
Employing Artificial Intelligence to Steer
Exascale Workflows with Colmena

Logan Ward,1 J. Gregory Pauloski,2 Valerie Hayot-Sasson,2 Yadu Babuji,2 Alexander Brace,2

Ryan Chard,1 Kyle Chard,2 Rajeev Thakur1 and Ian Foster1

Abstract
Computational workflows are a common class of application on supercomputers, yet the loosely coupled and
heterogeneous nature of workflows often fails to take full advantage of their capabilities. We created Colmena to
leverage the massive parallelism of a supercomputer by using Artificial Intelligence (AI) to learn from and adapt
a workflow as it executes. Colmena allows scientists to define how their application should respond to events
(e.g., task completion) as a series of cooperative agents. In this paper, we describe the design of Colmena, the
challenges we overcame while deploying applications on exascale systems, and the science workflows we have
enhanced through interweaving AI. The scaling challenges we discuss include developing steering strategies that
maximize node utilization, introducing data fabrics that reduce communication overhead of data-intensive tasks, and
implementing workflow tasks that cache costly operations between invocations. These innovations coupled with a
variety of application patterns accessible through our agent-based steering model have enabled science advances
in chemistry, biophysics, and materials science using different types of AI. Our vision is that Colmena will spur creative
solutions that harness AI across many domains of scientific computing.

Keywords
workflows, artificial intelligence, computational steering

Introduction

Decades of steadily improving computer hardware have
made computers often faster at answering questions
than humans are at posing them. As such, artificial
intelligence (AI) algorithms are playing an increasing
role in science as both programmer and software.
Supervised learning algorithms improving approximate
models for costly simulations without human direction,
language models generating code that answers questions
posed by humans as general questions, and many other
marvels are commonplace. Under this context, the future
of computational workloads may be filled with self-
directed software.

Workflows, applications that orchestrate execution of
many diverse tasks, have been a major source of innovation
in AI for high-performance computing (HPC) (Ferreira da
Silva et al. 2024). The recurring nature of tasks provides
the consistent, easily defined training sets that make AI
integration simpler. Key examples of AI in workflows
include experimental design techniques that infer best
inputs given the history of results (Jacobsen et al. 2018),
unsupervised learning techniques to draw inferences from
output data on-the-fly (Lee et al. 2019), or generative
techniques that invent what search spaces to explore
(Gómez-Bombarelli et al. 2018). The growing range and
increasing intelligence of AI models suggests these examples
are an early example of a space filled with opportunity.

Optimal performance of the AI within an application
relies on accounting for nuances in how it is used. As an
illustrative example, the AI tasks in an experimental design
workflow only need to be performed when “sufficient” data

are required, and the notion of “sufficient” depends on
many aspects of the application. AI models that are fast
compared to the tasks they advise could be run as each task
is completed, whereas relatively expensive AI models should
be delayed and deployed on dedicated resources. Expensive
AI models may also benefit from a streaming policy where
simulations are started based on intermediate results of the
AI tasks, rather than waiting for all to complete. Such ideas
for harmonically composing simulation and AI tasks are
still growing.

We developed Colmena to allow scientists to create
inventive solutions for integrating AI into workflow
applications on supercomputing systems (Ward et al. 2021).
Colmena is a Python library that adds a layer to conventional
workflow systems that simplifies expressing the dynamic
ways AI can be used. In this paper, we start by describing
the previous work that inspired and enabled Colmena, then
introduce its implementation before discussing a few HPC
case studies.

Related Work
Our work sits at the intersection of AI and scientific
workflows, providing a unique approach to combining them.

1Argonne National Laboratory, IL, USA
2University of Chicago, IL, USA

Corresponding author:
Logan Ward, Data Science and Learning Division,
Argonne National Laboratory, Lemont, IL, USA
Email: lward@anl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2

AI Approaches for Science Workflows

There are numerous modalities for how AI can be used in
simulation, and they can be understood by the relationship
between AI and the simulation software it enhances (Fox
et al. 2019). The purpose of the AI could be to post-process
the result of simulations and synthesize the outputs, as in the
learning of collective variables in DeepDriveMD (Lee et al.
2019; Brace et al. 2022). AI could also be used to create a fast
surrogate that can be used to prejudge potential simulations
from within a pre-defined search space (St. John et al. 2019)
or to generate potential simulations that resemble previous
successes (Huerta et al. 2023). Each different relationship
implies a different order of operations in how the simulation
and AI components are combined.

