
Colmena: Scalable Machine-Learning-Based

Steering of Ensemble Simulations for High

Performance Computing

Logan Ward,∗‡ Ganesh Sivaraman,∗ J. Gregory Pauloski,† Yadu Babuji,† Ryan Chard,∗

Naveen Dandu,‡ Paul C. Redfern,‡ Rajeev S. Assary,‡ Kyle Chard,† Larry A. Curtiss,‡

Rajeev Thakur,∗ and Ian Foster∗†

∗Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA
†Department of Computer Science, University of Chicago, Chicago, IL, USA

‡Joint Center for Energy Storage Research, University of Chicago, Chicago, IL, USA

Abstract—Scientific applications that involve simulation en-
sembles can be accelerated greatly by using experiment design
methods to select the best simulations to perform. Methods
that use machine learning (ML) to create proxy models of
simulations show particular promise for guiding ensembles but
are challenging to deploy because of the need to coordinate
dynamic mixes of simulation and learning tasks. We present
Colmena, an open-source Python framework that allows users
to steer campaigns by providing just the implementations of
individual tasks plus the logic used to choose which tasks to
execute when. Colmena handles task dispatch, results collation,
ML model invocation, and ML model (re)training, using Parsl
to execute tasks on HPC systems. We describe the design of
Colmena and illustrate its capabilities by applying it to electrolyte
design, where it both scales to 65 536 CPUs and accelerates the
discovery rate for high-performance molecules by a factor of 100
over unguided searches.

Index Terms—Machine learning, Computational Steering,
Many Task Computing

I. INTRODUCTION

High performance computing (HPC) campaigns involving

repeated runs of simulations codes are being applied widely

in science and engineering, for example to simulate molecules

or proteins in different configurations to build models of how

properties change with temperatures (model fitting) [1] or

to evaluate many engine designs to find those with optimal

efficiency (optimization) [2]. While experiments themselves

are independent and can be run in parallel, fixed computing

budgets and ever larger search spaces make it increasingly im-

portant to use results from completed experiments to steer such

campaigns, i.e., to inform decisions about which experiments

to perform next. Machine learning (ML) is an emerging tool

for writing steering applications that can learn from new data

faster than can human experts.

The core of algorithms for steering ensemble simulations,

in broad terms, is a process that selects inputs to simulations

and determines allocations of resources to tasks. Steering

policies vary significantly in complexity. For example, genetic

algorithms select new experiments by combining character-

istics of previous simulations, typically dedicating resources

equally among experiments [3], while Optimal Experimental

Design (OED) methods determine new experiments based on

the predictions and uncertainty of an internal statistical model,

with resources allocated to tasks using methods such as all-to-

one task, batches of experiments [4], and streaming [5]. Some

methods deploy only a single type of task, and others can

select among different task types or levels of accuracy [6].

Steering algorithms that employ ML are particularly prob-

lematic to deploy on HPC due to the need to manage the

execution of not only simulations but also steering (e.g., model

update, experimental design) tasks. Achieving good results

requires balancing two often conflicting needs: performing

steering tasks often enough, and fast enough, to enable good

choices of simulation tasks, and maintaining high HPC utiliza-

tion. At a simple level, both challenges can be solved by re-

allocating resources—a common capability of many workflow

systems. On a deeper level, the challenges involve more subtle

questions, such as how many resources to allocate to steering

and when to retrain ML model(s). For example, one may

want to enforce a limited budget for steering tasks or decide

when to retrain models by comparing simulation outputs to

ML predictions. The problem of expressing such policies and

deploying them to HPC requires much innovation.

Existing methods for steering HPC simulations are purpose-

built tools that combine a specific class of steering algorithm

with methods for deploying computations across resources.

An early example, Nimrod/O [7], used built-in optimization

algorithms to choose which simulations to schedule over

distributed clusters. More recently, the CANDLE Supervisor

library [3] uses the Swift/T workflow engine [8] to distribute

tasks selected by an optimization algorithm that determines

new tasks after results are placed in an output queue [3].

Rocketsled works by adding a special “steering” task at the end

of a Fireworks workflow definition that submits new work after

completion (e.g., to launch a Bayesian optimization task) [9].

Variations of these patterns exist in other steering tools,

including LibEnsemble [10], CAMD [11], DeepHyper [12],

SuperLearner [2], and DeepDriveMD [13]. Each steering

system uses a different way to express planning policies and

are integrated differently with workflow engine, all of which

provide informative initial steps towards learning how to best

steer ensembles with AI. Further advancement in ensemble

simulations will require systems that provide greater flexibility

in policies for orchestrating machine learning and simulation

tasks together.

We present Colmena, a general-purpose library for steer-

ing ensembles of experiments on HPC computing systems.

Colmena is an open-source Python code that permits writing

complex agents for steering ensembles of simulations and

executing them across diverse computational resources, with

a particular focus on applications that use ML to design

computational campaigns. In this paper, we formalize the

experiment steering process and describe the design principles

for the Colmena library. We then demonstrate the ability to use

Colmena to steer simulations on 1024 nodes (65 536 cores) and

illustrate its use on a molecular design challenge. We intend

that Colmena will facilitate experimentation with advanced

algorithms for steering experiments across diverse computing

resources and, eventually, automated laboratories.

The main contributions of this paper are:

• An abstract formulation of the computational campaign

steering problem.

• The introduction of Colmena, a Python library for steer-

ing computational campaigns on HPC.

• A demonstration of using Colmena to design molecular

materials using quantum chemistry and ML.

• An analysis of the scaling performance of Colmena on a

Cray XC40.

II. THE PROBLEM

We first provide an abstract definition of the problem that

we seek to solve and then describe the example application

used in our experiments.

A. Abstract Formulation

Let us assume that we have a (typically large) set of entities,

e ∈ E , each with properties p ∈ P; a set of assays (e.g.,

simulations or laboratory experiments) a ∈ A, each of which

can be used to estimate a property P (a) ∈ P of an entity;

and a scoring function S , that when applied to available data

on an entity’s properties returns either a numeric score or φ

if data are inadequate to assign a score. Note that multiple

assays may exist for the same property, each with different

cost and accuracy characteristics.

Given E , P , and A, we can determine entity properties by

performing a series of tasks, each involving the application of

an assay a ∈ A to an entity e ∈ E to obtain an estimated value

v for property p = P (a). Given a record D of such tests, with

each d ∈ D defined by a tuple (e, a, p, v), we can assign a

score to D. For example, we might define the score as that of

the single highest-scoring entity:

V (D) = max
x∈E

S({d : d ∈ D and d.e = x})

We can also determine the cost incurred to produce D by

summing the costs incurred to obtain each value

C(D) =
∑

d∈D

c(d)

Experiment design problem. When the number of entities,

|E|, is large and/or assays are expensive, it becomes impracti-

cal to evaluate every possible entity-property combination. The

quality of the answers obtained then depends on which assays

have been performed. Thus we have an experiment design

problem. If D is every possible combination of tests, and B

is a resource bound, then we want to identify a set of tests D

such that:

max
D∈D

V (D) : C(D) ≤ B

The order in which tests are performed then matters. For

example, do we focus on lower-cost assays that may identify

promising entities, or on higher-cost assays that may confirm

(or eliminate) promising entities?

Static vs. learned assays. We distinguish between static

assays, which have fixed behavior over the course of an

experiment (e.g., a simulation code) and learned assays, which

can be improved as more data are added to the record. An

example of the latter is an ML model that approximates results

obtained from an expensive simulation.

