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Abstract
Second-order optimization methods have been developed to

enhance convergence and generalization in deep neural net-

work (DNN) training compared to first-order methods like

Stochastic Gradient Descent (SGD). However, these meth-

ods face challenges in distributed settings due to high com-

munication overhead. Gradient compression, a technique

commonly used to accelerate communication for first-order

approaches, often results in low communication reduction

ratios, decreased model accuracy, and/or high compression

overhead when applied to second-order methods. To address

these limitations, we introduce a novel gradient compres-

sion method for second-order optimizers called COMPSO.
This method effectively reduces communication costs while

preserving the advantages of second-order optimization.

COMPSO employs stochastic rounding to maintain accu-

racy and filters out minor gradients to improve compression

ratios. Additionally, we develop GPU optimizations to mini-

mize compression overhead and performance modeling to

ensure end-to-end performance gains across various systems.

Evaluation of COMPSO on different DNN models shows that
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it achieves a compression ratio of 22.1×, reduces communi-

cation time by 14.2×, and improves overall performance by

1.9×, all without any drop in model accuracy.

CCS Concepts: • Theory of computation→ Data com-
pression; • Computing methodologies→ Parallel algo-
rithms.

Keywords: Deep learning, distributed training, second-order
optimization, K-FAC, data compression.
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1 Introduction
Today’s Deep Neural Networks (DNNs) are increasingly re-

quired to process larger volumes of data due to their robust-

ness and generality [3, 6, 9, 10, 26, 56]. On one hand, this

leads to more iterations needed for training. On the other

hand, the high cost of GPU hours necessitates faster training

methods. As a result, sophisticated optimizers are drawing

more attention, in addition to parallelism mechanisms for

training. Conventional first-order optimizers, such as Sto-

chastic Gradient Descent (SGD) [17] and ADAptive Moment

estimation (ADAM) [27], have been extensively studied.

Recent advancements in second-order optimizers have

proven effective, as they can achieve convergence with fewer
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iterations compared to first-order methods. Notable second-

order optimizers include Kronecker-Factored Approximate

Curvature (KFAC) [35], Broyden–Fletcher–Goldfarb –Shanno

(BFGS) [15], Shampoo [18], and Generalized Gauss-Newton

(GGT) [1]. Among these, the pioneering KFAC optimizer has

set a paradigm [34, 36] by efficiently decomposing the Fisher

Information Matrix (FIM) into invertible factors.

However, the intensive computation required for invert-

ing the factors limits the effectiveness of the KFAC optimizer

compared to first-order optimizers. To address this issue, ex-

isting approaches have designed distributed KFAC methods

that parallelize the computation. These approaches divide

the computational workload by layers among GPUs [35, 42],

which necessitates substantial communication to synchro-

nize the KFAC gradient across all GPUs. As shown in Fig-

ure 1, broadcast communication within a distributed KFAC

framework constitutes at least 30% of the total end-to-end

time and increases with model size and GPU count, making

communication a performance bottleneck.
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Figure 1. Time breakdown of distributed KFAC training on

ResNet50, Mask R-CNN, BERT-large, and GPT-neo models with 16,

32, and 64 compute nodes (four A100 GPUs per node).

Compression is a practical approach to reducing the cost

of gradient communication in distributed training. Gradient

compression methods (e.g., sparsification [7, 12] and quanti-

zation [21, 38]) are widely used in Stochastic Gradient De-

scent (SGD)-based DNN training. These methods compress

gradients in a lossy manner to reduce the size of commu-

nication data while keeping the introduced error within a

predefined threshold to ensure convergence.

Error-bounded lossy compression, originally applied to

large-scale scientific data, can be applied to reduce commu-

nication data [48, 60–63]. However, simply adapting existing

first-order gradient compression methods to second-order

optimizers like KFAC is ineffective because: 1 Preserving

convergence can conflict with achieving a high compression

ratio. 2 Lack of consideration for different system setups

can limit end-to-end performance gains; and 3 Ignoring

architecture-specific optimizations (e.g., GPU considerations)

leads to high compression overhead, limiting overall perfor-

mance gains.

To address these issues, we design COMPSO to enhance

the distributed training performance with second-order op-

timizers through a compression method and a combination

of system and algorithm co-design. To the best of our knowl-

edge, this work is the first to explore these techniques applied

to KFAC gradients and the co-design of the compression al-

gorithm. Our contributions are summarized as follows:

• We analyze the impact of different quantization meth-

ods on KFAC convergence and select the most suitable

method to develop our new compression algorithm.

• We design a novel gradient compression algorithm for

KFAC, which includes an error-bounded scheme and an

adaptive mechanism. These mechanisms incorporate var-

ious strategies throughout training iterations.

• We develop a performance model that guarantees end-to-

end performance improvement and formulates an adap-

tive compression scheme for layers of varying sizes.

• We implement GPU optimizations to minimize compres-

sion and decompression overheads.

• We evaluate COMPSO with KFAC on two GPU clus-

ters with different network configurations. Compared to

the KFAC no-compression baseline, COMPSO improves

communication efficiency by 14.2× and overall training

speedup by 1.9× by achieving a compression ratio of

22.1× for the gradient. Additionally, compared to SGD

with state-of-the-art compression, COMPSO with KFAC

achieves 1.8 × overall speedup, reducing training time

from 60 hours to 33 hours.

The remainder of this paper is organized as follows. §1 pro-

vides an overview of second-order optimization methods and

gradient compression techniques. §2 discusses the research

challenges associated with applying gradient compression to

second-order optimizers. In §4, we detail the design and op-

timizations of our proposed compression method, COMPSO.

§5 presents the results of our evaluation. §6 reviews related

work in the field. Finally, §7 summarizes our findings and

explores potential directions for future research.

2 Background
In this section, we introduce KFAC algorithm, distributed

KFAC mechanism, gradient quantization methods, compres-

sion tools, and CUDA architecture.

2.1 Kronecker-Factored Approximate Curvature
Kronecker-FactoredApproximate Curvature (KFAC), a second-

order optimizer, accelerates the convergence by approximat-

ing the inversion of the Fisher Information Matrix (FIM)

and achieves fewer iterations to convergence compared to

first-order optimizers (e.g., SGD) [35, 41, 42, 44, 45]. This ap-

proximation comprises two main steps: Kronecker-product

decomposition to approximate the FIM (Equation 1) and

eigendecomposition (Equation 2). 1 The first step utilizes

the Kronecker product of the activation and SGD-gradient
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covariance matrices, formulated as

𝐹𝑙 = 𝐴𝑙−1 ⊗ 𝐺𝑙 = 𝑎𝑙−1𝑎
⊺
𝑙−1 ⊗ 𝑔𝑙𝑔

⊺
𝑙
, (1)

where 𝐴 and 𝐺 represent the covariance matrices, 𝑎𝑙−1 de-
notes the activation data from layer 𝑙 − 1, and 𝑔 is the SGD-
gradient. 2 The second step involves performing eigende-

composition on matrices 𝐴𝑙−1 and𝐺𝑙 , significantly reducing

computational overhead by diminishing the sizes of these

matrices. The two processes approximate the FIM inversion,

a preconditioner multiplied by the SGD gradient. This yields

the KFAC gradient, detailed below,((
𝐹 + 𝛾𝐼

)−1)
︸          ︷︷          ︸
preconditioner

(
𝑛∑︁
𝑖=1

▽𝐿𝑖 (𝑦, 𝑓 (𝑥, 𝑤𝑡 ) )
)

︸                          ︷︷                          ︸
sgd gradient

= 𝑄𝐺

(
𝑄

⊺
𝐺

∑𝑛
𝑖=1
▽𝐿𝑖 (𝑦,𝑓 (𝑥,𝑤𝑡 )𝑄𝐴

𝑣𝐺 𝑣
⊺
𝐴
+𝛾

)
𝑄

⊺
𝐴
,

(2)

where 𝑄𝐴, 𝑄𝐺 and 𝑣𝐴, 𝑣𝐺 are eigendecompistion results of

𝐴 and 𝐺 .

Figure 2. Work and data-flow of distributed KFAC optimizer. 𝑎𝑙
and 𝑔𝑙 are activation and gradient data of layer 𝑙 , respectively. 𝐾

and 𝐿 are the KFAC gradient and the number of model layers.

