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October 13, 2023

Abstract

In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing
our capacity to model and predict natural occurrences. This could herald a new era of
scientific exploration, bringing significant advancements across sectors from drug develop-
ment to renewable energy. To answer this call, we present DeepSpeed4Science initiative
(deepspeed4science.ai) which aims to build unique capabilities through AI system technol-
ogy innovations to help domain experts to unlock today’s biggest science mysteries. By
leveraging DeepSpeed’s current technology pillars (training, inference and compression) as
base technology enablers, DeepSpeed4Science will create a new set of AI system technologies
tailored for accelerating scientific discoveries by addressing their unique complexity beyond
the common technical approaches used for accelerating generic large language models
(LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in
addressing two of the critical system challenges in structural biology research.

1 Introduction
In the next decade, deep learning may revolutionize the natural sciences, enhancing our capacity
to model and predict natural occurrences. This could herald a new era of scientific exploration,
bringing significant advancements across sectors from drug development to renewable energy. In
line with Microsoft’s mission to empower every person and every organization on the planet to
achieve more, the DeepSpeed team at Microsoft is responding to this opportunity by launching a
new initiative called DeepSpeed4Science, aiming to build unique capabilities through AI system
technology innovations to help domain experts to unlock today’s biggest science mysteries.

The DeepSpeed system [1] is an industry leading open-source AI system framework, developed
by Microsoft, that enables unprecedented scale and speed for deep learning training and inference
on a wide range of AI hardware. Figure 1 demonstrates our basic approach to this new initiative.
By leveraging DeepSpeed’s current technology pillars (training, inference and compression) as
base technology enablers, DeepSpeed4Science will create a new set of AI system technologies
tailored for accelerating scientific discoveries by addressing their unique complexity beyond the
common technical approaches used for accelerating generic large language models (LLMs). We
work closely with internal and external teams who own AI-driven science models that represent
key science missions, to identify and address general domain-specific AI system challenges. This
includes climate science, drug design, biological understanding, molecular dynamics simulation,
cancer diagnosis and surveillance, catalyst/material discovery, and other domains.

Our long-term vision is to develop DeepSpeed4Science into a new platform and a unified
repository for sharing advanced AI system technologies that support scientific discoveries.
DeepSpeed4Science is designed to be inclusive, echoing Microsoft’s AI for Good commitment.
That is reflected in the initiative’s support for a diverse group of signature science models,
representing some of the most critical AI for science investments. In this paper, we showcase
how DeepSpeed4Science helps address two of their critical system challenges in structural
biology research: (1) eliminating memory explosion problems for scaling Evoformer-centric
protein-structure prediction models, and (2) enabling very-long sequence support for better
understanding the evolutionary landscape of pandemic-causing viruses. After the two showcases,
we will give a brief overview of the current DeepSpeed4Science collaborators.
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Figure 1: DeepSpeed4Science approach: developing a new set of AI system technologies that
are beyond generic large language model support, tailored for accelerating scientific discoveries
and addressing their complexity.

2 DS4Sci_EvoformerAttention: eliminating memory explo-
sion problems for scaling Evoformer-centric structural
biology models

2.1 Core Problem Description
OpenFold [2] is a community reproduction of DeepMind’s AlphaFold2 [3] that makes it possible
to train or finetune AlphaFold2 on new datasets. Researchers have used it to retrain AlphaFold2
from scratch to produce new sets of model parameters, studied the early training phase of
AlphaFold2, and developed new protein folding systems.

While OpenFold does apply performance and memory optimizations using state-of-the-art
system technologies, training AlphaFold2 from scratch is still computationally expensive. The
model at the current stage is small in absolute terms, with just 93 million parameters, but it
contains several custom attention variants that manifest unusually large activations. During the
“finetuning” phase of a standard AlphaFold2 training run, the logit tensor produced in just one of
these variants–one designed to attend over the deep protein MSAs fed to the model as input–is
in excess of 12GB in half precision alone, dwarfing the peak memory requirements of comparably
sized language models. Even with techniques like activation checkpointing and DeepSpeed
ZeRO optimizations [4], this memory explosion problem heavily constrains the sequence lengths
and MSA depths on which the model can be trained. Furthermore, approximation strategies
can significantly affect the model accuracy and convergence, while still resulting in memory
explosion, shown as the left bar (orange) in Figure 2.