Training. This additional kind of task is used to generate

a new version of a learned assay given the current record:

a′ = retrain(a,D). As ML model accuracy generally

increases with training data quantity and diversity, we have an-

other dimension to our experiment design problem—whether

to perform assays designed to increase training data diversity

or to characterize promising entities.

Generating candidates. If the number of entities is large

or even innumerable (e.g., all possible polymers), we may

introduce a generator G that when called produces one or

more new candidate entities based on the record.

Decision problem. If actions are taken one at a time, then

system state at each step is captured by the sets of known

entities E, associated data D, and assays (including learned

assays) A. Initially, each may be empty or alternatively may

be prepopulated to provide some initial knowledge of the

problem. At each step, the next action is one of:

• generate one or more new entities, e = G(D);
• run a task a(e) for some a and e; or

• (re)train a learned assay a to generate a new a′.

B. Our Example Application

As an illustrative example, we apply Colmena to a problem

in electrolyte design for next-generation batteries. In this ap-

plication, entities are molecules; properties of interest include

atomization energy, ionization potential, toxicity, stability, and

synthesizability; assays include a variety of computational

methods with varying costs and accuracies; and a scoring

function might impose toxicity and stability thresholds and

then sum the other properties.

2

More specifically, we present results for a version of this

problem that involves a fixed search space of molecules and

a single property to optimize: specifically, 105 molecules

(represented as SMILES strings) from the QM9 dataset [14],

[15]; a single property, ionization potential; and two assays,

namely a quantum chemistry (QC) simulation and an ML

model; and ionization potential as the quantity to maximize.

While simple, this configuration allows us to explore many

relevant tradeoffs.

We implement these two assays as follows. For the QC as-

say, we use the NWChem simulation code [16]. We first parse

the SMILES string and generate an approximate geometry us-

ing RDKit [17]. We then use NWChem through the QCEngine

Python interface [18] to compute the equilibrium geometry

for the neutral and oxidized molecule and then compute the

vibrational modes for each molecule. All computations are

performed at the B3LYP/3-21G level of accuracy and typically

require six node-hours per molecule on four nodes of the

Theta system at the Argonne Leadership Computing Facility,

as described in Section IV-B.

The ML assay uses an ensemble of message-passing neural

networks (MPNNs) [19] implemented in Tensorflow, each

trained using a different subset of the training data. We

employ an ensemble of models to produce both a mean and

an estimate of model uncertainty for each prediction. The

initial ensemble of 16 MPNN models were trained using 2563

oxidation potentials computed with the QC assay. We use this

additional dataset and any new data in subsequent retraining

tasks, which we limit to 15 minutes on a single node. To apply

the ML model, we first use RDKit to parse the SMILES string,

featurize the data in a form used by a Tensorflow ML model,

and then evaluate the MPNN ensemble. It requires 3 × 10−6

node-hours to evaluate a single molecule, which equates to

100 molecules per node-second.

III. OUR APPROACH

We formulated the decision problem abstractly as a se-

quential process, where planning and simulation tasks are

performed serially. However, in order to use highly parallel

computers to accelerate the exploration process, we want to

allow simultaneous execution both of multiple instances of

the same activity (for example, applying an assay to multiple

entities) and of different activities (e.g., running a simulation-

based assay, retraining an ML model with simulation results,

running an ML assay, deciding which entities to explore

next). Running multiple instances of the same activity at once

is important because, at least in the applications that we

consider here, no single action can scale efficiently to use

all of a large parallel computer. Running different activities

at the same time is important because different actions vary

greatly in their computational demands; thus, strict sequencing

would reduce parallel efficiency. However, achieving high

parallel efficiency is difficult in practice due to competing

needs for efficient execution (demanding high parallelism,

modest communication), resource management (dynamically

reallocating resources), and timeliness of information (making

Work

Result

Request

Result

Thinker Task Server Workers

Fig. 1: Illustration of the architecture of a Colmena appli-

cation. The Thinker communicates task requests to the Task

Server, which distributes computations across many Workers.

Communication between Thinker and Task Server occurs via

Redis; Task Server and Workers communicate via ZeroMQ

channels managed by Parsl.

results from one computation available rapidly to computations

deciding on next actions). We have implemented Colmena to

solve these challenges.

A. Colmena Architecture

Applications built using Colmena are formed of three types

of independent processes: a Thinker, a Task Server, and one

or more Workers (as shown in Figure 1).

The user-supplied Thinker implements the decision-making

policy used to generate new tasks, record assay results (D),

and update ML models (E). As described in Section II-A,

tasks can include performing a new assay on a specified entity,

updating a learned assay, and generating new entities. The

Thinker communicates task requests to the Task Server; the

results of those tasks, once available, are returned from the

Task Server to the Thinker. The Thinker makes decisions in

response to results being communicated or other events (e.g.,

availability of compute resources).

The Task Server matches each task request to the corre-

sponding task definition (e.g., assay definition) and dispatches

the resulting task to an appropriate Worker. The Task Server

itself holds the assay definitions (A), information about avail-

able computational resources, and details of which assays can

run on what resources. Task requests are received from the

Thinker and can be executed in any order.

Each Worker receives a sequence of tasks ({task input, task

definition} pairs) from the Task Server. It executes each task

that it receives and provides results back to the Task Server.

From a decision perspective, the challenge is to allow these

activities to run with maximum concurrency and performance.

B. Colmena Implementation

Our implementation of Colmena uses Redis [20] for

asynchronous communication between the Thinker and Task

Server, and the Parsl [21] parallel programming library to

manage execution of tasks on the Workers.

1) Thinker: The Thinker decides which tasks are run and

how to allocate resources among them. It communicates with

the Task Server by writing task requests to, or reading results

from, Redis queues. Requests and results are communicated

as JSON objects and contain the inputs to a task, the outputs

of the task, and a variety of profiling data (e.g., task runtime,

3

time inputs received by Task Server). We provide a Python

API for the message format, with utility operations such as

accessing the positional or keyword arguments for a task and

serializing inputs and results.

A Thinker is composed of multiple Agents, implemented

as threads. As we demonstrate in Section IV, separating the

decision process into multiple cooperative agents simplifies

expressing resource allocation and task selection strategies.

Each agent can communicate with the Task Server via Redis

and with other agents via Python’s threading library. Each

agent typically responds to a different kind of event (e.g.,

resources becoming available, completion of a certain type

of assay). For example, one agent might submits task requests

to the Task Server from a task queue as resources become

available, and a second respond to results arriving from the

Task Server by adding new tasks to the task queue.

The BaseThinker class in Colmena simplifies writing

Thinkers with multiple agents. Agent processes run as separate

Python threads that communicate with the Task Server via the

Redis queue and with each other via Python threading tools.

Agents are implemented as methods of a BaseThinker

subclass and then marked with the @agent decorator, as

illustrated in Listing 1. There are also special-purpose types

of agents, such as a “result processor,” that run after cer-

tain conditions are met, such as a result completing. The

BaseThinker class provides a function that launches all

of the decorated functions to run concurrently.

Colmena also provides a class for monitoring, controlling,

and allocating resources between different assays. The re-

source allocation object, ResourceTracker, stores a fixed

count of resources that are available to a Thinker class and how

they are assigned into different pools. Agent threads may query

the availability of resources in each pool, acquire or release

them, and change the levels of allocation between different

pools. The class uses Python’s Lock and Semaphore objects so

that resource requests can occur and be fulfilled concurrently.