2.2 Distributred KFAC
Distributed KFAC optimizers utilize layer-wise parallelism

across GPUs to compute 𝐴 and 𝐺 and perform eigendecom-

position efficiently. The workflow includes five main steps

for each neural network layer: 1 covariance computation

of activation and gradient, respectively; 2 local covariances

communication using the all-reduce operation; 3 eigende-

composition on covariance matrices; 4 compute the pre-

conditioned gradient; and 5 all-gather the preconditioned

gradient to each worker (e.g., GPU), as shown in Figure 2.

The computation workload in steps 3 and 4 are evenly split

across multiple GPUs, i.e., each GPU computes a subset of

all layers’ KFAC gradient. Thus, in step 5, each GPU sends

its computed results to all other GPUs using Allgather. Note

that some KFAC implementations use broadcast instead of

Allgather to overlap communication with computation.

Training with second-order optimizers follows a data-

parallel fashion [42–45]. This contrasts with pipeline-parallel

methods (e.g., PipeFisher [41]), which are the outcome of

restricted GPU memory capacity (e.g., 16-GB P100). The

data-parallel trend also coincides with the introduction of

large-memory GPUs (e.g., 40-GB A100, 141-GB H200), ini-

tially for accommodating large models. These large-memory

GPUs can benefit the memory-intensive KFAC optimization,

ultimately speeding up the training process.

With the data-parallel requirement initially met, KAISA,

a distributed KFAC approach, is proposed to optimize KFAC

workflow [44]. The contributions of KAISA are threefold.

1 KAISA minimizes intermediate data memory overhead

by performing an Allgather of each layer’s computation

results immediately upon completion instead of waiting

and buffering all layers. 2 KAISA overlaps computation-

communication overlap across layers on each GPU. 3 KAISA

employs an alternate implicit inversion method for FIM to

further optimize the process. In this work, we focus onKAISA

as our design basis.

2.3 Gradient Quantization
Quantization represents FP32 values using fewer bits [2, 13,

24, 25]. Gradient quantization typically consists of two steps:

normalization and rounding. 1 An 𝑛-bit quantization con-

siders the data range and encloses all the integers, which

are transformed from the input value 𝑣 , within [−2𝑛, 2𝑛]. To
constrain all the input numbers, it is done by

𝑣 ′ = 2
𝑛 · 𝑣/max( |𝑣max |, |𝑣min |), (3)

2 Intuitive rounding to the nearest integer (RN) and sto-

chastic rounding (SR) are jointly used. SR is defined as

𝑣int =

{
⌈𝑣 ′⌉ with probability 𝑝

⌊𝑣 ′⌋ otherwise

where 𝑝 =
𝑣 ′ − ⌊𝑣 ′⌋
⌈𝑣 ′⌉ − ⌊𝑣 ′⌋ . (4)

2.4 Representative Compression Methods
We use three representative algorithms: 1 QSGD [2], a

gradient compression algorithm for SGD; 2 SZ [29], an

error-controllable lossy compressor for FP32 data; and 3
CocktailSGD [53], a combination of sparsification and SR-

based quantization. QSGD includes SR-based quantization

and Elias Encoding. SZ includes prediction, RN-based quanti-

zation, and Huffman encoding [23]. SZ uses the surroundings

to predict a data value and quantizes the prediction error;

with the quantized error properly encoded, the data is re-

duced in size. Sparsification of CocktailSGD leverages the

distribution of SGD gradients, recognizing that smaller val-

ues occur more frequently. It selects the most frequent values

and represents the SGD gradient in a sparse format. Lossless

encoding boosts the compression ratio (CR) to surpass the

1-bit quantization limit
1
if repeated patterns are presented.

3 Motivation and Challenges
As mentioned in §1, the communication-to-total-time ra-

tio exceeds 30% in distributed KFAC, even considering the

computation-communication overlap. Besides upgrading net-

work bandwidth (which is rare and unexpectable), compres-

sion practically reduces the communication data size to com-

municate and, consequently, the communication overhead.

Existing SGD gradient compression algorithms compress

the gradient vector in a lossymanner and have been validated

1
This is equivalent to 32× in CR for FP32 gradients.
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Figure 3. Compression ratio (left) and validation accuracy (right) of

different solutions on ResNet50 and BERT-large, and the accuracy

benchmark result with KFAC is 75.8 and 90.44, respectively.

to convergewith compressed SGD gradients [2, 30, 33, 53, 55].

However, the compression ratio (CR) and impact on accu-

racy/convergence from lossy compression on KFAC gradi-

ents has not been explored. We apply two state-of-the-art

compression algorithms to the second-order gradients in

KFAC: QSGD and SZ (introduced in §2.4). Note that QSGD

and SZ only differ in their (lossy) quantization method, and

in the remainder of the paper, we tune SZ’s error bounds to

match the accuracy for 4/8-bit QSGD.

However, directly applying them results in either a low

compression ratio (CR) or impacted validation accuracy as

well as convergence, as illustrated in Figure 3 with ResNet-

50 [20] on ImageNet [9] and BERT-large [10] on Wiki [37].

Using a lower error bound for SZ (4E-3) or more bits for

QSGD (8-bit) results in higher accuracy (reaching 75.8 and

90.44) but limited compression ratios (8× to 20×) On the

other hand, high error bound will cause compressors such

as SZ to have higher compression error, resulting in low

validation accuracy, without our optimization (will be de-

tailed in §4.2-4.3) Furthermore, QSGD 4-bit failed to preserve

accuracy on KFAC, contrasting to the behavior on SGD[2]

because 1 KFAC gradients have a larger range than SGD gra-

dients, resulting in more scattered quantized values within

the scaled range and degraded encoder performance; and 2
KFAC gradients make more accurate and aggressive steps

toward convergence [32], making them more sensitive to

the introduced errors. These necessitate a new compression

scheme to address these issues. Additionally, existing SGD

gradient-compression algorithms lack architecture-specific

optimizations, particularly for GPU. Effectively utilizing their

parallelism and memory hierarchy is crucial. Consequently,

designing GPU optimizations to reduce the (de)compression

overhead is essential, ensuring that communication speedup

contributes to the overall gain.

Four challenges lie ahead in developing a framework for

accelerating communication in distributed KFAC training:

1. CR can be limited by the bitrate requirement to main-

tain validation accuracy (§ 2.3) This issue is even more

pronounced for KFAC gradients, as evidenced in Figure 3.

2. Generalizing the characteristics of a system and modeling

it is non-trivial, considering significant variations in net-

work bandwidth, GPU compute capability, etc. Further-

more, applying compression complicates the modeling.

3. The mechanism of distributed KFAC misfits the circum-

stance when the model is split into cross-GPU layers, as

the gradients vary in data sizes and range across layers.

4. Additionally, implementing compression algorithms effi-

ciently on GPU needs to be carefully done.
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(a) COMPSO’s Compression Pipeline.
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Figure 4. Overview of the proposed communication-efficient

second-order training framework, COMPSO.

4 COMPSO Design
In this section, we present the design of COMPSO to address

the identified challenges. We first characterize the accuracy

impact of different quantization approaches for various error

distributions. Building on this characterization, we detail

the design of our new compression algorithm, which fea-

tures an iteration-wise adaptive mechanism incorporating

different compression strategies across training iterations.

We then devise a performance model considering many fac-

tors, including communication bandwidth, compressor cost,

compression gain, etc. Furthermore, based on our perfor-

mance model, we introduce a layer-wise adaptive compres-

sionmechanism for aggregated layers of varying sizes. Lastly,

we describe our GPU optimizations.

4.1 Overview of COMPSO
COMPSO includes 1 a validation-accuracy-preserving high-

ratio compression algorithm that hybridizes filter and sto-

chastic rounding and adapts error bounds based on iterations,

2 a performance model, thereby ensuring end-to-end per-

formance gain and integration with the layer-wise adaptive

compression mechanism. and 3 GPU optimizations for dif-

ferent data sizes and value ranges by efficiently utilizing

CUDA parallelism and multi-level memory hierarchy. The

design is shown in Figure 4.

215



COMPSO PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

Specifically, the hybrid compression algorithm consists

of a filter that maps gradients within a predefined thresh-

old to zero and represents the indices with a bitmap, an

error-bounded quantizer that maps FP32 values into integers,
and a lossless compressor that compresses the bitmap and

quantized values. It is important to note that, unlike fixed-

rate gradient quantization methods (e.g., 4/8-bit), our fine-

grained error-bounded quantization can balance the com-

pression ratio and validation accuracy. The adaptive compres-

sion mechanism enables flexibility for different KFAC gradi-

ent compression scenarios, as it determines the aggressive-
conservative compression strategy across iterations. The per-

formance model considers the system setup and algorithm

capabilities and utilizes the micro-benchmark results to esti-

mate the end-to-end performance without a complete run of

end-to-end training. Our performance model helps design fu-

ture compressors for distributed training communication on

various systems. GPU optimizations are implemented in two

directions: enhancing memory parallelism and improving

efficiency. We reduce frequent memory access by combining

block reduction with warp-level shuffle techniques. High-

performance parallelism is achieved by tailoring data sizes

and ranges in a fine-grained manner.