To address this common system challenge in structural biology research (e.g., protein

3



Figure 2: Peak memory requirement for training variants of the MSA attention kernels (with
bias) with the maximum possible training sample dimension in OpenFold. (Left) The original
OpenFold implementation with EvoformerAttention used in AlphaFold2. The memory explosion
problems in training/inference these types of protein structure prediction models are common.
Particularly, state-of-the-art FlashAttention cannot effectively support such science attention
variants. (Right) A new solution from DeepSpeed4Science called DS4Sci_EvoformerAttention
significantly reduces OpenFold’s peak memory requirement for training by 13X without accuracy
loss.

structure prediction and equilibrium distribution prediction), DeepSpeed4Science is addressing
this memory inefficiency problem by designing customized exact attention kernels for the
attention variants (i.e., EvoformerAttention), which widely appear in this category of science
models. Specifically, a set of highly memory-efficient DS4Sci_EvoformerAttention kernels
enabled by sophisticated fusion/tiling strategies and on-the-fly memory reduction methods, are
created for the broader community as high-quality machine learning primitives. Incorporated
into OpenFold, they provide a substantial speedup during training and dramatically reduce
the model’s peak memory requirement for training and inference. This allows OpenFold to be
experimented with bigger and more complex models, and longer sequences, and trained on a
wider spectrum of hardware.

2.2 Methodology
The Evoformer-centric models such as OpenFold and others typically use four attention variants
to process the 4D sequence tensors: MSA row-wise, MSA column-wise, and two kinds of
Triangular. In particular, the input tensor is of shape (Nres, Nmsa, H,D), where Nmsa is the
length of MSA sequences, Nres is the length of residue sequences, H is the number of attention
heads, and D is the hidden dimension of the model. Figure 4 illustrates an example of MSA
row-wise attention. The inputs consist of three projected tensors in shape (Nmsa, Nres, D),
namely Q, K, and V , and a (Nres, Nres) bias matrix of residue pairs. In step 1, Q and K perform
dot-product between every row vector along the D dimension, deriving the attention logits in
shape (H,Nmsa, Nres, Nres) as the intermediate results. For simplicity, we only depict one head
in the figure. Unlike language models such as GPT-3 [5], where D and H are considerably
larger, Evoformer operates on a different scale. Specifically, MSA row-wise attention is typically
designed with 8 heads, each having 8 features, while GPT-3 is configured with 96 heads and
128 features per head. However, MSA and residue sequence lengths can extend up to 5K
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Figure 3: Peak memory requirement breakdown for training variants of the MSA attention
kernels (with bias) with the maximum possible training sample dimension in OpenFold. (Left
bar) the original OpenFold implementation with EvoformerAttention used in AlphaFold 2. The
memory explosion problems in training/inference these types of protein structure prediction
models are common. Particularly, FlashAttention cannot effectively support such science
attention variants. (Right bar) Our DeepSpeed4Science-optimized solution significantly reduces
the overall peak memory requirement.

during training and inference, respectively, making the memory explosion for intermediate
results. MSA row-wise attention has the O(Nmsa ∗ Nres

2) memory footprint, and, similarly,
for MSA column-wise attention, the memory footprint is O(Nres ∗ Nmsa

2). In contrast, the
memory footprint of language models is much smaller, approximately O(N2). Figure 3 shows
the breakdown of memory requirements per GPU.

Existing techniques for long sequences cannot effectively address such memory explosion
challenges in Evoformer’s specialized attention for structural biology. For example, MSA row-
wise attention and two Triangular attention apply a bias term to the attention logits, and the
bias term’s gradients are required during backward. As shown in step 2, the pair bias is derived
by projecting the pair-wise representation and is used to adjust the attention logits based on the
structure of residues to satisfy the spatial constraints. Take FlashAttention [6] as an example; it
cannot integrate these backward-compatible bias terms directly. Furthermore, the bias requires
appropriate broadcasting to match the shape of attention logits before adding. It thus also
needs to be mirrored in backward computing. Recognizing these challenges, DeepSpeed4Science
addresses this memory inefficiency problem by designing customized, exact attention kernels for
these attention variants in EvoformerAttention and boosting the training/inference efficiency.

