Academy agents have low memory overheads, making them suitable for

memory-constrained devices, such as when deployed across edge devices via the Globus

Compute launcher. The Ray cluster head worker has high memory overhead, but that initial
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overhead is amortized as the number of actors is increased, indicating that each actor has

modest overhead.

5.5 Case Studies

We use three applications to demonstrate the practicality, generality, and robustness of our

system in real-world settings. These examples illustrate how Academy integrates with

existing research infrastructure, supports a range of computational patterns, and adapts to

the varying demands of scientific applications. They validate key design choices, uncover

integration challenges, and provide guidance to researchers building agentic workflows.

5.5.1 Materials Discovery

MOFA [263] is an online learning application for generating, screening, and evaluating metal

organic frameworks (MOFs) that couples generative AI methods with computational chem-

istry. MOFs are polymers composed of inorganic metal clusters and organic ligands; their

porosity and large surface area make them suitable for gas adsorption applications such as

carbon capture [112]. The goal of MOFA is to generate high-performing candidates by intel-

ligently navigating the intractable combinatorial space of possible MOF structures. MOFA

is representative of a broad class of scientific workflows that require careful integration of

heterogeneous tasks spanning AI and simulation.

MOFA involves five stages, also summarized in Section 5.1: (1) a generative AI model

produces candidate ligands; (2) these ligands are combined with predefined metal clusters

to assemble candidate MOFs; (3) the candidates undergo iterative screening and validation

using a series of molecular dynamics simulations; (4) CO2 adsorption properties of the most

promising structures are simulated and recorded in a database; and (5) the generative model

is periodically retrained on the accumulated results to enhance its performance over time.

MOFA utilizes Colmena [249] to coordinate the flow of data between stages and to distribute
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Figure 5.12: We execute MOFA by deploying agents across federated infrastructure using
Globus Compute. The Assembler, Database, and Estimator run on Chameleon Cloud nodes
with fast single-core performance, the Generator and Validator run on login nodes of Aurora
and execute AI and simulation tasks on compute nodes, and the Optimizer runs on a login
node of Polaris and executes simulation tasks on compute nodes. Each agent is responsible
for a single MOFA stage, and agents cooperate through message passing, such as to request
more work and trigger periodic events. The agents on Aurora and Polaris can scale resources
in and out based on workload using Parsl.

computations across CPU and GPU resources within a single batch job. However, this design

has key limitations: stages cannot be deployed across heterogeneous resources, such as to

leverage hardware best optimized for the specific computations; stages cannot independently

scale in or out—resources are bound by the size of a single job; integrating new components

within tightly coupled code is challenging; and integration with asynchronous processes, such

as synthesis in a real laboratory, are infeasible.

MOFA is an excellent candidate for an agentic workflow, as we demonstrate by port-

ing MOFA to use Academy and deploying the workflow across federated resources: see

Figure 5.12. We express MOFA through six agents: Database, Generator, Assembler, Val-

idator, Optimizer, and Estimator. Each agent is responsible for a different component of the

workflow and manages its own resources (i.e., storage and compute). Agents are remotely

deployed across Chameleon Cloud nodes and the login nodes of Aurora and Polaris via

Globus Compute, and communicate via the distributed exchange backed by a Redis instance

in Chameleon Cloud.
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Figure 5.13: Execution trace of the agentic MOFA workflow of Figure 5.12 over three hours.
(Top) Active tasks per agent. The vertical axis height represents the maximum size of the
resource pool allocated by each agent (i.e., CPUs or GPUs). Assembler tasks are short and
infrequent. (Middle) Cumulative tasks submitted per agent. (Bottom) Active workers allo-
cated in each agent’s resource pool. Worker allocations vary with demand (as in Assembler
and Estimator) or batch job wall times (as in Generator, Validator, and Optimizer).
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An execution trace of the agentic MOFA workflow (Figure 5.13) shows how each agent

scales out its allocated resources as work becomes available, and in the case of Assembler

and Estimator, scale down when their workload decreases. The Generator, Validator, and