4.2 Rounding Method Analysis
This section discusses the relationship between lossy com-

pression error and validation accuracy (with the same num-

ber of iterations to convergence) using KFAC. First, the error

is defined as the difference between the de-quantized value

and the original value. Specifically, two established lossy

compressors with the two rounding schemes (§ 2.3) are stud-

ied: 1 SZ, which uses RN for quantization, and 2 QSGD,

which uses SN for quantization. Figure 3 shows that QSGD

achieves a lower or comparable compression ratio but main-

tains better validation accuracy than SZ. We studied several

metrics, including the L2 norm, peak signal-to-noise ratio

(PSNR), and error distribution, to understand the reason. We

find the (error distribution)-accuracy consistency is signifi-

cant, which becomes a key point throughout this paper.

First, we analyze the distributions of RN- and SR-caused

errors on KFAC gradients when training ResNet-50. We vi-

sualized the error distribution across all layers for every 50

iterations (out of 1563, BERT-large) and five epochs out of

100 (ResNet-50). Each model was trained five times, and we

observed a similar distribution shape across both model lay-

ers and throughout epochs/iterations. As shown in Figure 5,

while RN results in a uniform error distribution determin-

istically, SR results in a triangular distribution due to its

probabilistic nature. We conduct extended experiments by

compressing synthetic uniformly and normally distributed

data. We observe that RN and SR error distribution is consis-

tent with KFAC gradients.

To investigate if the non-deterministic feature preserves

accuracy, we test another non-deterministic rounding, 𝑃0.5

(i.e., mode-2 SR in [8]), which rounds up/down with equal

probability, resulting in a uniform error distribution. This

method significantly impacts accuracy at the same bit level

as SR. For example, with 8-bit quantization on ResNet-50,

convergence accuracy drops to 74.5%, compared to 75.8%

without compression. In contrast, QSGD-8bit (SR) maintains

76.0% in accuracy.
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Figure 5. The distribution of KFAC gradient compression error with

error bound of 4E-3 using RN (left) and SR (right) on all layers every

50 iterations. The error distributions are similar across iterations.

We conduct extensive experiments on four DNN training

benchmarks using SZ and QSGD (will be detailed in §5.1),

in addition to results mentioned in §3 Figure 3. The results

demonstrate that QSGD better preserves accuracy than SZ

(e.g., QSGD 8-bit achieves higher accuracy under a similar

ratio with SZ 4E-3). This outcome is attributed to SZ, leading

to a uniform error distribution, and QSGD, resulting in a

triangular error distribution. Furthermore, Figure 3 shows

that SZ with an error bound of 4E-3 achieves higher accuracy

than 1E-1, underscoring that a smaller error bound is more

conducive to accuracy preservation.

From the theoretical and experimental analysis presented

above, we draw three key insights concerning validation ac-

curacy: 1 a triangular error distribution is more effective at

preserving accuracy than a uniform distribution (SR versus

RN and 𝑃0.5), 2 within the same class of error distribution, a

smaller error bound is more beneficial (§3), and 3 whether

the quantization is deterministic (RN) or non-deterministic

(𝑃0.5) has no significant impact on accuracy or convergence.

Accordingly, stochastic rounding (SR) is the superior KFAC

gradient quantization technique. Thus, we focus our com-

pression algorithm on this method.

4.3 Novel Gradient Compression Algorithm
As discussed in §3, direct quantization methods like SR pre-

serve validation accuracy but achieve a limited compression

ratio. Thus, we set to develop a new SR-based compression al-

gorithm to 1 maintain validation accuracy and 2 compress

the FP32 values more.

The workflow of our compression algorithm is presented

on the left in Figure 4 and the algorithm is describes in Al-

gorithm 1. First, the algorithm employs a filter to convert

a subset of KFAC gradient FP32 values into a bitmap rep-

resentation. Specifically, the filter selects values based on

a predefined error bound, i.e., values that are less than the

error bound and marks them as one in the bitmap (remaining
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values will be marked as zero). We use a bitmap to record

the subset of KFAC gradients that are processed by the filter.

After that, we apply an encoder to compress this bitmap loss-

lessly, achieving a high compression ratio; for the remaining

values that are higher than the error bound, we apply SR to

preserve the validation accuracy and encoding to further im-

prove the compression ratio. Notably, the error bound of SR

(𝑒𝑏𝑞) is defined separately from 𝑒𝑏 𝑓 . The 𝑒𝑏𝑞 is determined

empirically to minimize the accuracy impact. For the lossless

encoder, we select the best-fit GPU encoders from existing

implementations, which balances the high compression ratio

and (de-)compression throughput (to be detailed in §4.4).

Additionally, we design an iteration-wise adaptive com-

pression mechanism that enables more aggressive compres-

sion across training iterations. Specifically, we divide the

number of iterations required for convergence into multiple

stages. In distributed training using KFAC optimizers, the

early iterations are typically unstable, while the later itera-

tions trend closer to convergence. This occurs because, 1 in

DNN training, the learning rate decreases across iterations,

making early iterations less sensitive to the error introduced

in KFAC gradients than later ones; and 2 the covariance

matrices 𝐴 and 𝐺 are computed as the running averages

during training, becoming more stable as more training sam-

ples processed. Consequently, we use larger error bounds

combining filter and SR in the early iterations and smaller

error bounds applying SR only during the later iterations as

the learning rate changes.

Two popular learning rate (LR) schedulers can adjust the

learning rate: StepLR and SmoothLR. StepLR decays the LR at

predefined steps by multiplying the base LR by a decay factor.

SmoothLR decays LR by multiplying a factor by the base LR

at each iteration after the warmup. For StepLR, we use both

filter and SR with a large error bound before the first learning

rate decreases. For SmoothLR, we divide the training process

into 𝑧 stages, where 𝑧 is an empirically tunable parameter.

We empirically validate the design in §5, demonstrating

that our approach does not significantly impact model accu-

racy and achieves a higher compression ratio compared to

not using this mechanism. Our design differs from previous

sparsification approaches, such as Ok-topk, which maintains

a fixed error bound across all iterations; we adaptively vary

the error bound based on the learning rate.

Unlike existing SGD gradient quantization methods at

a rigidly fixed rate (i.e., 8/4/2/1-bit), our fine-grained algo-

rithm features tunable error bounds. This is accomplished by

packing bits into bytes based on the specified error bound.

For instance, with an error bound set at 1e-2 to maintain

validation accuracy, our method requires a maximum of

100 quantization bins, corresponding to a 7-bit representa-

tion. Each 7-bit group is then packed into bytes. In contrast,

other quantization methods like QSGD necessitate 256 quan-

tization bins for an 8-bit representation. Consequently, our

approach yields a higher compression ratio by 14%.

Algorithm 1: Proposed filter and SR-based compression algo-

rithm with adaptive iteration-wise compression.

Inputs :𝐺 : KFAC gradient values; 𝑒𝑏𝑓 : filter error bound; 𝑒𝑏𝑞 : SR error

bound; 𝐿𝑅: learning rate schedule;𝑇 : total iterations; 𝑧: number of

stages; 𝛼 : error bound decay factor;

Outputs :𝐶 : Compressed representation of𝐺

1 // Initialize variables

2 𝐵 ← ∅
3 𝐶 ← ∅
4 𝑠𝑡𝑎𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ← ⌈𝑇 /𝑧 ⌉ // Length of each stage

5 for 𝑡 ← 0 to𝑇 do
6 // Adjust error bounds based on stage

7 if LRS == StepLR then
8 if 𝑡 < first_LR_drop then
9 𝑒𝑏𝑓 , 𝑒𝑏𝑞 ← loose bounds;

10 end
11 else
12 𝑒𝑏𝑓 , 𝑒𝑏𝑞 ← tight bounds;

13 end
14 end
15 if LRS == SmoothLR then
16 // Determine the current stage

17 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑔𝑒 ← ⌊𝑡/𝑠𝑡𝑎𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ⌋
18 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑔𝑒 == 0 then
19 𝑒𝑏𝑓 , 𝑒𝑏𝑞 ← loose bounds;

20 end
21 else
22 𝑒𝑏𝑓 , 𝑒𝑏𝑞 ← 𝑒𝑏𝑓 × 𝛼, 𝑒𝑏𝑞 × 𝛼 ;
23 end
24 end
25 // Filter Branch: Generate Bitmap

26 foreach 𝑔 ∈ 𝐺 do
27 if |𝑔 | < 𝑒𝑏𝑓 then
28 𝐵 [𝑔] ← 1;

29 else
30 𝐵 [𝑔] ← 0;

31 end
32 end
33 Compress 𝐵 losslessly and append to𝐶 ;

34 // SR Branch: Quantize and Compress

35 foreach 𝑔 ∈ 𝐺 where 𝐵 [𝑔] == 0 do
36 Quantize 𝑔 into using SR with 𝑒𝑏𝑞 ;

37 Pack quantized values into bytes and append to𝐶 ;

38 end
39 end
40 // Return final compressed representation

41 return𝐶 ;

Our algorithm is tailored for KFAC rather than SGD due

to differences in communication patterns and sensitivity to

compression errors. While SGD relies on ring AllReduce,

which has the error propagation issue, KFAC uses AllGather,

avoiding this issue. KFAC’s faster convergence also heightens

its sensitivity to compression errors, requiring a balanced

design for compression and convergence.