Our customized highly memory-efficient DS4Sci_EvoformerAttention kernels fuses the four
steps computation and calculates the attention logits in tiles. Specifically, in the forward kernel,
each thread block computes a tile of (Tilex, T iley, T ilez) in the attention logit tensor. Each
thread block loads the needed tiles from Q and K to perform the dot-product. The resultant tile
is stored in registers and added with biases. Then, we perform softmax as step 3 and multiply
V as step 4. We reduce the memory footprint by materializing only a subset of tiles in the
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Figure 4: The example of MSA row-wise attention computation in OpenFold in four steps. The
example shows the computation of one attention head, where the input Q, K, and V are 3D
tensors and the pair bias is a matrix. Each attention head is associated with a 3D intermediate
attention logit causing the memory explosion. We fuse four steps in one kernel to reduce peak
memory usage.

(Nmsa, Nres, Nres) tensor and not saving the whole tensor for backward. We perform steps 1-3
in the backward kernel to recompute the attention logits. The backward computation is similar
to that of FlashAttention. In our kernels, we tune the tile size for better performance. Large
tile size leads to more efficient memory access while incurring register spilling; We tune the tile
size to be (64, 64, 1).

The bias-adding needs to be effectively broadcasted to match the bias shape with the
attention logits. For example, in MSA row-wise attention, the residue pair-wise representation
in shape (Nmsa, Nres, D) is transformed to be the bias term in shape (H,Nmsa, Nres), while
the attention logits tensor is of shape (H,Nmsa, Nres, Nres). To broadcast, the bias tensor
will be repeated Nmsa times as the second dimension. Here, we cannot directly leverage the
broadcast semantics in Pytorch because we use a fused CUDA kernel out of PyTorch. Besides,
broadcasting in PyTorch requires the operation between two full tensors instead of tiles. Thus,
we enabled on-the-fly broadcasting in the kernel; in particular, after calculating the attention
logits after step 1. For example, a thread block loads a (Tilex, T iley) tile from the pair bias.
The thread block for different heads with the same position of its tile in the attention logits will
load the same bias tile. The loaded tile is added to the logits tile in registers.

In backward, the gradient of the bias terms equals the gradient of attention logits. How-
ever, we need to reverse the broadcast operation. That is, the gradients along the broadcast
dimension need to be accumulated. Specifically, the shape of attention logits gradients is
H,Nmsa, Nres, Nres and the bias gradient is computed similar to attn_grad.sum(0) in Pytorch.
To reduce the memory footprint, we also fuse this operation into our kernel; otherwise, it needs
the full attention logits gradient tensor. As described above, different thread blocks load the
same bias tiles participants in the accumulation. Each thread block uses atomic-add operations
when writing out its tile of gradients. To reduce the contention that multiple thread blocks
are trying to write the same place, we schedule the thread block so that blocks executing on
GPU’s multiprocessors at the same wave write to different tiles. Furthermore, the accumulation
could lead to potential accuracy issues due to the round-off error of low-precision arithmetic
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operations, especially for bfloat16. Consequently, we convert the gradient to FP32 before
adding and converting it back in another kernel if necessary. It also avoids using the slow
atom.add.bf16x2 instruction.

For detailed DS4Sci_EvoformerAttention kernels source code release and tutorial, please
visit our release blog.

3 DeepSpeed4Science Enables Very-Long Sequence Support
via both Systematic and Algorithmic Approaches for
Genome-scale Foundation Models

3.1 Core Problem Description
GenSLMs [7], a 2022 ACM Gordon Bell award winning genome-scale language model from
Argonne National Lab, can learn the evolutionary landscape of SARS-CoV-2 (COVID-19)
genomes by adapting large language models (LLMs) for genomic data. It is designed to
transform how new and emergent variants of pandemic-causing viruses, especially SARS-CoV-2,
are identified and classified. GenSLM represents one of the first whole genome-scale foundation
models which can generalize to other prediction tasks. A good understanding of the latent space
can help GenSLMs tackle new domains beyond just viral sequences and expand their ability
to model bacterial pathogens and even eukaryotic organisms, e.g., to understand things such
as function, pathway membership, and evolutionary relationships. To achieve this scientific
goal, GenSLMs and similar models require very long sequence support for both training and
inference that is beyond generic LLMs’ long-sequence strategies like FlashAttention. Through
DeepSpeed4Science’s new designs, scientists can now build and train models with significantly
longer context windows, allowing them to explore relationships that were previously inaccessible.