2) Task Server: The Task Server is a stateful entity that

performs high-throughput task processing. It receives task re-

quests from an inputs queue and posts results asynchronously

to an outputs queue when a task is complete. The Task Server

requires a robust and performant backend for managing the

execution of a diverse set of potential assays—from short-

running, single-core inference tasks to long-running, multi-

node MPI simulations. Further, the Task Server should provide

an intuitive way to represent diverse assays, transparently

serialize and transfer inputs/outputs to/from Workers, dynami-

cally provision resources in heterogeneous environments (e.g.,

clusters and clouds, CPUs and GPUs), scale and make efficient

use of large-scale systems, elastically adapt resource config-

urations in response to workload, and provide fault tolerance

to reliably execute assays with performance monitoring, error

capture, and checkpoint/retry.

While there are several potential parallel and distributed

computing toolkits and workflow systems (e.g., funcX [22],

Ray [23], Swift/T [8]) that could be used for this pur-

pose, we implement the Task Server using Parsl [21]. Parsl

1 from colmena import thinker

2

3 PARALLEL_TASKS = 3

4 TOTAL_TASKS = 10

5

6 class Thinker(thinker.BaseThinker):

7 def __init__(self, queues):

8 super().__init__(queues)

9 self.next_task = None

10 self.results = []

11

12 @thinker.agent

13 def planner(self):

14 # Submit initial tasks

15 for _ in range(PARALLEL_TASKS):

16 self.queues.send_task(random(),

17 task=’simulate’)

18 # Until enough work is done

19 while len(self.results) < TOTAL_TASKS:

20 # Get ideas from the old results

21 good_idea = f(self.results)

22

23 # Update the next task

24 self.next_task = good_idea

25

26 @thinker.result_processor

27 def consumer(self, result):

28 # Store the result in the database

29 self.results.append((result.args,

30 result.value))

31 # Submit the next task in queue

32 self.queues.send_task(self.next_task,

33 task=’simulate’)

34

35 thinker = Thinker(queues)

36 thinker.run()

Listing 1: An example Thinker that implements the simple

policy, “run 10 tasks in total, three at a time, generating

a new task based on previous results as each task com-

pletes.” Its implementation comprises two agents, planner

and consumer. The planner first sends three initial task

requests to the Task Server, and then continually computes

the best-possible next task to perform, given the current

state. The second consumer, invoked whenever a task

completes, stores the result and submits the next task. The

decorator @agent causes the planner to be launched as

a thread when thinker.run() is called; the decorator

@results_processor indicates that consumer should

be run, also as a thread, each time that a task completes.

is a parallel programming library for Python that extends

Python’s native concurrent.futures interface to enable

high-performance, distributed computation and dataflow-based

workflows. Parsl provides the runtime infrastructure to execute

Python tasks asynchronously on various compute resources.

It is able to serialize Python functions and input arguments,

transfer those functions and arguments to a remote system,

execute the function in the configured Worker environment,

and retrieve results and errors. Parsl’s modular design and

4

standard interfaces enable workloads to be executed using

various executors, such as via pilot jobs or a distributed MPI

job, and by interacting with various job schedulers and cloud

APIs, such as Slurm, PBS, and Amazon Web Services (AWS).

The ability for Parsl to interface with job schedulers and cloud

APIs, in particular, opens the possibility for writing application

adjust the amount of resources devoted to a problem during

the course of an application (e.g., reducing the simulation

resources while ML models are retraining).

Users create a Task Server by providing a list of tasks

and specifying, using Parsl’s Python-based notation, the target

computational resources. The tasks are defined as Python func-

tions, which we wrap using Parsl’s PythonApp to allow the

functions to be executed remotely. Each assay can be mapped

to different computational resources, making it possible to run

assays on different resources (e.g., specialized hardware) or

use different types of Workers (e.g., single-node vs multi-node)

on the same resource.

3) Communication: The Thinker and Task Server commu-

nicate via Redis queues, with distinct request/result queue

pairs for different task types (e.g., different assays, ML train-

ing). The Thinker writes requests to the appropriate request

queue, to be received by the Task Server; when task execution

completes, the Task Server writes the result to the corre-

sponding result queue, from which it is read by the Thinker.

This use of different queues for different task types simplifies

implementation of Thinkers with multiple sub-agents.

Upon receiving a task request, the Task Server creates and

launches a corresponding Parsl task. Parsl uses a hierarchical

communication model, with ZeroMQ channels to efficiently

distribute tasks to its Workers. As the Task Server receives

results from Workers over these channels, it posts each to the

appropriate result queue.

For tasks with large input or result values, Colmena uses a

Value Server to pass values directly from the Thinker to the

Worker—bypassing the Task Server. The Value Server uses

Redis as the backend key-value store and exposes a lazy object

proxy interface. Lazy object proxies simplify interaction with

the Value Server because (1) the proxies behave as the wrapped

object so users do not need to modify code to accommodate

the proxies, (2) the proxies automatically handle retrieving

data from the value store once the data are first needed, and

(3) the lazy aspect of the proxies can amortize communication

costs with the Value Server.

Any arbitrary object v can be wrapped in a proxy. The

process of wrapping v involves placing v into the Value Server

and returning a proxy p that stores the key associated with v

in the Value Server and some additional metadata. Proxies

behave like the underlying object, e.g., isinstance(p,

type(v))==True. The proxy p is lazy in that it acts as

a reference to v until p is accessed. Thus, p is cheap (in terms

of serialization and communication costs) to include as a task

input in the {task input, task definition} pair. When first used,

p is resolved, meaning v is retrieved from the Value Server

and stored inside p such that p can be used as v would be.

Colmena can automatically proxy input and result values

larger than a user-defined threshold, and/or users can manually

proxy large objects. The Value Server has a Worker-level

cache to speed up tasks that reuse the same inputs (e.g., the

model for ML inference tasks). Proxies can be asynchronously

resolved, allowing for the overlap of Value Server access

and computation. Colmena starts asynchronously resolving all

proxies in a task’s input prior to the task being executed on

a Worker. Thus, the communication with the Value Server is

overlapped with the task’s execution. The start of a task often

involves some initialization or importing of libraries, such that

by the time a value is needed by the task, the corresponding

proxy has already been resolved in the background.

IV. APPLICATION EXPERIMENTS

We conducted experiments to evaluate the performance of

our molecular design application and then further studied

the performance of components that were bottlenecks in the

molecular design application.

A. Application Description

As introduced in Section II-B, our example application

involves an ML-guided search of 105 molecules for those that

match one of our design criteria for molecular electrolytes,

namely high ionization potential (IP). At a high level, our

application is an adaption of Bayesian Optimization to HPC.

We determine a score of each task using the Upper Confidence

Bound (UCB), a value based on the mean and confidence

interval of the predictions from an ensemble of MPNNs trained

to predict the IP from the bonding network of a molecule.

UCB defines the highest scoring molecules as those with large

means and large confidence intervals [24], which are those

likely to both have high performance and provide data that will

improve the models (i.e., because they are in regions where

the model is least certain). Molecules are evaluated in order of

descending scores. The data from completed simulations are

used to update the MPNNs and, through the updated models,

produce better estimates of molecular properties. Many sim-

ulations are performed in parallel as NWChem scales poorly

for the small molecule sizes considered in this study.