4.4 Performance Model for Optimal Compression
To secure end-to-end performance gain, we develop a per-

formance model that incorporates impacting factors and

offline-online mechanism. The overall performance includes

communication and the incurred (de-)compression overhead.

We first define the modeling space and introduce the nota-

tions below. For system [𝑥]:

• 𝐿𝑜 and 𝐿𝑐 [MB] are the sizes of the original and com-

pressed KFAC gradients, respectively.
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• 𝐶 [𝑥 ]𝑜 and 𝐶
[𝑥 ]
𝑐 [MB/s] are the reference communication

throughput for the original data (of size 𝑠) and the com-

pressed data (of size 𝑐), respectively. They are from the

prebuilt lookup table for each system.

• 𝑇 [𝑥 ]
𝑜,1..𝑘

and 𝑇
[𝑥 ]
𝑐,1..𝑘

[MB/s] are the compression and decom-

pression throughputs for the original data (of size 𝑠) and

the compressed data (of size 𝑐), respectively. They are

averaged from the first 𝑘 iterations.

• 𝑟 [𝑥 ]
1..𝑘

[%] is the ratio of the communication time to the total

iteration time without compression, and this is averaged

from the first 𝑘 iterations.

Modeling the communication speedup with compression

requires the communication throughput before/after com-

pression. However, without online measures, we cannot

know the compressed data size for each layer. Considering

runtime profiling may incur overhead, we employ a mixed

offline-online strategy to gain knowledge. Specifically, we

benchmark communication offline on each system with syn-

thetic data, forming a deterministic lookup table that maps

communication throughput 𝐶 [𝑥 ] to different message sizes

and the GPU count. Thus, it becomes a reference for online

queries for the varying data sizes (original or compressed).

Table-querying required 𝐿𝑜 and 𝐿𝑐 are measured with

real data. Notably, COMPSO includes an encoder that is se-

lected from a vector of candidates (detailed in § 5.2), and they

achieve varying 𝐿𝑐 . To select the best-fit encoder, we need to

measure 𝐿𝑐 and overall compressor throughputs (𝑇
[𝑥 ]
𝑜,1..𝑘

and

𝑇
[𝑥 ]
𝑐,1..𝑘

) on real data (i.e., KFAC gradients) online. We use the en-

coder with smaller 𝐿𝑐 and low overall compression overhead.

The gradient data feature is unknown before runtime, so we

are set to profile only 𝑘 training iteration. We also found that

warmup training iterations can be representative across the

training. Thus, we choose the first 𝑘 warmup iterations, with

negligible performance impact, to determine the stabilized

compression-decompression throughput (𝑇
[𝑥 ]
𝑜,1..𝑘

and 𝑇
[𝑥 ]
𝑐,1..𝑘

) and

the portion of communication (𝑟
[𝑥 ]
1..𝑘
) for each system [𝑥]. The

communication speedup is formulated as

𝑠 =

(
𝑖+𝑚∑︁
𝑖

𝐿𝑜

𝐶
[𝑥 ]
𝑜

)
︸       ︷︷       ︸
est. time with

original data size

÷ ©­« 𝐿𝑐

𝐶
[𝑥 ]
𝑐

+
∑𝑖+𝑚

𝑖 𝐿𝑜

𝑇
[𝑥 ]
𝑜,1..𝑘,𝑖 ..𝑖+𝑚

+ 𝐿𝑐

𝑇
[𝑥 ]
𝑐,1..𝑘

ª®¬︸                                ︷︷                                ︸
est. time for comp.+decomp. and

communicating compressed data

(5)

where𝑚 is the layer-aggregation factor, determined by our

layer-wise compression and layer-aggregation mechanism

on each GPU. Specifically, DNN models feature size-varying

KFAC gradients for each layer, some of which are small

and lead to GPU resources underutilization. We aggregate

multiple layers before compression is employed to improve

and stabilize the performance. We find the𝑚 such that the

end-to-end speedup

((
1−𝑟 [𝑥 ]

1..𝑘

)
+𝑟 [𝑥 ]

1..𝑘
/𝑠

)−1
is high. For example,

with 50% of the communication to total iteration time ratio

and 10× communication speedup considering compression,

the end-to-end performance gain is 1.8×.

4.5 GPU Implementation and Optimizations
KFAC gradients are computed and buffered in GPU global

memory during training. Hence, compressing on the GPU is

essential to avoid the GPU-to-CPU data-transfer overhead,

which can be unacceptable. Existing vanilla implementations

of the GPU compressor, such as QSGD and CocktailSGD,

degrade the system performance (to be detailed in §5.3), mo-

tivating us to develop a GPU-centric compression pipeline.

As outlined in §4.3 and Fig. 4a, the compressor consists of

a filter, a quantizer, and an encoder. Given the compression is

done in O(𝑛) time (if sequential), the arithmetic intensity is

O(1) relative to input size 𝑛, implying that the compression

is essentially memory-bound with lightweight computation.

The related optimizations to decrease traffic throughout the

memory hierarchy are twofold. 1) We fuse the three kernels

into one to decrease the memory traffic to global memory

and improve performance. This approach allows the con-

text to persist in local buffers (e.g., shared memory) and

increases the data reuse in the memory-bound compression

process. 2) In addition, we implement the fine-grained range

computation (i.e., finding the extrema of a layer) in a paral-

lel reduction manner using block reduction and warp-level
shuffle. Specifically, the update frequency of global extrema

in global memory can be much lowered after the local ex-

trema are found by block reduction. Backtracing the block

reduction, considering the one order of magnitude higher

latency to access share memory than the warp-wide (SIMD-

32) register file, warp-level shuffle is employed to decrease

the block-wide local extrema update in the shared memory

after each warp finds the even-finer local extrema.

Given that layer sizes vary, a fine-grain mapping of layer

(data) and thread block is required. First, the shared memory

buffer is padded to ensure that only gradients for one layer

are processed. This also ensures that the determination of the

data range (for normalization) is notmixedwhen aggregating

multiple layers. Second, the varying layer size can result

in workload imbalance, which can increase latency during

training. At the same time, layer features (e.g., size) can

be stable across iterations. i.e., given a list of layers whose

indices are 0 . . . 𝑁 , the occurrence of layer[𝑖] tends to be

stable. Thus, a pre-determined layer-block hashmap can be

built during the initialization of the KFAC optimizer and

reused for the rest of the iterations.

5 Experimental Evaluation
Platforms. We evaluate COMPSO on two platforms: 1

A 16-node cluster, each node equipped with two AMD EPYC

7742 processors, 256 GB of RAM, and four 40GB NV-Link

connected NVIDIA A100 GPUs. These nodes are intercon-

nected using Slingshot10 with a maximum bandwidth of 100

Gbps. 2 A 64-node cluster, each node equipped with the
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same GPU configuration, one AMD EPYC Milan 7543P pro-

cessor, and 512 GB of RAM. These nodes are interconnected

using Slingshot11 with a maximum bandwidth of 200 Gbps.

Baselines. We compare COMPSO with three state-of-

the-art compression approaches: QSGD [2], cuSZ(A GPU

version of the SZ algorithm) [52], and CocktailSGD [53].