The strength of coupling between the tools and the
relative degree of computational costs between AI and
simulation impose further constraints on how applications
are implemented. Even within the archetype of “AI used
to create surrogates,” distinct variations are possible.
Applications may use the AI and simulation code
concurrently, which requires low-latency inference from the
ML models and therefore a need for dedicated resources
for both computations (Caccin et al. 2015). In contrast, one
that uses AI and simulation sequentially can use the same
resources for both (Zamora et al. 2021). Similar variations
in degrees of coupling exist across other AI and simulation
archetypes, yielding high diversity in the ways AI and
simulation should be combined together.

Workflow Engines

Workflow engines and other related approaches to the
task-parallel, often data-driven, execution of tasks on HPC
systems has been a subject of research since at least the
1980s, when systems like Linda (Carriero and Gelernter
1988) and Strand (Foster and Taylor 1989) were used
for such purposes, while Condor (Thain et al. 2005) and
Condor-G (Frey et al. 2002) enabled dispatch of many
tasks within one or multiple resource pools, respectively.
Parallel scripting approaches enable efficient execution of
tasks coupled by file system operations (Zhao et al. 2005;
Wilde et al. 2009).

AI-enhanced applications provide challenges to the
workflow engines that manage their computations on HPC.
The AI-based workflows that we consider here continuously
update the tasks to be executed during the execution of the
workflow. This is in contrast to the traditional static approach
employed by many workflow engines that require the entire
workflow graph to be defined a priori (Liu et al. 2015;
Herath and Plale 2010). Further, this dynamicity requires
efficient workflow processing as the latency of tasks being
created to running on a worker becomes as important as task
throughput. Tasks in AI-based workflows are particularly
heterogeneous, with AI training tasks spanning many nodes
while inference tasks require fractions of individual GPUs
(Dhakal et al. 2023). Such heterogeneity presents many
challenges in efficiently scheduling tasks across available
nodes (Phung et al. 2021). It also creates new opportunities,
for example, to deploy workflows that span multiple
types of compute resources. In short, the addition of AI

into scientific workflows will push the state-of-the-art on
workflow engines.

Integrating AI and Workflows
The variety of ways AI can be used in simulation has led
to a bloom of approaches to implement them in software.
This emerging class of tools built to support workflows that
include AI, which includes Colmena, share a common set
of features:

• Templating for common design patterns, such as
how AI applications are broken down into generator,
simulator, and allocator by libEnsemble (Hudson
et al. 2022) or the problem definition templates of
DeepHyper (Balaprakash et al. 2018).

• Dedicated services or tasks for running AI tasks,
such as the persistent optimization server in CANDLE
Supervisor (Wozniak et al. 2018) or the “OptTask” in
RocketSled (Dunn et al. 2019).

• Integration with data fabrics, such as via the use of
SmartRedis to transmit data to AI tasks in SmartSim
(Partee et al. 2022) or the two choices of data fabrics
in eFlows4HPC (Ejarque et al. 2022).

• Connections to machine learning frameworks, as
illustrated by ties to PyTorch and Tensorflow within
the hyperparameter tuning and training extensions for
Ray (Moritz et al. 2018).

• Emphasis on dynamic allocation to accommodate
changes in tasks types as AI models improve,
visible in the integration of dynamic schedulers in
DeepDriveMD (Lee et al. 2019).

While similar along these dimensions, the tools vary
significantly in how they define and deploy workflows. For
example, there is a divide between stateful processes with
decentralized communication (e.g., SmartSim, Ray, Decaf
(Yildiz et al. 2021)) and others with a central controlling
process (e.g., Supervisor, Colmena). Learning how best to
grow these ranges of capabilities alongside the diversifying
landscape of AI workflows remains an open question.

Design
The purpose of Colmena is to write policies that schedule
computation and data movement as Python functions.
We chose Python functions to allow policies of arbitrary
complexity to be expressed in a well-known language.
Details for distributing computations are delegated to
other libraries. Colmena applications are composed of two
components: a Thinker and Task Server (see application
design, Figure 1). We start by describing how policies are
written as a Thinker and then detail how Colmena Task
Servers use third-party tools to execute applications at scale.