Despite the importance of supporting very long sequence lengths and efficient training for
better understanding the genome latent space in models like GenSLMs, the existing large
model training frameworks such as NVIDIA Megatron-LM [8] and old version of Megatron-
DeepSpeed [9], and their corresponding parallelism choices do not have tailored optimizations
for very long sequence training and inference. There are two main challenges with the existing
frameworks. First, the existing parallelism approaches such as data, tensor, and pipeline
parallelism cannot effectively address the scaling along the sequence dimension. Second, the
existing large model training systems feature inferior training throughput when long sequences
are required. For example, many scientists today use NVIDIA’s Megatron-LM or the older
version of Megatron-DeepSpeed to train their models. Megatron-DeepSpeed is the DeepSpeed
version of NVIDIA’s Megatron-LM. GenSLMs were previously trained with Megatron-DeepSpeed.
However, the older version of Megatron-DeepSpeed misses many new acceleration opportunities
including FlashAttention2 [10], new fused kernels and sequence parallelism. As shown in Figure 5,
the maximum sequence lengths supported by the two state-of-the-art frameworks for the 33B
GenSLM model are less than 60K, which is far from the requirements of the genome-scale
foundation models. And even worse, they show very poor scalability in training.

In this release, we are proud to introduce the new Megatron-DeepSpeed framework. We
rebased and enabled DeepSpeed with the newest Megatron for long sequence support and other
capabilities/optimizations. With the new Megatron-DeepSpeed, users can now train their large
AI4Science models like GenSLMS with much longer sequences via a synergetic combination of
our newly added memory optimization techniques on attention mask and position embedding,
tensor parallelism, pipeline parallelism, sequence parallelism, ZeRO-style data parallelism and
model state offloading.
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Figure 5: Maximum sequence length support for the 33B GenSLM model.

Figure 6: Attention mask operation.

The key properties of our new Megatron-DeepSpeed and its design/optimizations released
are as follows:

• Enhancing Megatron-style sequence parallelism with our memory optimization techniques
for attention mask and position embedding.

• Rotary positional embedding, new fused kernels, and FlashAttention v1 and v2 are also
enabled.

• The overall training throughput is improved by up to 2x due to the newly enabled capability
of processing larger batch sizes through the new Megatron-DeepSpeed framework.

• An average of 13x longer sequence lengths are achieved compared to the state-of-the-art
training frameworks, e.g., enabling training with sequences with over a million tokens.

In the subsequent sections, we will provide a detailed discussion of rebasing efforts/achieve-
ments, new Megatron-DeepSpeed core optimizations, experimental evaluation, and comparison
analysis against the existing frameworks.

3.2 Rebase and Optimizations of Megatron-DeepSpeed Framework
Megatron-DeepSpeed is a framework for training very large-scale LLMs. Since its release, the
research community has adopted it for training various LLMs, including the BigScience BLOOM
176B model [11] and Argonne National Lab for GenSLMs. While containing a rich set of
optimizations for training LLMs, new features and new demands are coming out rapidly such
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that having a stable and up-to-date support of Megatron-DeepSpeed is critical for our community
of users. For example, there have been more than 1300 new commits on the Megatron-LM
side and 75 new commits from the DeepSpeed side since the original Megatron-DeepSpeed
release. Therefore, incorporating these new changes and ensuring the robustness of the new
framework becomes a fundamental requirement for our science collaborators who use this
framework extensively. In this release, we have enabled the following capabilities:

• We integrated several new features, including Megatron-style sequence parallelism, rotary
positional embedding, FlashAttention v1 and v2, and new fused kernels from NVIDIA.

• We included additional optimizations specially tailored for long sequence training, such as
attention map optimization and position embedding partitioning (discussed next).

• We fixed several conflicts during integration: (1) activation checkpointing where the
new fine-grained partial checkpointing technique introduced by Megatron-LM was not
compatible with DeepSpeed; (2) model checkpoint save/load when DeepSpeed was used
with the newest Megatron-LM; and (3) major refactoring to DeepSpeed pipeline parallelism
implementation for GPT models in order to work with the newest Megatron-LM.