QSGD and SZ algorithms are introduced in §2.4. As Cock-

tailSGD is a fine-tuning solution rather than training from

scratch, we focus more on its compression performance in

ratio and throughput and performance gain in training than

on validation accuracy. For COMPSO, we fix the tunable

parameter aggregation factor to be 4 for all cases accord-

ing to our performance model. In addition, we utilize the

state-of-the-art distributed KFAC optimizer, KAISA [44], to

enhance memory efficiency for large-batch training.
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Figure 6.Convergence Evaluation using four compressors on KFAC

on three models, comparing to KFAC without compression baseline.

Additionally, SGD with CocktailSGD compressor.

DNN models, datasets, and benchmark. We evaluate

the convergence and performance of COMPSO using four

representative and widely-used models, two CNN-based and

two transformer-based: ResNet-50 [20], Mask R-CNN [19],

BERT-large [10], and aGPT-3 stylemodel, GPT-neo-125M [11].

The first three are fromNVIDIA [39] andGPT fromEleutherAI

[4]. This selection demonstrates the versatility and effec-

tiveness of COMPSO for various DNNs. Specifically, we

train ResNet-50 on ImageNet, Mask R-CNN on the Microsoft

COCO [31], BERT-large-uncased on the enwiki [37] and

Toronto BookCorpus datasets [5] , and GPT-neo-125M on the

Pile [14]. Additionally, we use widely-received downstream

task dataset and benchmark SQuAD v1.1 [47] to evaluate

the BERT-large-uncased model quality.

5.1 Evaluation of Convergence
We present COMPSO’s impact on convergence in Figure 6a,

along with its auxiliary Figure 6b, and Table 1. We observe it

to have minimal effect on KFAC convergence, on ResNet-50,

Mask R-CNN, and GPT-neo-125M, using 64 GPUs on Plat-

form 1. Figure 6a and its auxiliary Table 6b show the conver-

gence and final iteration metric values averaged by multiple

runs of ResNet-50, Mask R-CNN, and GPT-neo-125M, com-

paring with cuSZ, QSGD, and CocktailSGD. Table 1 show

the SQuAD v1.1 BERT-large benchmark results that evaluate

the model quality. Additionally, we apply CocktailSGD to

SGD optimizers on the four models to demonstrate the effec-

tiveness of KFAC over SGD with compressors. Experiments

are configured to use the same number as the baseline (with-

out compression) for the iterations to convergence, with the

validation metrics as close as possible. This allows a compar-

ative performance analysis as outlined in §5.4-5.2. As shown

in Figure 6a, without compression, the SGD optimizer uses

more iterations than the KFAC optimizer for convergence:

60 vs. 40 epochs, 1800 vs. 1000 iterations, and 5000 vs. 3000

iterations on ResNet-50, Mask R-CNN, and GPT-neo-125M,

respectively. This results in KFAC’s 1.3×, 1.2×, and 1.5× end-

to-end speedup over SGD. For BERT-large, SGD-based opti-

mizer (i.e., LAMB[57]) uses 1563 iterations to convergence,

whereas KFAC-based optimizer uses 1000 iterations, 1.3×
over SGD. Moreover, applying CocktailSGD to SGD results

in preserved convergence compared to the case without com-

pression. Therefore, SGD+CocktailSGD uses more iterations

than KFAC and KFAC+compressors. Additionally, compared

to SGD+CocktailSGD, KFAC+COMPSO achieves 15% to 50%

end-to-end performance gain.

For the KFAC baseline and with compressors, ResNet-50

and Mask R-CNN employ StepLR for KFAC, with the first

learning rate decrease occurring at epoch 25 and iteration

650, respectively. Therefore, we apply aggressive compres-

sion with an error bound 4E-3 prior to the first learning rate

drop, then switch to conservative compression with an error

bound 2E-3 for the remaining epochs/iterations. Table 6b

shows that cuSZ’s accuracy is significantly lower than QSGD,

demonstrating SR’s superiority over RN in preserving ac-

curacy. COMPSO first aggresses in compression with error
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Table 1. Comparing SQuAD result of KFAC with different compres-

sion methods. Underlined are the targets (without compression),

and the shading denotes close to the target.

Approach Equivalent
Error Control F1 Score Exact

Match

SGD+CocktailSGD 20% sparsity
+8-bit quant. 90.48 83.80

KFAC (No Comp.) (n/a) 90.44 83.78

KFAC+cuSZ 4E-3, relative
to value range 89.41 82.40

KFAC+QSGD 8-bit quant. 91.01 84.10

KFAC+CocktailSGD 20% sparsity
+8-bit quant. 90.31 83.39

KFAC+COMPSO iteration-wise
adaptive 90.27 83.37

bound 4E-3 for filtering and quantization, then conserves

with SR-only mode at the same error bound, effectively main-

taining accuracy on both models. Notably, cuSZ’s accuracy

significantly suffers when the error bound exceeds 1E-2, and

QSGD’s with less than 8-bit quantization.

For GPT-neo-125M with cosine LR, we apply aggressive

compression for the first 5,000 iterations. COMPSO main-

tains a similar validation loss curve to training without

compression. In the case of BERT-large, pre-training encom-

passes 1,000 iterations, segmented into four stages of 250

iterations each. BERT results are presented in Table 1. The

F1 score and exact-match ratio (higher is better), indicate

that QSGD 8-bit and CocktailSGD 8-bit SR quantization sur-

passes cuSZ 4E-3 RN quantization in accuracy preservation,

while COMPSO has a minimal impact on model quality by

refining the error bound from 4E-3 in stage 1 to 2E-3 in stage

4. This demonstrates that SR is more effective than RN, and

COMPSO maintains good model quality using SR.

5.2 Communication Performance Gain
We present the communication speed up during aggressive

compression iterations in Figure 7. The communication time

excludes any compression-decompression overhead. Specifi-

cally, COMPSO achieves up to 14.5×/11.2× (11.0×/7.2× on av-
erage) on the two platforms, respectively. The speedup is lim-

ited by the accuracy-preserving settings for cuSZ at 4E-3 and

QSGD with 8-bit due to their low compression ratios (CR).

Compared to the baseline without compression, COMPSO

achieves up to a 14.15× speedup on BERT-large using 64

GPUs, attributed to a high overall CR by its initial aggressive

compression. With a slower network (e.g., Slingshot 10), the

speedup is greater than with a faster network (e.g., Slingshot

11) and thus benefits more from a high CR. Furthermore, as

GPU counts increase, the speedup is even greater due to the

high compression ratio and layer aggregation based on our

performance model. Specifically, COMPSO achieves average

CR of 18.95×/ 23.52×/22.05×/18.41× for ResNet-50/Mask R-

CNN/ BERT-large/GPT-neo-125M, respectively. In compari-

son, cuSZ achieves compression ratios of 6.04×/7.04×/15.98×

Table 2. Overall compression ratio (CR), compression throughput

(C-GB/s), and decompression throughput (D-GB/s) on KFAC gradi-

ent data when training ResNet-50 (left) and BERT-large (right). The

shading represents the optimal compressor compared to others.

ResNet-50 Encoder BERT-large

C-GB/s CR D-GB/s C-GB/s CR D-GB/s

10.73 18.95 7.63 ANS 43.52 22.05 93.85
4.13 14.96 3.81 Bitcomp 108.16 14.04 34.29
2.31 11.21 2.42 Cascaded 10.34 10.70 16.66
0.21 20.72 0.09 Deflate 0.39 22.68 1.20
0.44 20.11 0.26 Gdeflate 0.39 22.53 2.53
0.22 13.52 0.24 LZ4 0.46 14.30 1.43
0.44 13.90 0.22 Snappy 0.48 14.65 2.23
0.13 21.57 0.13 Zstd 0.27 23.76 0.76

/5.63×, while QSGD achieves 4.97×/5.73×/14.77×/4.87×. COM-

PSO outperforms CocktailSGD on Mask R-CNN and BERT-

large in communication efficiency and end-to-end speedup

because of the advantageous CR.

Moreover, the communication speedups by CocktailSGD

are lower than COMPSO on ResNet-50 and GPT-neo-125M

due to our proposed layer aggregation strategy, which en-

hances efficiency when both approaches have a similar com-

pression ratio of≈ 20×. For instance, while COMPSO achieves

a compression ratio of 18.95×, slightly lower than Cock-

tailSGD’s 20×, our method still secures a more substantial

communication speedup due to layer-wise adaptive compres-

sion. This leads to a higher overall performance enhancement

on ResNet-50 and GPT-neo-125M.