More formally, the application uses two assays: a more

expensive and accurate QC assay and an inexpensive but less

accurate ML assay trained on QC results. As we are using a

pre-defined search space of molecules, no generator is needed

to expand the set of molecules considered progressively during

execution. Instead, the application’s Thinker maintains two

data structures—a molecule queue of {molecule, ML-score}
pairs, ordered by ML-score, and a results record of {molecule,

QC-score} pairs—that are manipulated by the following three

pairs of agents (see Figure 2):

• The Trainer periodically sends to the Task Server a

retrain task to retrain the ML model based on data

in the results record; the companion Updater, upon

receiving results for such a task, updates the weights of

the ML model.

• The ML-Scorer, whenever the ML assay is updated,

sends ML-assay tasks to the Task Server to re-score

5

Molecule Queue

Record

Simulation (NWChem)

QC-Recorder UpdaterTrainer

Allocator

ML-RecorderQC-Scorer

Training (TensorFlow) Inference (TensorFlow)

Model LibraryThinker

Task

Server

ML-Scorer

Fig. 2: Implementation of molecular design application with Colmena. Agents within the Thinker application are gray boxes,

and the three different available tasks are listed as white boxes. Blue arrows indicate communication between Thinker and

Task Server; orange arrows illustrate how information flows between agents. Different colored traffic lights indicate resource

pools used for different task types. The Allocator agent reallocates resources between different pools.

every entity in the molecule list; the companion ML-

Recorder, upon receiving results of these tasks, com-

putes the Upper Confidence Bound (UCB) for each and

reorders the molecule list with the new information.

• The QC-Scorer repeatedly removes a molecule from the

front of the molecule list and sends a QC-assay task to

the Task Server to determine its QC score; the companion

QC-Recorder, upon receiving results for these tasks,

stores them in the results list if they pass validation.

The application’s precise behavior thus depends (in ad-

dition to the total number of available resources) on the

allocation of available resources to retrain, ML-assay,

and QC-assay tasks: increasing the fraction allocated to

QC-assay tasks leads to relatively more QC assays be-

ing performed, while increasing the fraction allocated to

retrain and QC-assay tasks increases the timeliness of

the ML-based scores, and thus in principle leads to more

relevant QC assays being performed.

The strategy for controlling the resource allocations is im-

plemented as an Allocator agent. The application’s Allocator

balances competing demands for resources with a policy that,

after an initial set of ML assay results are obtained with

a pretrained ML model, (a) retrains the ML model each

time that the results record increases in size by an amount

n retrain, (b) reruns the ML assay on all entries in the

molecule list whenever the ML model is updated, and (c)

reallocates resources between retrain, ML-assay, and

QC-assay tasks as needed to ensure that retrain and

ML-assay tasks are run as fast as possible when generated,

with resources otherwise being used for QC-assay tasks. Re-

source reallocations are performed by controlling the amount

of requests sent to the Task Server, which generates requests to

the Parsl backend to stop or start Workers. Resources allocated

to different purposes thus change in increments of the largest

number of nodes needed for a single task, which in this case

is four nodes for the QC-assay task.

In addition to the molecule list and results record already

mentioned, these processes also share a resource counter (used

to track resource availability) and a library of ML models.

B. Experimental Setup

We used the Theta supercomputer at the Argonne Leader-

ship Computing Facility (ALCF) [25], a 11.69-petaflop system

based on the second-generation Intel Xeon Phi “Knights

Landing” (KNL) processor. Its 4392 nodes each have a 64-

core processor with 16 GB MCDRAM and 192 GB of DDR4

RAM, for a total of 281 088 cores; nodes are interconnected

with a high speed Cray Aries network. The application was

configured so that the Thinker process ran on the machine-

oriented miniserver (MOM) node, each NWChem task was

allocated four nodes, and each Tensorflow task ran on one node

each. Tensorflow inference tasks were grouped into batches of

4096 for efficient multithreaded execution on each node.

C. Application Evaluation

We evaluate the performance of our molecular design ap-

plication from the two perspectives of computational perfor-

mance (specifically, computational efficiency) and the quality

of the results obtained.

1) Performance Evaluation: We evaluate the performance

of the application by measuring the fraction of the time

worker processes spend performing the computational tasks

requested by the thinker (e.g., simulation, ML inference) and

not communicating work to/from the Task Server.

As shown in Figure 3, we maintain near 100% utilization

for most of a 1024-node run of our application. We note two

major sources of under-utilization. The first is the start-up time

for inference Workers, which is a median of 3 minutes. The

startup cost can be reduced by unpacking Python libraries to

node-local memory before launching Parsl Workers [26]. The

second source of under-utilization is simulation tasks that do

not complete within the timescale of the job, which leads to the

associated resources being counted as unutilized even though

the calculations are running (as verified via Parsl logs). This

source of under-utilization can be mitigated by periodically

checkpointing simulation tasks or by splitting simulation tasks

into smaller steps, such as computing the neutral geometry

first and then computing the ionization potential. The latter

approach has the advantage that the Thinker can use interme-

6

0 1 2 3 4 5 6
Time (h)

0

200

400

600

800

1000
No

de
s A

llo
ca

te
d/

Us
ed

inference
training

simulation

Fig. 3: Allocation and utilization of compute resources during

a run of the molecular design application on 1024 Theta nodes.

Light shades indicate the nodes that are allocated to a problem;

dark shades are nodes that are both allocated and are being

used to execute assays. Different colors indicate different types

of tasks. The large decrease in utilization at later times is a

result of trailing tasks [27].

diate results to decide whether to continue a computation (e.g.,

if it is likely to complete before the end of an allocation).

The overheads due to communication are minimal for

QC-Assay tasks. The median cost for launching a new

simulation is 1015 ms: 620 ms for the result to be received

by the Thinker, 35 ms for submitting the new task to the Task

Server, and 360 ms for the task to be launched on a Worker.

The cost here is minimal (0.03%) compared to the median

simulation runtime of 3275 s. We note that there is a significant

variation between the largest cost, result communication, with

that of failed tasks often 10× shorter than successful tasks. The

difference can be attributed to the amount of data transferred,

with failed tasks typically sending 0.5 KB and successful tasks

communicating a median of 4.3 MB.

The communication cost of the ML-Assay tasks is partly

hidden by prefetching tasks to Workers, but we note two issues

that lower utilization and could inhibit further scaling. One is

the startup time for the Workers used for ML assays. We find

that it takes a median of 175 s for a Worker to begin work

after being sent its first task from the Task Server, due to the

startup time noted earlier. The second startup cost is the time

it takes to compile a TensorFlow model before execution. The

first task run by a Worker requires a median of 100 s, and

the second task requires only a median of 80 s. We observe

similar startup issues for the training tasks.

A second issue for inference is the time required to com-

municate results from a Worker to the Task Server. The

communication time for an inference task request is 500 ms

(0.6% of the median execution time), which can be hidden by

prefetching work to the Workers. While this cost has not been

a problem in the simulations run to date, it may become so at

larger scales or problems. As with the QC-Assay tasks, we

associate the long communication times with transferring large

data objects. The training tasks require 30 s to communicate

the > 50 MB updated ML model, a small (3%) fraction of the

median run time of 850 s.

In summary, we find the Colmena Task Server fulfills the

performance requirements required for our application. We can

change the allocation between node-parallel and single-node

tasks during the run, with the latency dominated by the time to

start a Python interpreter (∼100 s) for single-node tasks. The

latency for launching new tasks after a simulation completes

is low (<1s), though we note this latency can increase to

several seconds for tasks with large inputs (e.g., entire deep

learning models). Overall, the system was able to maintain a

total utilization of 85% during the run with the largest source

of underutilization resulting from the trailing tasks.