Optimizer consistently have work to do but their batch jobs within which workers run have

60 minute wall times that expire and then must be resubmitted, causing temporary drops

the the number of workers. Active tasks that are killed are automatically restarted in the

next job. This separation of concerns is key to enabling long-running workflows—resource

infrastructure is not persistently available and agents will need to be able to adapt to that

varying availability. A second benefit of this model is the loose coupling between agents. For

example, the specific implementation of a given agent can be trivially swapped provided the

behavior (i.e., the API that agents expose) remains the same. In addition, it becomes easier

to integrate future agents, such as to incorporate embodied agents that interact with self-

driving labs to synthesize and evaluate the best-performing MOFs in the real-world. While

automated MOF synthesis is not yet practical, the capabilities of self-driving labs are rapidly

improving [5, 243], and it is tangible to envision a future where these loosely coupled agentic

workflows incorporate services provided by self-driving labs through embodied agents.

5.5.2 Decentralized Learning

In decentralized machine learning a set of models learn collaboratively across distributed

datasets [130]. This paradigm is particularly relevant today as data are increasingly gen-

erated in decentralized settings and transfer to a centralized location can be infeasible for

cost and privacy reasons. Each device in a decentralized learning workflow performs three

steps: (1) train a model on local data for a set number of iterations; (2) receive models from

neighboring devices and send its own model to neighbors; and (3) update the local model

via an all reduce operation performed across its own and received models. Reframing the

decentralized learning workflow as an agentic workflow is a natural and powerful extension.
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Figure 5.14: Model communication time to an agent’s neighbors averaged over five rounds
of decentralized training. Training time and aggregation time are excluded since they are
nearly constant.

We implement a decentralized and asynchronous machine learning exemplar using Acad-

emy. The agents and the communication channels between them can be represented as a

graph where nodes are agents and edges are communication channels. We choose a powerlaw

cluster graph to approximate real-world networks [136]. Each agent is responsible for training

its local model, receiving neighboring agents’ models, and aggregating received models with

its own model on a periodic basis. Each agent uses a copy of the MNIST dataset [87]. The

agents are configured to use pass-by-ref with ProxyStore as the transfer backend. Thus

data communication between agents follows the network topology. We investigate the cost

of distributing updates from all agents as we scale the size of the graph for different model

sizes in Figure 5.14. We do not show training and aggregation time as it is approximately

the same for all model sizes and does not increase with the number of agents. The agents

are deployed on Aurora using Parsl, where each agent is pinned to a single GPU tile (two

tiles per physical GPU), allowing 12 agents per node. Our results demonstrate Academy’s

ability to support more than 1500 autonomous agents working collaboratively with no client

coordination (as can be seen by the constant time in Figure 5.14).
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Figure 5.15: Execution trace of the agentic MCQ workflow processing 10 manuscripts to
generate and validate questions and answers over 15 minutes. The figure shows the active
agents and the duration of their tasks. Agents employ either the Mistral-7B-Instruct-v0.3
or Meta-Llama-3-70B-Instruct model, denoted A and B, respectively.

5.5.3 Information Extraction

Exponential growth in scientific publications [44] creates potential for cross-disciplinary in-

sights that are largely untapped due to the limitations of manual literature review. Au-

tomating information extraction from this vast and varied body of work using AI is crucial

to accelerate scientific progress. AI methods can be employed to identify and synthesize

key findings, methodologies, and datasets across fields and thus to identify connections and

facilitate the cross-pollination of ideas that would otherwise go unnoticed [48, 232].

Agentic workflows that leverage LLMs present a transformative new approach to en-

gage with scientific literature. Employing autonomous agents with specific roles and ca-

pabilities makes it possible to automate the extraction of information and generation of

structured datasets that represent key concepts and findings. Such datasets can be used

to fine-tune models and enhance their ability to understand scientific text, answer domain-

specific queries, and potentially contribute to tasks like hypothesis generation or literature

summarization.
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To explore the potential of agentic workflows for thus analyzing the scientific literature we

used Academy to implement a system for generating and validating multi-choice questions

(MCQs) from research publications [57]. The workflow, based on Catlett and Foster 2025,

includes a PDFParser agent to extract text from a manuscript; two Generator agents that

use different LLMs to generate MCQs; an MCQSelector to choose subsets of questions to

evaluate; and two MCQAnswerers and two AnswerScorers (again, each with a different

LLM) to generate and validate, respectively, answers to questions. The agents use the

Mistral-7B-Instruct-v0.3 [143] and Meta-Llama-3-70B-Instruct [125] models, denoted A and

B, respectively.