Next, we analyze the performance by examining the com-

pression ratios. Our strategy for the lossy compression com-

ponent has already been determined but has yet to be de-

cided for the encoder. Specifically, we consider eight en-

coders (lossless compressors) from NVIDIA nvCOMP[40]:

ANS, Bitcomp, Cascaded, Deflate, Gdeflate, LZ4, Snappy,

and Zstd. It is crucial to note that different data types af-

fect the compression ratio and the throughput of compres-

sion/decompression. Therefore, we must select the appro-

priate encoder for each model during the sampled iterations

after warmup. The throughput and overall compression ra-

tios for ResNet-50 and BERT-large are presented in Table 2.

To simplify the demonstration, we present the throughput

and overall compression ratios using representative models,

namely a CNN and a transformer-based language model. We

observe that compressors incorporating entropy coding (e.g.,

ANS, Deflate, and Zstd) achieve higher compression ratios

than those based on dictionary matching (e.g., LZ4, Snappy)

or run-length coding (e.g., Cascaded). This is attributed to

the gradient distribution’s non-uniformity.

ANS stands out for its higher compression/decompression

throughput, attributable to its fewer operations compared to

other algorithms and its capability for parallel execution on

GPUs via a block processing scheme, as discussed in [54]. For

Bitcomp and GDeflate, we find limited widely acknowledged

documentation. Our results indicate that Bitcomp delivers
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high throughput but a lower compression ratio. GDeflate, a

variant of Deflate, achieves a high compression ratio through

entropy coding but low throughput (similar to Deflate). In

these cases, ANS is the overall best encoder.

Furthermore, our compression ratio (i.e., >22) significantly

surpasses cuSZ and QSGD when the accuracy does not drop

considerably (i.e., below 10), as shown in Figure 3. In addi-

tion, the compression ratios of COMPSO are slightly higher

than CocktailSGD, which maintains a constant ratio of 20 (by

fixing the sparsity at 20% and using 8-bit quantization bits).

Specifically, CocktailSGD employs Top-k with random sam-

pling for sparsification before quantization, while COMPSO

uses a relative threshold to filter values. The advantage of our

method is adaptively filtering values based on their range

rather than consistently zeroing out 20% elements.
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Figure 7. Comparison of communication speedup (𝑦-axis) of cuSZ,

QSGD, CocktailSGD, and COMPSO compressed KFAC gradients on

ResNet-50 and BERT-large with different GPU counts (𝑥-axis).

5.3 GPU Performance Gain
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Figure 8. Comparison of GPU performance of cuSZ (SZ CUDA),

QSGD, CocktailSGD, and COMPSO on A100 with various data sizes.

We also present a comparison of GPU performance be-

tween QSGD using PyTorch’s torch.cuda() [46], the CUDA
implementation of SZ (i.e., cuSZ [52]), QSGD, CocktailSGD

with torch.cuda(), and COMPSO in Figure 8. Note that the

compression throughput may vary with input data, so we

report their average throughput across our tested datasets.

Our CUDA implementation of QSGDoffers higher through-

put than its PyTorch counterpart. This is because PyTorch

launches multiple kernels for CUDA tensor operations[22],

whereas our approach fuses kernels to reduce kernel launch

overhead and minimize across-GPUmemory data movement

time. Furthermore, our implementation of QSGD exhibits
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Figure 9. Overall performance gain of cuSZ, QSGD, CocktailSGD,

and COMPSO scaled by GPU counts. The 1.0× speedup threshold

is marked in each plot.

higher throughput compared to COMPSO. This is because

QSGD performs fewer operations by omitting the filter de-

spite a lower compression ratio. In addition, COMPSO is 1.7×
faster than CocktailSGD due to the latter’s relatively slow

Top-k sparsification with random sampling and its imple-

mentation in PyTorch. As a result, COMPSO enhances com-

munication efficiency and overall end-to-end performance,

even in scenarios where CocktailSGD achieves a marginally

higher compression ratio than COMPSO
2
.

5.4 End-to-End Training Performance Gain
We evaluate the overall speedup of COMPSO in two ways,

1 with the fixed-to-4 aggregation factor (denoted COMPSO-

𝑓 ) and 2 with our performance model of dynamic aggre-

gation factor (denoted COMPSO-𝑝). As illustrated in Fig-

ure 9, COMPSO achieves up to a 1.9× (1.3× average) overall

performance gain when training the four models on our

platforms, compared to training without compression. The

average training time before COMPSO of ResNet-50, Mask

R-CNN, BERT-large, and GPT-neo-125M on the two plat-

forms using 8 GPUs is 5, 1, 54, and 1 hours, respectively.
3

This reduces the training time for the four models to 3.5, 0.7,

36, 0.7 hours, respectively. Compared to cuSZ, and QSGD

COMPSO demonstrates superior performance due to its

greater communication reduction and higher compression

throughput thanks to the communication speedup, our GPU

optimizations (discussed in §5.2-5.3). Moreover, with the in-

creasing GPU amount, COMPSO’s performance gain over

CocktailSGD increases from 10% to 40%, mainly attributed to

our efficient aggregation strategy, GPU optimizations, and

performance model.

2
The local-then-global block reduction with warp shuffle boosts GPU per-

formance when CocktailSGD achieves a slightly higher compression ratio.

3
Fully pre-training GPT-neo-125M requires >120 hours on 8 A100 GPUs.

We demonstrate COMPSO’s effectiveness using 5000 iterations (1 hour).
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Note that without our performance model (i.e., COMPSO-

𝑓 ), COMPSO achieves up to 1.8× and 1.6× speedup (1.4× and
1.3× on average) on the two platforms, respectively. With

the performance model enabled (i.e., COMPSO-𝑝), COMPSO

achieves up to 1.9× and 1.8× speedup (1.5× and 1.4× on

average) on the platforms, respectively. This highlights the

importance of dynamically adjusting the aggregation factor

using our performance model, as discussed in §4.4. Specifi-

cally, a fixed layer aggregation factor with varying layer sizes

can result in the aggregated size being either too small or too

large for optimal end-to-end speedup. Additionally, the per-

formance model’s computational overhead is minimal com-

pared to the total training time - for instance, 2 minutes out of

42 minutes (5%) of training for KFAC+COMPSO on GPT-neo-

125M. Compared to SGD+CocktailSGD, KFAC+COMPSO

achieves up to 2.5× (1.8× in average) speedup. Specifically,

this reduces the training time from 6, 1.2, 60, and 1.3 hours

to 4.6, 0.8, 33, and 0.5 hours for ResNet-50, Mask R-CNN,

BERT-large, and GPT-neo-125M, respectively.

6 Related Work
There are several ways to conduct SGD gradient quantization:

sparsification and their combination. Additionally, there are

other KFAC optimizations.

Quantizationmethods. Two primary quantizationmeth-

ods reduce FP32 data to fewer bits: 1 rounding to the nearest

(RN) and 2 stochastic rounding (SR). For instance, 3LC [30]

and TernGrad [55] use RN to quantize original values into

one-bit and two-bits, respectively. QSGD [2] and QSDP [33]

employ SR for quantizing normalized values into a pre-defined

number of bits. However, using quantization alone either

has limited reduction on required bits or significantly af-

fects convergence. Thus, the error feedback (EF) mechanism

is proposed to compensate for the quantization error (re-

covered value minus original value). These methods store

errors locally and add them back in the subsequent training

steps [16, 30], necessitate additional GPU memory or lead

to CPU-GPU memory copy overhead. Our work does not

use error feedback to facilitate large batch training with data

parallelism without risking out-of-memory errors.

Sparsification. Sparsification analyzes the SGD gradi-

ent value distribution to obtain value frequency and select

top frequent values in sparse format to represent full gradi-

ents, such as Top-k [51], GaussianK [49], and OK-topK [28].

Successive works either employ sparsification with different

granularity (e.g., row/column-wise [59]) or utilize momen-

tum techniques to preserve convergence while increasing

sparsity [50, 58]. These approaches need to rigidly control

sparsity to preserve convergence, limiting the improvement.

In contrast, we apply error-bounded filtering in the selected

iterations based on the learning rate change, providing better

communication message size reduction.

Combining both. Recent works in SGD gradient com-

pression combine various approaches, with CocktailSGD [53]

being one of the most notable. This method integrates ran-

dom sampling, Top-k selection, and RN-based quantization.

The distinction between COMPSO and these methods is

threefold: 1 We focus on KFAC (second-order) gradient

compression instead of SGD (first-order) gradient, where

KFAC has more accurate directions and aggressive steps to-

ward convergence [32], thus more sensitive to compression

error. COMPSO introduces an error-bounded compression al-

gorithm that combines filter and SR to preserve convergence.