2) Molecular Design Performance: We assess the perfor-

mance of the application at solving our target problem by

studying the scores of the molecules in the record over a run.

We perform several runs using 256 nodes where we either

retrain the ML assay on-demand during the run (as in Figure 3)

or only once at the beginning of the run. For context, we also

compare both versions of the application to a run where we

select tasks randomly.

Figure 4 shows QC results as a function of time for

Thinkers with different policies. The two Thinkers that use ML

models to select molecules for QC simulation perform much

better than the one that selects molecules at random, finding

over 100× more high-performing molecules with ionization

potentials above 10 V. Normalizing by the total number of

molecules evaluated during the run, the random agent finds

a high-performance molecule with a success rate of 0.5%,

whereas the success rates are 78% and 64% for the runs with

and without retraining tasks. In short, we find a significant

advantage in using ML assays to prioritize the order in which

we consider a molecular design space and also an advantage

to reprioritizing the list of simulations during a run. The

application where we respond to new simulation results finds

10% more molecules with large ionization potentials even

though it spends 5% less time on simulations.

The benefits of active learning are clearest at the end of the

run, where the application uses data from the largest number

of previous simulations to select new inputs. In the last hour

of each run, the average ionization potential of the application

with retraining was significantly higher than the run without

(10.5 V vs. 9.8 V), clearly illustrating that retraining leads

to an improved ability to identify high-value simulations.

The effect can potentially be traced to improvements in the

machine learning models. The initial models have a mean

absolute error (MAE) of 0.395 V on 185 molecules selected

at random of the search space and the MAE of the models

is reduced to 0.389 V by the second re-training event and

0.382 V by the last batch of the run. The performance gains

are subtle but the increased search performance illustrates how

even minor improvements in a model can lead to an improved

ability to select new molecules. The challenge then becomes

being able to perform model updates quickly.

Our application provides reasonable response times between

when a simulation completes and its data are used to select

the next simulations. The time-to-solution for retraining is an

7

0 1 2 3 4 5 6
Time (h)

0

50

100

150

200
N(

IP
 >

 1
0.

0
V)

no-retrain
random
update-8

Fig. 4: The number of high-performing molecules (i.e., with

ionization potential greater than 10 V) evaluated over time by

the Colmena molecular design application when using three

different Thinker strategies: random, which selects molecules

for QC simulations at random; no-retrain, which selects

molecules for QC simulations based on an ML model that

is trained once; and update-8, which selects molecules based

on an ML model that is retrained after 8 QC simulations

complete successfully. Vertical dashed lines indicate the times

at which the molecule list was reordered after model rerunning

ML-Assay tasks.

average of 57 minutes between when a simulation completes

and the task list is updated based on its results, in which time

an average of 63 new simulations are submitted—15% of the

537 submitted during the entire run. Such results demonstrate

the need to dedicate specific resources to the ML tasks to

keep up with the rate data can be produced by the simulation

codes. Dedicating fewer nodes to the retraining or inference

task would slow how quickly the application responds to new

data, to the detriment of the active learning process.

D. Component Evaluation

As discussed in Section IV-C1, we observed that trans-

ferring large requests or result objects is a major source of

communication costs, and the ML-Assay tasks are the most

susceptible to the effect of this bottleneck. Consequently, we

first evaluate a system that optimizes large (> 10 MB) result

transfers and then evaluate its effect on ML-Assay tasks.

This is the done through inclusion of the Value Server, which

reduces the requirement of serialization and deserialization of

task data. We discuss the performance improvement through

the inclusion of a Value Server using a synthetic problem. We

then discuss the improvement that can be achieved in real-

world production runs for the electrolyte design problem.

1) Synthetic Application: We built a synthetic application,

SynApp, to permit the systematic evaluation of Colmena com-

munication overheads. This application uses a Thinker plus N

workers, one per node; the Thinker generates T identical tasks,

each with duration D, unique (and thus non-cacheable) input

of size I , and producing a result of size O. This Thinker first

submits one task per worker and then continues to submit a

new task each time that it receives a result, until T tasks have

been submitted. We use this application to measure costs for

different {T , D, I , O, N} combinations.

To evaluate the impact of the Value Server, we first run

SynApp for 200 zero-length tasks with 1 MB inputs on eight

nodes (i.e., {T=200, D=0, I=1 MB, O=0, N=8}), both with

and without the Value Server, while measuring task overheads.

We see in Figure 5 that the use of the Value Server reduces,

in particular, task communication times between the Thinker

client and Task Server, and serialization times. The cost of

transferring input data from the Value Server to the Worker is

reduced by the use of the asynchronous data retrieval explained

in Section III-B3. (Note that if input values were all identical,

this cost would be largely eliminated due to caching.)

To further study how the benefit of the Value Server varies

with input size I , we repeat the experiments of Figure 5 but

while varying I from 1 KB to 10 MB. The results, shown

in Figure 5 as percentage improvement in communication

overhead time with Value Server relative to the time without

Value Server, show that for small inputs (<10 KB), the

additional cost of communicating with the Value Server is

larger than the cost of passing the input data through the Task

Server—but that as the input size increases, the cost of passing

input data through the Task Server increases rapidly and the

Value Server yields large improvements.

2) Scaling ML Assays: As discussed in Section IV-D1,

there is a clear benefit to using the Value Server for tasks

with large inputs or large results. We now study a particular

sub-problem within the electrolyte design application: running

machine learning inference tasks. The input task size was

varied by changing the total number of molecules evaluated as

a function of the number of nodes allocated for ML inference.

The resulting evaluation rate, in molecules per second, is

presented in Figure 6.

As noted in Section IV-C1, individual ML inference tasks

do not take long to run. Nevertheless, the Value Server can

deliver significant benefits even in this case when inference

results must be transferred from many nodes. In Figure 6, we

examine the mean time taken to transfer results from Worker

to Thinker, with and without the Value Server. We see that,

without the Value Server, it takes up to 100 s to transfer

ML inference results from more than 100 nodes. With the

Value Server, however, the mean transfer time as a function

of increasing node count remains constant.

We observe significant improvements in the evaluation rate

at 1024 nodes with the Value Server. The time to communicate

results from a completed job remains ∼100 ms at 1024 nodes

when using the Value Server, in contrast to the ∼100 s transfer

time without (Figure 6), indicating that the workflow engine

in the Task Server is not getting overloaded. Consequently, we

maintain ideal scaling up to at least 1024 nodes and reasonable

performance at 2048 nodes.

V. RELATED WORK

Colmena requires methods for creating tasks and for moni-

toring and managing their execution. It needs to support a wide

range of types and scales, from multi-hour, many-node QC

8

Fig. 5: (top) Median per-task durations for components in the

Colmena task life cycle on Theta, with and without the Value

Server, as measured for SynApp with eight workers, zero-

length tasks, 1 MB inputs, and 0 B outputs. Use of the Value

Server reduces time spent serializing, communicating, and

deserializing task data. (bottom) Percent reduction in SynApp

overheads for configuration {T=200, D=0, I , O=0, N=8} on

Theta, with vs. without the Value Server, as a function of input

size I . The Value Server provides performance benefits when

task inputs are larger than around 0.1 MB.

tasks to minute-duration, single-node ML tasks. Accordingly,

our work with Colmena builds upon much previous work.

General Steering Frameworks. Nimrod/O [7] is an early

example of a system for automated (rather than manual [28])

steering of simulation ensembles. Several general-purpose

toolkits for automated steering of ensembles have been pro-

posed in recent years, each with different models for coupling

steering and simulation. Here, we describe their key features

and how they inspired our development of Colmena.