• We fully verified the performance and correctness of GPT pretraining after the rebasing.
Even though the new Megatron-DeepSpeed has tensor, sequence, and pipeline parallelism,
the maximum sequence length is still inadequate. Through profiling, we identified that
attention mask and weights of position encoding are main memory bottlenecks.

3.3 Further Memory Optimizations in our New Megatron-DeepSpeed
Based on the new rebase, we further enhance the Megatron-style sequence parallelism with our
memory optimization techniques for attention mask and position embedding.

3.3.1 Memory-Efficient Generation of Attention Masks

Attention mask allows models to only attend to the previous tokens (Figure 6). First, the reason
why the attention mask is one of the main memory bottlenecks is because of its size: [s, s],
where is the sequence length, making its memory complexity as O(s2). The size of the attention
mask is over 10 GB when the sequence length (s) is larger than 50K (e.g., DNA sequences).
Second, PyTorch pre-allocates at least 2X larger GPU memory when generating an attention
mask. However, an attention mask is also very important when (1) users explicitly need it
when there is no FlashAttention in their virtual environment; and (2) users may want to use
customized attention masks to tune their models, not just using casual FlashAttention.

As illustrated in Figure 7, our approach involves initially determining a sequence length
threshold through extensive experimentation. This threshold is identified based on achieving
optimal system performance while maintaining reasonable memory usage. If the sequence length
is below this threshold, we proceed to directly generate an attention mask on the GPU. However,
if the sequence length exceeds this threshold, we follow a process in which we initially generate
it within CPU memory, perform the necessary operations, and subsequently transfer it to GPU
memory. To prevent out-of-memory errors while ensuring consistently high performance, we
then establish this threshold based on the underlying GPU hardware (e.g., 16K for A100 40G
GPUs).
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Figure 7: Generation strategy.
Figure 8: Position embedding in Transformers.

Table 1: Throughput comparison from the two frameworks on the 33B GenSLM dense model.

Sequence Old Megatron- New Megatron-
Length DeepSpeed (TFLOPS) DeepSpeed (TFLOPS)

2k 25 (TP=32) 68 (TP=32)
4k 28 (TP=32) 80 (TP=32)
8k OOM 86 (TP=32)

16k OOM 92 (TP=32)
32k OOM 100 (TP=32)
64k OOM 106 (TP=32)

128k OOM 119 (TP=32)
256k OOM 94 (TP=32)

3.3.2 Weights Parallelization of Position Embedding

As shown in Figure 8, position embeddings are used to identify each token’s position in the
list of tokens. The size of weights of position embedding is [s, d], where s is sequence length
and d is the hidden dimension; it is linearly scaled with the sequence length. In the original
Megatron-LM’s design, each GPU holds a replica of these weights. Training these weights will
result in the same size of gradients and m times of the optimizer states (i.e., m is determined by
PyTorch). For example, the overall memory consumption is approximately 10 GB per GPU
when DNA sequence lengths are longer than 100K.

As shown in Figure 9. Our method is to split weights across all GPUs when enabling
sequence parallelism. Each GPU just needs to hold [s/p, d] partial weights. Thus, we reduce
GPU memory consumption by p times, where p is the number of GPUs.

3.3.3 Algorithmic Support: Relative Position Embedding

Some users may expect a model to achieve extrapolation at inference time for sequences that
are longer than it saw during training. We would use relative position embedding [12] (e.g.,
attention with linear biases) to let users train large language models with shorter sequences,
but the trained model can infer much longer sequences.
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Figure 9: Memory overhead comparison between baseline and the optimized version via paral-
lelizing position embedding.

Figure 10: Maximum sequence lengths of 33B GenSLM models supported by different frameworks
at different scales. The hardware profiled here are NVIDIA DGX nodes with eight 40G A100
GPUs per node.