2 We design an adaptive compression strategy that pre-

serves accuracy (iteration-wise) and enhances compression

throughput (layer-wise). 3 We optimize GPU performance

carefully to enhance end-to-end performance on HPC sys-

tems, which often have greater communication bandwidth

and are thus more sensitive to the compressor throughput.

Other KFAC optimizations. PipeFisher [41] introduced

amechanism for pipeline parallelism in KFAC, aiming to min-

imize GPU idle time by integrating the KFAC computations

into the idle periods of pipeline parallelism. PipeFisher oper-

ates under the assumption that models trained with KFAC

exceed the memory space of a single GPU, as evidenced

by P100 and V100 GPUs (16 GB memory). However, the ef-

fectiveness of PipeFisher might be limited. Firstly, modern

GPUs like Nvidia A100 and H100 offer substantial memory

capacities ranging from 40GB to 94GB, which is more than

sufficient for large models validated as effective with KFAC.

Secondly, models that have demonstrated faster convergence

with KFAC can easily fit within the memory capacities of

A100 GPUs. Thus, pipeline parallelism might not be essential

for KFAC. In this work, we align with previous studies that

focus primarily on data parallelism for KFAC.

7 Conclusion and Future Work
We introduced COMPSO, a novel framework for distributed

KFAC optimizers. This framework features a new KFAC gra-

dient compression algorithm with iteration- and layer-wise

adaptive compression strategies, as well as GPU optimiza-

tions aimed at enhancing end-to-end performance. Experi-

mental evaluation shows that COMPSO achieves up to 14.2×
communication speedup and 3.1× in overall performance.

Future work will focus on: 1 Precisely optimizing filter

thresholds and quantization error bounds, moving beyond

empirical settings; 2 Exploring compression techniques for

intermediate data in KFAC, specifically the factor matrices

𝐴 and 𝐺 , to further enhance overall efficiency.

Acknowledgment
The material was supported by the U.S. Department of Energy, Office of

Science, under contract DE-AC02-06CH11357. This work was also supported

by the National Science Foundation (Grant Nos. 2312673, 2247080, 2303064,

2326494, and 2326495). Dingwen Tao and Guangming Tan were supported

by Ant Group and the National Natural Science Foundation of China (Grant

Nos. 62032023 and T2125013). Dingwen Tao contributed to this work while

he was at Indiana University.

222



PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA Sun et al.

References
[1] Naman Agarwal, Brian Bullins, and Elad Hazan. 2016. Second-order

stochastic optimization in linear time. stat 1050 (2016), 15.
[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan

Vojnovic. 2017. QSGD: Communication-efficient SGD via gradient

quantization and encoding. Advances in neural information processing
systems 30 (2017).

[3] Oana Balmau. 2022. Characterizing I/O in machine learning with

mlperf storage. ACM SIGMOD Record 51, 3 (2022), 47–48.

[4] Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman.

2021. GPT-Neo: Large Scale Autoregressive Language Modeling with
Mesh-Tensorflow. https://doi.org/10.5281/zenodo.5297715 If you use

this software, please cite it using these metadata..

[5] Aligning Books. 2015. Movies: Towards Story-like Visual Explanations

by Watching Movies and Reading Books—Yukun Zhu. In Ryan Kiros,
Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba
and Sanja Fidler—Proceedings of the IEEE international conference on
computer vision. 19–27.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot

Learners. arXiv:2005.14165 [cs.CL]

[7] Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang,

and Huazhong Yang. 2018. Long live time: improving lifetime for

training-in-memory engines by structured gradient sparsification. In

Proceedings of the 55th Annual Design Automation Conference. 1–6.
[8] Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Theo Mary, and

Mantas Mikaitis. 2022. Stochastic rounding: implementation, error

analysis and applications. Royal Society Open Science 9, 3 (2022),

211631.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

2009. ImageNet: A large-scale hierarchical image database. In 2009
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
Miami FL USA, 248–255. https://doi.org/10.1109/CVPR.2009.5206848

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805 (2018).
[11] EleutherAI. [n. d.]. EleutherAI/gpt-neo-125m · Hugging Face. https:

//huggingface.co/EleutherAI/gpt-neo-125m.

[12] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio.

2021. Efficient sparse collective communication and its application to

accelerate distributed deep learning. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 676–691.

[13] Hao Feng, Boyuan Zhang, Fanjiang Ye, Min Si, Ching-Hsiang Chu,

Jiannan Tian, Chunxing Yin, Summer Deng, Yuchen Hao, Pavan Balaji,

et al. 2024. Accelerating Communication in Deep Learning Recommen-

dation Model Training with Dual-Level Adaptive Lossy Compression.

In SC24: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–16.

[14] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe,

Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima,

Shawn Presser, and Connor Leahy. 2020. The Pile: An 800GB Dataset

of Diverse Text for Language Modeling. arXiv:2101.00027 [cs.CL]

[15] Donald Goldfarb, Yi Ren, and Achraf Bahamou. 2020. Practical quasi-

newtonmethods for training deep neural networks. Advances in Neural
Information Processing Systems 33 (2020), 2386–2396.

[16] Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter

Richtárik. 2020. Linearly converging error compensated SGD. Ad-
vances in Neural Information Processing Systems 33 (2020), 20889–

20900.

[17] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev,

Egor Shulgin, and Peter Richtárik. 2019. SGD: General analysis and

improved rates. In International conference on machine learning. PMLR,

5200–5209.

[18] Vineet Gupta, Tomer Koren, and Yoram Singer. 2018. Shampoo: Pre-

conditioned stochastic tensor optimization. In International Conference
on Machine Learning. PMLR, 1842–1850.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2018.

Mask R-CNN. arXiv:1703.06870 [cs.CV]

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[21] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter

Richtárik, and Sebastian Stich. 2022. Stochastic distributed learning

with gradient quantization and double-variance reduction. Optimiza-
tion Methods and Software (2022), 1–16.

[22] Lihan Hu, Jing Li, and Peng Jiang. 2024. cuKE: An Efficient Code Gener-

ator for Score Function Computation in Knowledge Graph Embedding.

In 2024 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). 903–914. https://doi.org/10.1109/IPDPS57955.2024.00085

[23] David A Huffman. 1952. A method for the construction of minimum-

redundancy codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[24] Jinda Jia, Cong Xie, Hanlin Lu, Daoce Wang, Hao Feng, Chengming

Zhang, Baixi Sun, Haibin Lin, Zhi Zhang, Xin Liu, et al. 2024. SDP4Bit:

Toward 4-bit Communication Quantization in Sharded Data Paral-

lelism for LLM Training. arXiv preprint arXiv:2410.15526 (2024).
[25] Haoyu Jin, DongleiWu, Shuyu Zhang, Xiangyu Zou, Sian Jin, Dingwen

Tao, Qing Liao, and Wen Xia. 2023. Design of a Quantization-Based

DNN Delta Compression Framework for Model Snapshots and Feder-

ated Learning. IEEE Transactions on Parallel and Distributed Systems
34, 3 (2023), 923–937.

[26] Pritzel A. et al. Jumper J., Evans R. 2021. Highly accurate protein

structure prediction with AlphaFold. Nature 596 (2021), 583–589.
[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).
[28] Shigang Li and Torsten Hoefler. 2022. Near-optimal sparse allreduce

for distributed deep learning. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 135–
149.

[29] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M.

Gok, Jiannan Tian, Junjing Deng, Jon C. Calhoun, Dingwen Tao,

Zizhong Chen, and Franck Cappello. 2022. SZ3: A Modular Framework

for Composing Prediction-Based Error-Bounded Lossy Compressors.

IEEE Transactions on Big Data (2022), 1–14.
[30] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 2019. 3lc:

Lightweight and effective traffic compression for distributed machine

learning. Proceedings of Machine Learning and Systems 1 (2019), 53–64.
[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross

Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence

Zitnick, and Piotr Dollár. 2015. Microsoft COCO: Common Objects in

Context. arXiv:1405.0312 [cs.CV]

[32] Hong Liu, Zhiyuan Li, David LeoWright Hall, Percy Liang, and Tengyu

Ma. 2024. Sophia: A Scalable Stochastic Second-order Optimizer for

Language Model Pre-training. In The Twelfth International Confer-
ence on Learning Representations. https://openreview.net/forum?id=
3xHDeA8Noi

[33] Ilia Markov, Adrian Vladu, Qi Guo, and Dan Alistarh. 2023. Quantized

Distributed Training of Large Models with Convergence Guarantees.

arXiv preprint arXiv:2302.02390 (2023).