The DeepHyper [12] hyperparameter optimization system

uses a centralized planning process to select tasks and dis-

tributes a single type of assay across multiple nodes using

a workflow engine. The planning process submits tasks to

the workflow engine (DeepHyper supports Balsam [29] and

Ray [23]) and queries the engine for completed results. Su-

pervisor [3] has a similar centralized architecture to Deep-

Hyper, with a single node for communicating with the high-

performance Swift/T [8] workflow engine via a queue. Prox-

ima [30] uses ML methods to dynamically tune a surrogate-

modeling configuration in response to real-time feedback from

the ongoing simulation, but does not optimize for use of HPC.

Colmena uses a similar centralized model for task planning;

Fig. 6: (top) ML inference task performance (molecule evalu-

ations per second) on Theta vs. number of nodes (one worker

per node). The inference rate is measured starting from the

time the first worker begins computation (i.e., after loading

libraries) to when all inference tasks have completed. (bottom)

Time to transfer inference results from Workers to the Thinker.

Without the Value Server, results may take up to 100 s to be

sent back to the Thinker, while with the Value Server, the

communication time remains more consistent.

is designed, like DeepHyper, to support multiple workflow

engines; and provides easier support for multiple task types.

LibEnsemble [10] expresses ensembles using a model where

tasks produced by task generation (akin to steering) workers

are executed by simulation workers, and simulation results

are fed back to inform the generation tasks. The steering

policy can be either centralized (single task generator) or

decentralized (multiple task generators). A manager service

deploys the task generation and simulation workers onto

multiple nodes and routes data across workers. Colmena shares

LibEnsemble’s ability to dedicate more than one node to

steering-related tasks and provides the ability to break policies

into an unlimited number of worker types.

Ray [23] uses a similar distributed model to LibEnsemble

but permits ensembles to use many types of interacting agents

(beyond generator and simulator) with complex coordination

policies. Colmena has a similar agent-oriented programming

model but centralizes all agents to a single node so that they

can communicate with shared memory.

Rocketsled [9] expresses the steering task as a step within

a Fireworks [31] workflow that can add new nodes to the

workflow graph. Colmena uses a different programming model

where planning tasks need not be triggered by workflow

events and was designed to separate planning logic from the

task execution engine. Cray SmartSim [32] allows multiple

planning scripts to independently launch jobs on a cluster and

9

coordinate among each other using Redis. The Colmena and

SmartSim programming models are similar, in that multiple

planning scripts can submit and receive work concurrently,

and possible tasks can be enumerated as a list of assays.

Colmena has utilities that simplify building planning strategies

for ensemble steering (e.g., pulling from result queues, event-

triggered resource reallocation), whereas SmartSim is capable

of building other types of AI+simulation applications (e.g.,

online analysis, inference from simulation codes).

In short, the Colmena toolkit is purpose-built for express-

ing the complex policies needed to make efficient use of

highly parallel supercomputers for computational campaigns.

We designed Colmena to provide many of the features of

current frameworks for steering computational campaigns,

including the centralized programming model of codes such as

DeepHyper or Supervisor, the ability to deploy planning tasks

across multiple nodes illustrated by libEnsemble, and simple

routes to building planning policies as cooperative agents in

the style of Ray and SmartSim. Colmena presents a single

package able to recreate the parallelization strategies of all

current steering frameworks and provides the flexibility needed

to explore even more sophisticated approaches.

Active Learning on HPC. Active learning methods obtain

new training data via online querying of an information source,

including (as here) computational simulations. The approaches

just reviewed may be viewed as active learning methods.

Reinforcement Learning on HPC. Algorithms for training

reinforcement learning models have much in common with

those for steering ensemble simulations. Reinforcement learn-

ing agents gather data by using a policy to guide the evolu-

tion of different environments (e.g., simulations for physical

systems) and periodically retrain this policy to better steer the

environments towards desirable states. Computations that sim-

ulate environments, make policy decisions, and retrain policies

can all occur asynchronously across distributed resources,

akin to Colmena’s Thinker/Task Server model for ensemble

simulations. Consequently, the design of steering algorithms is

related to approaches for distributed training of reinforcement

learning (e.g., IMPALA [33]) and to toolkits for deploying

reinforcement learning at scale (e.g., RLLib [34], ExaRL [35]).

Such algorithms for training reinforcement learning policies

are a class of approaches that can be expressed with Colmena.

Specialized Steering Frameworks. Specialized applica-

tions that dynamically create or reorder tasks are also

prevalent in the literature. Various domain-specific tools

(e.g., XtalOpt [36], Kombine [37], DeepDriveMD [13],

CAMD [11]) engage different patterns for generating tasks

in solving different classes of problems (e.g., optimization,

parameter estimation). Tools that perform hyperparameter

searches for neural network design, such as DeepHyper [12]

and Tune [38], illustrate how to handle ML tasks at scale. Col-

mena adapts concepts from these tools; each of the algorithms

in these tools can be implemented using Colmena.

Workflow Systems. Colmena also relies heavily on work-

flow systems to distribute computations across many nodes.

Applicable workflow systems include Ray [23], Balsam [29],

RADICAL Cyber Toolkit [39], Parsl [21], Fireworks [31], and

many others [40]. Such systems provide unique approaches

to specifying tasks and runtime systems for executing them

across distributed resources. Colmena is designed to make use

of workflow tools and not to make any new contributions in

the design of workflow systems.

Process Management Systems. Methods for deploying

many concurrent, short-duration tasks is another area of ac-

tive research. The challenges are well explained in a recent

work that studied many-task performance on Summit [41].

The Process Management Interface (PMIx) [42] defines an

API for such capabilities that is available on some super-

computers (e.g., Summit). There are also efforts, such as

MPI Comm launch [43], to incorporate process management

methods into the Message Passing Interface. Systems for

launching, monitoring, and managing large numbers of tasks

on HPC are going to be critical as we scale Colmena to larger

computational resources.

VI. CONCLUSIONS

We introduced Colmena, an open-source Python library for

machine-learning-based steering of ensemble computations on

HPC systems. We first formalized the steering process as a

design problem where one must decide which computations

to perform on what inputs to produce a record of simulations

with maximal value at minimal cost. We then described how

Colmena facilitates building such steering applications by

permitting the construction and composition of a Thinker

that implements the decision making processes used to de-

fine computational tasks and a Task Server that distributes

execution across HPC resources. We illustrated the use of

the Colmena library with a molecular design application that

finds molecules with high resistance to oxidation at rates

100× faster than naive searches by interleaving simulation and

ML tasks. We demonstrated effective scaling on up to 1024

nodes (65 536 cores) and illustrate how to improve the scaling

of the application further by using a separate subsystem for

transferring large result objects.

We intend that Colmena provides a toolkit for explor-

ing methods for steering ensemble simulations. The flexible,

multi-threaded Thinker class permits implementing varied,

complex policies for interleaving different types of compu-

tation. Our primary goal for creating Colmena is to support

the expression of steering policies that use ML to augment

human intelligence in designing and managing computational

campaigns. Interfaced with a Task Server built using Parsl,

users can execute these policies at large scales and across

heterogeneous computing resources. As we learn more, we

will build templates for common classes of decision problems

(e.g., model-based optimization, reinforcement learning) that

allow users to quickly deploy state-of-the-art steering policies.

Through this work, we hope to enable computational cam-

paigns that take fuller advantage of current and next-generation

supercomputers.