Programming Model
A Thinker is a Python object whose methods define the
policy of a computational campaign. Methods marked with
special decorators run as threads after a user invokes the
Thinker. The threads, which we refer to as agents, submit
computations to and receive results from a Task Server
(described in detail in Task Execution) over a shared queue.

Prepared using sagej.cls

3

Thinker

@agent @agent ...

Task Server

ProxyStore

WorkersWorkers Workers

Task Queues

Figure 1. A Colmena application is composed of a Thinker and
Task Server connected by a task queue. Thinkers define the
policy for submitting computations using a series of agents that
interact with each other and the Task Servers. Task Servers
delegate computations to workers running on compute nodes.
Applications that manage large datasets or run at large scales
can use ProxyStore to pass references to inputs and outputs via
the workflow engine and object data via a side channel.

Interactions between the agents and the results of tasks
control how a computational campaign evolves.

Listing 1 illustrates an example Thinker that implements
a Markov Chain Monte Carlo sampling algorithm with two
agents. The startup agent submits a population of tasks as
soon as the run method is called and then exits, while the
step agent receives completed tasks and, for each, submits a
new task so as to maintain a constant amount of work on the
supercomputer.

Using Python functions to express the steering logic
ensures room to design sophisticated strategies. One could,
for example, add a third agent that manages training a
surrogate model and augment step to use the surrogate model
when reasonable, or introduce logic to restart sampling
trajectories that become trapped in already-observed states,
as in DeepDriveMD (Lee et al. 2019; Brace et al. 2022).
Colmena leaves avenues for optimization open.

Agent Types Colmena supports four types of agents that
each fulfill common tasks in a workflow steering policy:

1. @agent starts at the beginning of an application and
is expected to run until the end of the application
unless marked with a “startup” option.

2. @result processor runs when a task of a certain
type completes and is provided the result object (see
Defining Tasks) as an input.

3. @event processor is invoked when an associated
Python Event object is set.

4. @task submitter executes when a certain number
of resources are available. Resources are tracked using
a set of semaphores that can be accessed by all agents.

Threading We use Python’s standard threading library to
run agents in parallel and to coordinate between the agents.
For example, the resource tracking used by some Thinkers to
balance the number of tasks of each type employs Python’s
built-in Semaphore objects. Using standard libraries makes
writing a Thinker as close to standard Python as possible.

The Global Interpreter Lock (GIL) of Python has yet to
become a major limitation of Colmena applications. The
steering agents are intended to be lightweight, completing
in just a few milliseconds for our case study applications

1 from colmena.thinker import BaseThinker
2 from numpy.random import random, sample
3 import numpy as np
4

5

6 class Thinker(BaseThinker):
7

8 def __init__(
9 self,

10 queues,
11 dimensionality: int = 8,
12 num_samples: int = 256,
13 walkers: int = 8,
14):
15 super().__init__(queues)
16 self.n = num_samples
17 self.d = dimensionality
18 self.samples = []
19 self.x = \
20 sample((walkers, self.d)) * 2 - 1
21 self.log_p = \
22 np.zeros((walkers,)) + np.inf
23

24 @agent(startup=True)
25 def startup(self):
26 for i, x in enumerate(self.x):
27 self.queues.send_inputs(
28 x,
29 method=’compute_logp’,
30 task_info={’w’: i},
31)
32

33 @result_processor()
34 def step(self, result: Result):
35 # Perform MC step
36 w = result.task_info[’w’]
37 new_lp = result.value
38 old_lp = self.logp[w]
39 accept = np.exp(new_lp - old_lp) \
40 < random()
41 if accept:
42 self.logp[w] = new_logp
43 self.x[w, :] = result.args[0]
44

45 # Submit a new sample, if not done
46 if not self.done.is_set():
47 self.queues.send_inputs(
48 self.x[w] + \
49 random((self.d,)) * 2 - 1,
50 method=’compute_logp’,
51 task_info={’w’: w},
52)
53

54 # Store, then stop if done
55 self.samples.append(self.x[w])
56 if len(self.samples) > self.n:
57 self.done.set()
58

59 thinker = Thinker(queues)
60 thinker.run()

Listing 1. A Colmena Thinker that implements a parallel
Metropolis-Hasting algorithm. The Thinker stores the positions
of each walker, the current probability for each position, and the
output samples. The startup agent submits an initial set of
computations then exits. The step agent runs when a
computation finishes, updates the state of the associated
walker, then submits a computation for the next point.