3.4 Performance Improvement of Our New Megatron-DeepSpeed
Framework

In order to demonstrate the performance improvement from our new Megatron-DeepSpeed
framework, we first show a range of performance comparisons between the old Megatron-
DeepSpeed and the New Megatron-DeepSpeed in Table 1, when disabling ZeRO (zero_stage=0).
The new Megatron-DeepSpeed is able to support much longer sequence lengths without triggering
out-of-memory errors due to (1) Megatron-style sequence parallelism partitions the activation
memory when sequence lengths are massive, (2) our enhanced memory optimization through
memory-efficient attention mask generation and position embedding parallelization, and (3)
FlashAttention V1 and V2 support, which reduces the memory consumption of the attention
map calculation from quadratic to linear complexity with respect to the sequence length. The
new Megatron-DeepSpeed can achieve higher TFLPOS because it includes new fused kernels
from NVIDIA and supports larger batch sizes using our memory optimizations without triggering
out-of-memory errors.
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Figure 11: Maximum sequence lengths of 25B GenSLM models supported by different frameworks
at different scales. The hardware profiled here are NVIDIA DGX nodes with eight 40G A100
GPUs per node.

Figure 12: Scalability of the 33B GenSLM model. MDS, TP, SP stand for Megatron-DeepSpeed,
tensor parallelism and sequence parallelism.

3.5 Max Sequence Length Capability
Through our new Megatron-DeepSpeed framework, scientists can now train their large science
models like GenSLMs with much longer sequences via a synergetic combination of our newly
added memory optimization techniques on attention mask and position embedding, tensor
parallelism, pipeline parallelism, sequence parallelism, ZeRO-style data parallelism and model
state offloading. Figure 10 and 11 demonstrate that our new framework enables the longest
sequence length for GenSLMs’ 25B and 33B models by up to 12X and 14X, respectively, over
the previous Megatron-DeepSpeed. In terms of supported sequence lengths, this new framework
also significantly outperforms NVIDIA’s Megatron-LM by up to 9.8X and 9.1X for the 25B and
33B models, respectively. For example, GenSLMs’ 25B model can now be trained with a 512K
sequence of nucleotides, compared to the Argonne team’s original 42K sequence length on 64
GPUs. This drastically improves model quality and scientific discovery scope without additional
accuracy loss.

3.6 Scalability Analysis
We further show the scalability of new Megatron-DeepSpeed and what different optimizations
entail in Figure 12 and 13. We make two observations. Firstly, when only tensor parallelism
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Figure 13: Scalability of the 25B GenSLM model. MDS, TP, SP stand for Megatron-DeepSpeed,
tensor parallelism and sequence parallelism.

and sequence parallelism are used without position embedding optimization, the maximum
length of the sequence this training system can support is about 50K, and continuing to increase
GPUs will not allow the system to support longer sequences. Secondly, when enabling sequence
parallelism, the maximum length of the sequence that can be supported varies within 4K.

There are several reasons behind these observations. Firstly, during training, the majority of
a device’s memory is used for model state when the sequence length is small. However, as the
sequence length increases, the activation memory and temporary buffers can grow significantly.
For instance, GPT-style models require O(seq_length x n_layer x hidden_dim x batch_size)
to store activations, and O(seq_length x seq_length) to store the attention map, and O(3 x
seq_length x hidden_dim ) to train the position embedding.

Secondly, the attention map is linearly proportional to the sequence length, while the latter
has quadratic memory complexity. For a 25B parameter GPT model trained with a sequence
length of 100K and a batch size of 1, the activation memory requires about 12 GB and the
attention map requires at least 10 GB per device, both of which are non-trivial. By using
techniques such as model parallelism, we can reduce the memory footprint by using aggregated
device memory for activation memory from 480 GB to 12 GB. Finally, we also optimized the
attention map’s memory usage by avoiding allocating temporary buffers on the device, which
reduces the peak memory consumption from 54 GB (Out of Memory) to 39 GB. Even if we only
use casual flash attention (avoid generating attention map explicitly), the memory requirement
for training position embedding is linearly scaled with sequence length, and the needed memory
is over 10 GB when a sequence length is over 100K.

For detailed new Megatron-DeepSpeed source code release and tutorial, please visit our
release blog.

4 DeepSpeed4Science launch and key collaborators
The new system technologies enabled by DeepSpeed4Science can empower AI-driven scientific
discoveries using signature models that represent a wide spectrum of efforts pushing the
boundaries of science. Currently, DeepSpeed4Science is honored to support several key science
models from Microsoft Research AI4Science, Microsoft WebXT/Bing and U.S. DoE National
Labs.
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Figure 14: Scientific foundation model (SFM).

Figure 15: ClimaX is the first foundation model designed to perform a wide variety of weather
and climate modeling tasks.