10

DATA AND SOFTWARE AVAILABILITY

The source code used in the this manuscript, logging

information for each of the runs described in the paper, and

Jupyter notebooks used to analyze logs and produce figures

are all published via the Materials Data Facility.[44], [45]

The source code and Jupyter notebooks associated with this

manuscript is also available on GitHub at https://github.com/

exalearn/electrolyte-design/, which will be updated as our

work proceeds.

ACKNOLWEDGEMENTS

LW, GS, GP, RC, RT, and IF acknowledge support by the

ExaLearn Co-design Center of Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. Department

of Energy Office of Science and the National Nuclear Security

Administration, to develop Colmena and evaluate its perfor-

mance on HPC. YB and KC were supported to integrate Parsl

support into Colmena by NSF Grant 1550588 and ExaWorks

Project within the Exascale Computing Project. GP and KC

were supported to develop the value server by NSF Grant

2004894. LW, ND, PCR, RSA, and LAC were supported

to define the electrolyte design problem and develop the

computational workflows need to solve it by the Joint Center

for Energy Storage Research (JCESR), an Energy Innovation

Hub funded by the US Department of Energy, Office of

Science, Basic Energy Sciences. This research used resources

of the Argonne Leadership Computing Facility (ALCF), which

is a DOE Office of Science User Facility supported under

Contract DE-AC02-06CH11357, and was supported by the

ALCF Data Science Program.

REFERENCES

[1] Q. Wu, B. He, T. Song, J. Gao, and S. Shi, “Cluster expansion method
and its application in computational materials science,” Computational

Materials Science, vol. 125, pp. 243–254, Dec. 2016. [Online].
Available: https://doi.org/10.1016/j.commatsci.2016.08.034

[2] D. M. Probst, M. Raju, P. K. Senecal, J. Kodavasal, P. Pal, S. Som,
A. A. Moiz, and Y. Pei, “Evaluating optimization strategies for engine
simulations using machine learning emulators,” Journal of Engineering

for Gas Turbines and Power, vol. 141, no. 9, Jun. 2019. [Online].
Available: https://doi.org/10.1115/1.4043964

[3] J. M. Wozniak, R. Jain, P. Balaprakash, J. Ozik, N. T. Collier,
J. Bauer, F. Xia, T. Brettin, R. Stevens, J. Mohd-Yusof, C. G. Cardona,
B. V. Essen, and M. Baughman, “CANDLE/Supervisor: A workflow
framework for machine learning applied to cancer research,” BMC

Bioinformatics, vol. 19, no. S18, Dec. 2018. [Online]. Available:
https://doi.org/10.1186/s12859-018-2508-4

[4] S. Jiang, G. Malkomes, M. Abbott, B. Moseley, and R. Garnett,
“Efficient nonmyopic batch active search,” in Advances in Neural

Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran
Associates, Inc., 2018. [Online]. Available: https://proceedings.neurips.
cc/paper/2018/file/a7aeed74714116f3b292a982238f83d2-Paper.pdf

[5] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Poczos,
“Parallelised Bayesian optimisation via Thompson sampling,” in 21st

International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, A. Storkey and F. Perez-
Cruz, Eds., vol. 84. PMLR, 09–11 Apr 2018, pp. 133–142. [Online].
Available: http://proceedings.mlr.press/v84/kandasamy18a.html

[6] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of multifidelity
methods in uncertainty propagation, inference, and optimization,” SIAM

Review, vol. 60, no. 3, pp. 550–591, 2018.

[7] D. Abramson, A. Lewis, and T. Peachey, “Nimrod/O: A tool for
automatic design optimisation using parallel and distributed systems,” in
Algorithms And Architectures For Parallel Processing. World Scientific,
2000, pp. 497–508.

[8] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T.
Foster, “Swift/T: Large-scale application composition via distributed-
memory dataflow processing,” in 13th IEEE/ACM International Sympo-

sium on Cluster, Cloud, and Grid Computing, 2013, pp. 95–102.

[9] A. Dunn, J. Brenneck, and A. Jain, “Rocketsled: A software library
for optimizing high-throughput computational searches,” Journal of

Physics: Materials, vol. 2, no. 3, p. 034002, Apr. 2019. [Online].
Available: https://doi.org/10.1088/2515-7639/ab0c3d

[10] S. Hudson, J. Larson, S. M. Wild, D. Bindel, and J.-L. Navarro,
“libEnsemble users manual,” Argonne National Laboratory, Tech.
Rep. Revision 0.7.1, 2020. [Online]. Available: https://buildmedia.
readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf

[11] J. H. Montoya, K. T. Winther, R. A. Flores, T. Bligaard, J. S.
Hummelshøj, and M. Aykol, “Autonomous intelligent agents for
accelerated materials discovery,” Chemical Science, vol. 11, no. 32,
pp. 8517–8532, 2020. [Online]. Available: https://doi.org/10.1039/
d0sc01101k

[12] P. Balaprakash, M. Salim, T. D. Uram, V. Vishwanath, and
S. M. Wild, “DeepHyper: Asynchronous hyperparameter search for
deep neural networks,” in 25th International Conference on High

Performance Computing. IEEE, Dec. 2018. [Online]. Available:
https://doi.org/10.1109/hipc.2018.00014

[13] H. Lee, M. Turilli, S. Jha, D. Bhowmik, H. Ma, and A. Ramanathan,
“DeepDriveMD: Deep-learning driven adaptive molecular simulations
for protein folding,” in IEEE/ACM Third Workshop on Deep Learning

on Supercomputers (DLS). IEEE, Nov. 2019. [Online]. Available:
https://doi.org/10.1109/dls49591.2019.00007

[14] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld,
“Quantum chemistry structures and properties of 134 kilo molecules,”
Scientific Data, vol. 1, no. 1, pp. 1–7, 2014.

[15] “QM9 dataset,” accessed August 30, 2021. [Online]. Available:
http://quantum-machine.org/datasets/

[16] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus et al.,
“NWChem: A comprehensive and scalable open-source solution for
large scale molecular simulations,” Computer Physics Communications,
vol. 181, no. 9, pp. 1477–1489, 2010.

[17] G. Landrum, “RDKit: Open-source cheminformatics,” https://www.rdkit.
org. Visited May 1, 2021.

[18] D. G. A. Smith, D. Altarawy, L. A. Burns, M. Welborn, L. N.
Naden, L. Ward, S. Ellis, B. P. Pritchard, and T. D. Crawford, “The
MolSSI QCArchive project: An open-source platform to compute,
organize, and share quantum chemistry data,” WIREs Computational

Molecular Science, vol. 11, no. 2, Jul. 2020. [Online]. Available:
https://doi.org/10.1002/wcms.1491

[19] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International

Conference on Machine Learning. PMLR, 2017, pp. 1263–1272.

[20] “Redis,” accessed April 9, 2021. [Online]. Available: https://redis.io/

[21] Y. Babuji, A. Woodard, Z. Li, B. Clifford, R. Kumar, L. Lacinski,
R. Chard, J. Wozniak, I. Foster, M. Wilde, D. Katz, and K. Chard,
“Parsl: Pervasive parallel programming in Python,” in ACM International

Symposium on High-Performance Parallel and Distributed Computing,
2019.