The beauty of this architecture is that alternative tasks and LLMs are easily integrated

by defining new agents; agents can scale up and down in response to demand; and different

agents can run concurrently or at different times. We show in Figure 5.15 an execution trace

from a run in which the agents just listed were run concurrently to generate and validate

MCQs for 10 publications.

5.6 Related Work

A workflow is a structured sequence of tasks, typically a directed acyclic graph (DAG),

designed to achieve a specific goal, often involving data transformation, analysis, or compu-

tational modeling. Frameworks for building workflows take many forms. Parallel computing

libraries, such as Dask [219] and Ray [184], provide mechanisms for executing functions

in parallel across local resources or distributed systems. Similarly, workflow management

systems (WMSs) can execute tasks in parallel but also provide mechanisms for defining, op-

timizing, and monitoring DAG execution (e.g., Airflow [22], Fireworks [141], Makeflow [13],

Nextflow [89], Parsl [27], Pegasus [86], Swift [255]). WMSs can be differentiated by how

dependency graphs are defined [196]: static configurations files, such as CWL [75], XML, or

YAML; general purpose languages (GPLs); domain specific languages (DSLs); or procedu-
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rally through the dynamic execution of a program. The class of workflows supported by these

frameworks have two key limitations that we address: tasks are assumed to be pure (i.e., no

side-effects) and programs are static, i.e., they cannot adapt to changing environments over

time.

Actors are computational entities that enable concurrent computing through message

passing [133]. In response to a message, an actor can alter its local state, send messages

to other actors, and create new actors. This conceptual model is simple; no global state

means locks and other synchronization primitives are not required. Actors can enable state-

ful computations within traditionally stateless programming models, and are supported in

parallel computing frameworks (e.g., Akka [10], Dask, Orleans [35], Ray) and function-as-

a-service (FaaS) platforms (e.g., Abaco [116], Azure Service Fabric [26], PraaS [72]). Actor

models have been investigated as alternatives for designing computational workflows where

communication and coordination are decoupled [45]. Our system extends the actor model

to support autonomous behaviors and federated deployments.

Multi-agent systems can enhance or automate scientific processes. Early work in-

vestigated cooperative agent environments for distributed problem solving with minimal

human intervention [94, 93]. Recent work focuses on improving the reasoning capabilities of

LLM-backed agents through ontological knowledge graphs and multi-agent systems [118] and

tool-augmented LLMs [167]. Increasingly popular is the use of multi-agent conversations,

in which multiple role-specialized agents interact to collaborate, coordinate, or compete to-

wards goals [259]. These systems enhance LLM-based tools through better reasoning [96],

validation [260], and divergent thinking [162], prompting rapid development of frameworks

such as LangGraph [155], Microsoft AutoGen [259], OpenAI Swarm [189], and Pydantic

Agents [208]. Subsequently, interest in standardizing agent protocols has developed. An-

thropic’s Model Context Protocol (MCP) defines structured interaction between humans/-

tools and AI models. Google’s Agent2Agent (A2A) Protocol [122] focuses on structured
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interaction between autonomous agents; each agent serves an HTTP endpoint which is im-

practicable for many scientific workflows [20]. Multi-agent conversations can proxy scientists

in iterative scientific processes—brainstorming ideas, planning experiments, and reasoning

about results [42, 245, 115, 124]—but these aforementioned systems are designed for local or

cloud-native applications and lack the features necessary to deploy agents across federated

research infrastructure. We focus on the systems-level challenges of representing and de-

ploying diverse agent types and agentic workflows across heterogeneous environments rather

than the applied use of LLMs for workflow steering.