4.1 Current Microsoft internal partnerships
4.1.1 Scientific Foundation Model (SFM), Microsoft Research AI4Science

Scientific foundation model (SFM) (Figure 14) aims to create a unified large-scale foundation
model to empower natural scientific discovery by supporting diverse inputs, multiple scientific
domains (e.g., drugs, materials, biology, health, etc.) and computational tasks. The Deep-
Speed4Science partnership will provide new training and inference technologies to empower the
SFM team’s continuous research on projects like Microsoft’s new generative AI methods, such
as Distributional Graphormer [13].

4.1.2 ClimaX, Microsoft Research AI4Science

Our changing climate is producing more frequent extreme weather events. To mitigate the
negative effects, it is increasingly important to predict where these events will occur. ClimaX [14]
(Figure 15) is the first foundation model designed to perform a wide variety of weather and
climate modeling tasks. It can absorb many different datasets with different variables and
resolutions, potentially improving weather forecasting. DeepSpeed4Science is creating new
system supports and acceleration strategies for ClimaX for efficiently pretraining/finetuning
bigger foundation models while handling very large high-resolution image data (e.g., tens to
hundreds of petabytes) with long sequences.

4.1.3 Molecular Dynamics and Machine Learning Force Field, Microsoft Research
AI4Science

This project simulates the dynamics of large (million-atom) molecular systems with near ab initio
accuracy using AI-powered force field models [15] while maintaining the efficiency and scalability
of classical molecular dynamics. The simulations are efficient enough to generate trajectories
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long enough to observe chemically significant events. Typically, millions or even billions of
inference steps are required for this process. This poses a significant challenge in optimizing the
inference speed of graph neural network (GNN)+ LLM models, for which DeepSpeed4Science
will provide new acceleration strategies.

4.1.4 Weather from Microsoft Start, Microsoft WebXT/Bing

Weather from Microsoft Start provides precise weather information to help users make better
decisions for their lifestyles, health, jobs and activities–including accurate 10-day global weather
forecasts updated multiple times every hour. Previously, Weather from Microsoft Start benefited
from DeepSpeed technologies to accelerate their multi-GPU training environments [16]. Currently,
DeepSpeed4Science is working with the WebXT weather team to further enhance Microsoft
Weather services with cutting-edge features and improvements.

4.2 Current external collaborators
DeepSpeed4Science’s journey started with two pioneering LLM-based AI models for structural
biology research: OpenFold [2] from Columbia University, an open-sourced high-fidelity protein
structure prediction model; and GenSLMs [7] from Argonne National Laboratory, an award-
winning genome-scale language model for learning the evolutionary landscape of SARS-CoV-2
(COVID-19) genomes. As the featured showcases for this release, they represent two common
AI system challenges facing today’s AI-driven structural biology research. We have discussed
how DeepSpeed4Science empowered their scientific discovery in the previous sections.

Additionally, DeepSpeed4Science has recently expanded its scope to support a more diverse
range of science models. For example, in our work with Argonne on training a trillion-parameter
science model on Aurora Exascale system, DeepSpeed4Science technologies will help them reach
the performance requirements and scalability needed for this critical mission. Furthermore, by
collaborating with Oak Ridge National Laboratory and National Cancer Institute (NCI) on
cancer surveillance, DeepSpeed4Science will help enable high-fidelity extraction and classification
of information from unstructured clinical texts for the MOSSAIC project. DeepSpeed4Science
technologies will also be adopted by Brookhaven National Laboratory to support development
of a large digital twin model for clean energy research by using LLMs to produce more realistic
simulation data. You can find more detailed information about our external colleagues and their
science missions at DeepSpeed4Science.

5 Conclusion
We are very proud and excited to announce the DeepSpeed4Science initiative along with several
R&D highlights and achievements. We are hosting our new initiative at https://deepspeed4science.ai/,
including information about our external colleagues, and current and future DeepSpeed4Science
technology releases. One of our high-level goals is to generalize AI system technologies that
broadly address the major system pain points for large-scale scientific discoveries. We hope sci-
entists around the world will enjoy the new capabilities unlocked by DeepSpeed4Science through
open-sourced software. We are looking forward to better understanding the AI system design
challenges that block scientists’ discovery progress. We sincerely welcome your participation to
help us build a promising AI4Science future.
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