[22] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcX: A federated function serving fabric
for science,” in 29th International Symposium on High-Performance

Parallel and Distributed Computing. ACM, Jun. 2020. [Online].
Available: https://doi.org/10.1145/3369583.3392683

[23] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging AI applications,” in 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 561–
577. [Online]. Available: https://www.usenix.org/conference/osdi18/
presentation/moritz

[24] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–22,
Mar. 1985. [Online]. Available: https://doi.org/10.1016/0196-8858(85)
90002-8

11

https://github.com/exalearn/electrolyte-design/
https://github.com/exalearn/electrolyte-design/
https://doi.org/10.1016/j.commatsci.2016.08.034
https://doi.org/10.1115/1.4043964
https://doi.org/10.1186/s12859-018-2508-4
https://proceedings.neurips.cc/paper/2018/file/a7aeed74714116f3b292a982238f83d2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a7aeed74714116f3b292a982238f83d2-Paper.pdf
http://proceedings.mlr.press/v84/kandasamy18a.html
https://doi.org/10.1088/2515-7639/ab0c3d
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://doi.org/10.1039/d0sc01101k
https://doi.org/10.1039/d0sc01101k
https://doi.org/10.1109/hipc.2018.00014
https://doi.org/10.1109/dls49591.2019.00007
http://quantum-machine.org/datasets/
https://www.rdkit.org
https://www.rdkit.org
https://doi.org/10.1002/wcms.1491
https://redis.io/
https://doi.org/10.1145/3369583.3392683
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1016/0196-8858(85)90002-8

[25] K. Harms, T. Leggett, B. Allen, S. Coghlan, M. Fahey, C. Holohan,
G. McPheeters, and P. Rich, “Theta: Rapid installation and acceptance
of an XC40 KNL system,” Concurrency and Computation: Practice and

Experience, vol. 30, no. 1, p. e4336, 2018.

[26] T. Shaffer, Z. Li, B. Tovar, Y. Babuji, T. Dasso, Z. Surma, K. Chard,
I. Foster, and D. Thain, “Lightweight function monitors for fine-grained
management in large scale Python applications,” in IEEE International

Parallel and Distributed Processing Symposium, 2021.

[27] T. G. Armstrong, Z. Zhang, D. S. Katz, M. Wilde, and I. T. Foster,
“Scheduling many-task workloads on supercomputers: Dealing with
trailing tasks,” in 3rd Workshop on Many-Task Computing on Grids and

Supercomputers. IEEE, 2010, pp. 1–10.

[28] J. D. Mulder, J. J. Van Wijk, and R. Van Liere, “A survey of compu-
tational steering environments,” Future Generation Computer Systems,
vol. 15, no. 1, pp. 119–129, 1999.

[29] M. Salim, T. Uram, J. T. Childers, V. Vishwanath, and M. Papka,
“Balsam: Near real-time experimental data analysis on supercomputers,”
in 2019 IEEE/ACM 1st Annual Workshop on Large-scale Experiment-in-

the-Loop Computing (XLOOP). IEEE, Nov. 2019. [Online]. Available:
https://doi.org/10.1109/xloop49562.2019.00010

[30] Y. Zamora, L. Ward, G. Sivaraman, I. Foster, and H. Hoffmann,
“Proxima: Accelerating the integration of machine learning in atomistic
simulations,” in ACM International Conference on Supercomputing,
2021, pp. 242–253.

[31] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and
K. A. Persson, “Fireworks: A dynamic workflow system designed for
high-throughput applications,” Concurrency and Computation: Practice

and Experience, vol. 27, no. 17, pp. 5037–5059, 2015, cPE-14-0307.R2.
[Online]. Available: http://dx.doi.org/10.1002/cpe.3505

[32] S. Partee, M. Ellis, A. Rigazzi, S. Bachman, G. Marques, A. Shao, and
B. Robbins, “Using machine learning at scale in hpc simulations with
smartsim: An application to ocean climate modeling,” 2021.

[33] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. R. Dunning, S. Legg, and
K. Kavukcuoglu, “IMPALA: Scalable distributed deep-RL with impor-
tance weighted actor-learner architectures,” in Proceedings of Machine

Learning Research, vol. 80, 2018, pp. 1407–1416.

[34] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for
distributed reinforcement learning,” in 35th International Conference

on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018,
pp. 3053–3062. [Online]. Available: http://proceedings.mlr.press/v80/
liang18b.html

[35] “Exarl,” accessed April 9, 2021. Still private as of paper submission.
[Online]. Available: https://github.com/exalearn/ExaRL

[36] D. C. Lonie and E. Zurek, “XtalOpt: An open-source evolutionary
algorithm for crystal structure prediction,” Computer Physics

Communications, vol. 182, no. 2, pp. 372–387, Feb. 2011. [Online].
Available: https://doi.org/10.1016/j.cpc.2010.07.048

[37] B. Farr and W. M. Farr, “kombine: a kernel-density-based,
embarrassingly parallel ensemble sampler,” accessed August 30,
2021. [Online]. Available: https://github.com/bfarr/kombine

[38] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.

[39] V. Balasubramanian, S. Jha, A. Merzky, and M. Turilli, “Radical-
cybertools: Middleware building blocks for scalable science,” 2019.

[40] “Existing workflow systems,” accessed April, 2021. [On-
line]. Available: https://github.com/common-workflow-language/
common-workflow-language/wiki/Existing-Workflow-systems

[41] M. Turilli, A. Merzky, T. Naughton, W. Elwasif, and S. Jha, “Charac-
terizing the performance of executing many-tasks on Summit,” arXiv

preprint arXiv:1909.03057, 2019.

[42] R. H. Castain, J. Hursey, A. Bouteiller, and D. Solt, “PMIx: Process
management for exascale environments,” Parallel Computing, vol. 79,
pp. 9–29, 2018.

[43] J. M. Wozniak, M. Dorier, R. Ross, T. Shu, T. Kurc, L. Tang,
N. Podhorszki, and M. Wolf, “MPI jobs within MPI jobs: A practical
way of enabling task-level fault-tolerance in HPC workflows,” Future

Generation Computer Systems, 2019.

[44] L. Ward, G. Sivaraman, J. G. Pauloski, Y. Babuji, R. Chard, N. Dandu,
P. C. Redfern, R. S. Assary, K. Chard, L. A. Curtiss, R. Thakur,

and I. Foster, “Dataset for colmena: Scalable machine-learning-based
steering of ensemble simulations for high performance computing,”
2021. [Online]. Available: https://petreldata.net/mdf/detail/colmena
mlhpc21 v1.1

[45] B. Blaiszik, L. Ward, M. Schwarting, J. Gaff, R. Chard, D. Pike,
K. Chard, and I. Foster, “A data ecosystem to support machine learning
in materials science,” MRS Communications, vol. 9, no. 4, p. 1125–1133,
2019.

12

https://doi.org/10.1109/xloop49562.2019.00010
http://dx.doi.org/10.1002/cpe.3505
http://proceedings.mlr.press/v80/liang18b.html
http://proceedings.mlr.press/v80/liang18b.html
https://github.com/exalearn/ExaRL
https://doi.org/10.1016/j.cpc.2010.07.048
https://github.com/bfarr/kombine
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://petreldata.net/mdf/detail/colmena_mlhpc21_v1.1
https://petreldata.net/mdf/detail/colmena_mlhpc21_v1.1

	Introduction
	The Problem
	Abstract Formulation
	Our Example Application

	Our Approach
	Colmena Architecture
	Colmena Implementation
	Thinker
	Task Server
	Communication

	Application Experiments
	Application Description
	Experimental Setup
	Application Evaluation
	Performance Evaluation
	Molecular Design Performance

	Component Evaluation
	Synthetic Application
	Scaling ML Assays

	Related Work
	Conclusions
	References