5.7 Summary

Advancements in AI, coupled with concurrent advancements in self-driving laboratories, high

performance computing, and research data management, open the door for truly autonomous

scientific discovery. Realizing this grand vision requires mechanisms for the seamless and

dynamic integration of research software and infrastructure. To that end, we introduced

Academy, a middleware for developing agentic workflows that engage multi-agent systems

spanning federated reeearch infrastructure. This framework enables scalable and flexible

orchestration of intelligent agents across heterogeneous resources. We presented solutions to

three key challenges: representing and programming agents; communicating among agents;

and executing agents across diverse resources. Our evaluations demonstrate that Academy

can support high-performance workflows, and three case studies highlight the advantages of

agentic workflow design.

In future work, we will explore scoped authentication to control which agents can invoke

others, enabling the creation of agent marketplaces where access can be granted, revoked, or

delegated. We also plan to expand agent discovery with additional metadata to support AI-

steered workflows in which LLMs autonomously identify and use available agents. Recording

the relative ordering of agent events (i.e., messages received and state transitions), as in
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Instant Replay [158], can support provenance within agentic workflows. Last but not least,

we will work across scientific research communities to assemble agents for different purposes,

and with research facilities to identify obstacles to agent use that may motivate further

developments in Academy.
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CHAPTER 6

SUMMARY AND IMPACT

In this thesis, I explored new programming techniques with the goal of enabling and ac-

celerating task-centric scientific applications that leverage the computing continuum. By

addressing key challenges in distributed execution paradigms, data flow management, and

agentic workflows, this work has contributed foundational methodologies and practical imple-

mentations that enhance the flexibility, scalability, and performance of distributed scientific

applications.

In TaPS, I introduced a benchmarking suite designed to evaluate parallel task execution

frameworks. The lack of evaluation standards has historically hindered comparisons between

existing systems, making it difficult to assess their limitations and potential improvements.

By providing reference workloads and a unified interface for evaluating execution frameworks

and data management systems, TaPS has supported continued research and development

in task-based execution models.

The increasing complexity of modern scientific workflows necessitates a rethinking of tra-

ditional techniques and abstractions for building distributed and task-parallel applications.

Building on insights from TaPS and numerous case studies, I introduced a new paradigm

that addresses the key challenge of data flow in such environments—namely, the efficient

and scalable exchange of intermediate data between tasks. Through the development of

ProxyStore’s transparent object proxy paradigm, I have demonstrated how data flow can

be decoupled from control flow, enabling both pass-by-reference and pass-by-value seman-

tics that simplify application design while improving performance. Further extending the

proxy paradigm, I presented high-level patterns that extend the utility of proxies in dis-

tributed computing, including patterns for distributed futures, streaming, and ownership.

These patterns provide developers with tools to streamline the creation of scalable, efficient

applications in a variety of scientific domains.
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Recognizing the shift toward intelligent, autonomous workflows in scientific discovery, I

also explored the role of multi-agent systems in computational science. The development of

Academy, a middleware solution for expressing and deploying autonomous agents across

federated resources, represents a step toward fully automated scientific workflows. By en-

abling agent-based execution models, this work lays the foundation for more adaptive and

self-sustaining computational science applications.

The experimental evaluations and real-world applications presented in this thesis confirm

the effectiveness of the proposed techniques, facilitating new discoveries in fields ranging from

materials science to bioinformatics. Within a short period of time, the impact of Proxy-

Store has been notable, yielding strong collaborations across a breadth of ongoing projects

and featuring in three Gordon Bell Prize submissions, including the project that won the 2022

Gordon Bell Special Prize for COVID-19 Research. TaPS has found immediate success in

supporting research in novel data management systems, resilient computing, and cost-aware

scheduling.

These contributions collectively advance the state of the art in computational science,

enabling researchers to tackle larger, more complex problems with greater efficiency and ease.

Looking ahead, the continued evolution of these techniques will further accelerate scientific

discovery, ultimately pushing the boundaries of what is computationally possible.
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