223

https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/CVPR.2009.5206848
https://huggingface.co/EleutherAI/gpt-neo-125m
https://huggingface.co/EleutherAI/gpt-neo-125m
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/1703.06870
https://doi.org/10.1109/IPDPS57955.2024.00085
https://arxiv.org/abs/1405.0312
https://openreview.net/forum?id=3xHDeA8Noi
https://openreview.net/forum?id=3xHDeA8Noi


COMPSO PPoPP ’25, March 1–5, 2025, Las Vegas, NV, USA

[34] JamesMartens, Jimmy Ba, andMatt Johnson. 2018. Kronecker-factored

curvature approximations for recurrent neural networks. In Interna-
tional Conference on Learning Representations.

[35] James Martens and Roger Grosse. 2015. Optimizing neural networks

with kronecker-factored approximate curvature. In International con-
ference on machine learning. PMLR, 2408–2417.

[36] James Martens and Roger Grosse. 2015. Optimizing neural networks

with kronecker-factored approximate curvature. In International con-
ference on machine learning. PMLR, 2408–2417.

[37] Meta. [n. d.]. Data dump torrents - Meta. https://meta.wikimedia.org/
wiki/Data_dump_torrents#English_. (Accessed on 04/07/2023).

[38] Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and

Dan Alistarh. 2021. Asynchronous decentralized SGD with quantized

and local updates. Advances in Neural Information Processing Systems
34 (2021), 6829–6842.

[39] NVIDIA. [n. d.]. NVIDIA/DeepLearningExamples: State-of-the-Art

Deep Learning scripts organized by models - easy to train and de-

ploy with reproducible accuracy and performance on enterprise-grade

infrastructure. https://github.com/NVIDIA/DeepLearningExamples.
[40] NVIDIA. 2024. NVCOMP | NVIDIADeveloper. https://developer.nvidia.

com/nvcomp. (Accessed on 01/14/2024).

[41] Kazuki Osawa, Shigang Li, and Torsten Hoefler. 2023. PipeFisher:

Efficient Training of Large Language Models Using Pipelining and

Fisher Information Matrices. Proceedings of Machine Learning and
Systems 5 (2023).

[42] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota,

and Satoshi Matsuoka. 2019. Large-scale distributed second-order op-

timization using kronecker-factored approximate curvature for deep

convolutional neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 12359–12367.

[43] J Gregory Pauloski, Lei Huang,Weijia Xu, Kyle Chard, Ian T Foster, and

Zhao Zhang. 2022. Deep Neural Network Training With Distributed

K-FAC. IEEE Transactions on Parallel and Distributed Systems 33, 12
(2022), 3616–3627.

[44] J Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman,

Kyle Chard, Ian Foster, and Zhao Zhang. 2021. Kaisa: an adaptive

second-order optimizer framework for deep neural networks. In Pro-
ceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. 1–14.

[45] J Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T

Foster. 2020. Convolutional neural network training with distributed K-

FAC. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[46] PyTorch. 2024. TORCH.CUDA. https://pytorch.org/docs/stable/cuda.
html.

[47] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

2016. Squad: 100,000+ questions for machine comprehension of text.

arXiv preprint arXiv:1606.05250 (2016).
[48] Bharath Ramesh, Qinghua Zhou, Aamir Shafi, Mustafa Abduljabbar,

Hari Subramoni, and Dhabaleswar K Panda. 2022. Designing Efficient

Pipelined Communication Schemes using Compression in MPI Li-

braries. In 2022 IEEE 29th International Conference on High Performance
Computing, Data, and Analytics (HiPC). IEEE, IEEE, 95–99.

[49] Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. 2019.

Understanding top-k sparsification in distributed deep learning. arXiv
preprint arXiv:1911.08772 (2019).

[50] Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. 2021.

Squarm-sgd: Communication-efficient momentum sgd for decentral-

ized optimization. IEEE Journal on Selected Areas in Information Theory
2, 3 (2021), 954–969.

[51] Nikko Ström. 2015. Scalable distributed DNN training using commod-

ity GPU cloud computing. (2015).

[52] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp,

Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao,

et al. 2020. Cusz: An efficient gpu-based error-bounded lossy compres-

sion framework for scientific data. In Proceedings of the ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques.
3–15.

[53] Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang,

Christopher De Sa, Christopher Re, and Ce Zhang. 2023. CocktailSGD:

Fine-tuning foundation models over 500Mbps networks. In Interna-
tional Conference on Machine Learning. PMLR, 36058–36076.

[54] André Weißenberger and Bertil Schmidt. 2019. Massively parallel ans

decoding on gpus. In Proceedings of the 48th International Conference
on Parallel Processing. 1–10.

[55] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. 2017. Terngrad: Ternary gradients to reduce commu-

nication in distributed deep learning. Advances in neural information
processing systems 30 (2017).

[56] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Sri-

nadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and

Cho-Jui Hsieh. 2019. Large batch optimization for deep learning:

Training bert in 76 minutes. arXiv preprint arXiv:1904.00962 (2019).
[57] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Sri-

nadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and

Cho-Jui Hsieh. 2020. Large Batch Optimization for Deep Learning:

Training BERT in 76 minutes. In International Conference on Learning
Representations. https://openreview.net/forum?id=Syx4wnEtvH

[58] Hao Yu, Rong Jin, and Sen Yang. 2019. On the Linear Speedup Analysis

of Communication Efficient Momentum SGD for Distributed Non-

Convex Optimization. In Proceedings of the 36th International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,

7184–7193. https://proceedings.mlr.press/v97/yu19d.html
[59] Jiaqi Zhang, Keyou You, and Lihua Xie. 2021. Innovation Compression

for Communication-efficient Distributed Optimization with Linear

Convergence. arXiv:2105.06697 [math.OC]

[60] Qinghua Zhou, Quentin Anthony, Aamir Shafi, Hari Subramoni, and

Dhabaleswar K DK Panda. 2022. Accelerating Broadcast Communi-

cation with GPU Compression for Deep Learning Workloads. In 2022
IEEE 29th International Conference on High Performance Computing,
Data, and Analytics (HiPC). IEEE, IEEE, 22–31.

[61] Qinghua Zhou, Quentin Anthony, Lang Xu, Aamir Shafi, Mustafa

Abduljabbar, Hari Subramoni, and Dhabaleswar K DK Panda. 2023.

Accelerating distributed deep learning training with compression as-

sisted allgather and reduce-scatter communication. In 2023 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE,
IEEE, 134–144.

[62] Q Zhou, C Chu, NS Kumar, Pouya Kousha, SeyedehMahdieh Ghazimir-

saeed, Hari Subramoni, and Dhabaleswar K Panda. 2021. Designing

high-performance mpi libraries with on-the-fly compression for mod-

ern gpu clusters. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 444–453.

[63] Qinghua Zhou, Pouya Kousha, Quentin Anthony, Kawthar Shafie Kho-

rassani, Aamir Shafi, Hari Subramoni, and Dhabaleswar K Panda. 2022.

AcceleratingMPI all-to-all communicationwith online compression on

modern GPU clusters. In International Conference on High Performance
Computing. Springer, Springer, 3–25.

224

https://meta.wikimedia.org/wiki/Data_dump_torrents#English_
https://meta.wikimedia.org/wiki/Data_dump_torrents#English_
https://github.com/NVIDIA/DeepLearningExamples
https://developer.nvidia.com/nvcomp
https://developer.nvidia.com/nvcomp
https://pytorch.org/docs/stable/cuda.html
https://pytorch.org/docs/stable/cuda.html
https://openreview.net/forum?id=Syx4wnEtvH
https://proceedings.mlr.press/v97/yu19d.html
https://arxiv.org/abs/2105.06697

	Abstract
	1 Introduction
	2 Background
	2.1 Kronecker-Factored Approximate Curvature
	2.2 Distributred KFAC
	2.3 Gradient Quantization
	2.4 Representative Compression Methods

	3 Motivation and Challenges
	4 COMPSO Design
	4.1 Overview of COMPSO
	4.2 Rounding Method Analysis
	4.3 Novel Gradient Compression Algorithm
	4.4 Performance Model for Optimal Compression
	4.5 GPU Implementation and Optimizations

	5 Experimental Evaluation
	5.1 Evaluation of Convergence
	5.2 Communication Performance Gain
	5.3 GPU Performance Gain
	5.4 End-to-End Training Performance Gain

	6 Related Work
	7 Conclusion and Future Work
	References