Prepared using sagej.cls

4

(Ward et al. 2021, 2023). Even if no agent may operate
concurrently (i.e., if no parts of the operation release the
GIL), a millisecond processing time per task places a general
limit of thousands of actions per second—large enough for
many applications. We have considered adding the ability for
some agents to run as separate Processes, which are free from
GIL considerations but such a design would make it harder
to coordinate with other agents.

Defining Tasks
The computations requested by Colmena Thinkers, Tasks,
are defined as Python functions. As in other workflows,
function definitions must be serializable (true for all
functions defined in modules) and take inputs that can be
serialized. There is a great variety available within these
bounds. The tasks may be pure Python and run on a subset
of a compute node, or make calls to external applications that
span many compute nodes. So long as they are defined via a
Python interface, Colmena can run them.

The Thinker application requests a task using the name of
the function and a series of positional or keyword arguments,
as if calling the function locally. The Thinker then prepares a
Result object which captures the input information as well
as any other information needed to define the task, such
as resource requirements (e.g., a number of processors) or
task metadata that would be useful in processing results
later (e.g., an identifier connecting similar tasks). Task
Servers will populate the Result object with the results of
the computation as well as communication overheads and
execution times so that users can adjust subsequent tasks
accordingly or, at least, analyze performance afterward.

Task Queues
The Task Queue communicates task requests and completed
results between Thinker and Task Server. A single
application may use separate Task Queues for different
classes of tasks so that groups of agents can operate
independently. Applications can also use different Queue
implementations. Redis, for example, is well suited for
large task rates or data sizes, but the complexity of
running a Redis Server may not be justified in some
cases, compared to Python’s built-in Pipes. All queues,
regardless of type, use the same interface so that it is simple
to exchange components to port an application between
different computing systems or scales.

Task Execution
The Task Server stewards the execution of tasks requested
by the Thinker. The Task Server interface provides
an abstraction over arbitrary workflow engines and is
responsible for translating task requests from a Thinker,
dispatching tasks to the workflow engine, and returning
completed requests to the queue. This abstraction ensures
that Colmena applications are portable; the specific Task
Server implementation can be exchanged allowing the same
Thinker to run on different HPC systems.

Colmena provides Task Server implementations for Parsl
(Babuji et al. 2019) and Globus Compute; other Task
Server implementations can also be developed. Parsl and
Globus Compute can run arbitrary Python functions on

arbitrary compute resources, from laptops to the largest
supercomputers. Parsl provides multiple types of executors
suitable for different use cases and has shown to scale
to workloads up to thousands of tasks per second.
Globus Compute is a cloud-managed, federated function-
as-a-service platform. The cloud-managed infrastructure
enhances reliability and makes it simpler to deploy
applications across multiple sites, in contrast to Parsl,
which requires additional network configuration to use
multiple compute resources concurrently. Succinctly, Globus
Compute trades task throughput, latency, and reliability for
easy access to remote compute resources, although we note
the performance tradeoffs are small for most workloads
(Ward et al. 2023).

Data Fabric
Tasks in AI-centric applications often consume or produce
copious amounts of data, which can lead to nontrivial
communication overheads. For example, all task data flows
through the Task Server process in Colmena, so data-
intensive tasks can result in heavy I/O burdens that slow
down the process. This challenge is not unique to Colmena
as most workflow engines have a central coordinator, such
as the Globus Compute cloud service, through which all task
data must be transferred. We provided tools in Colmena to
circumvent these I/O bottlenecks.

Colmena integrates with ProxyStore (Pauloski et al. 2023,
2024) to reduce communication overheads by moving data
through specialized channels rather than through the Task
Server and workflow engine. ProxyStore replaces Python
objects with proxies that reference the location of the
actual data and then resolve to the original object when
used. The proxy is small, making it suitable to transmit
alongside the control messages of the workflow engine
while the object data are propagated to workers using
better-suited communication protocols (e.g., Redis, Globus,
Remote Direct Memory Access). In essence, ProxyStore
translates task data from being passed-by-value to passed-
by-reference, avoiding unnecessary copies of data across
processes or expensive serialization. These proxies provide
other benefits: proxies can be asynchronously resolved at the
start of task execution to overlap compute and I/O, and I/O
costs are not incurred for large objects when tasks exit early
or fail unexpectedly.

Colmena can make use of ProxyStore in two different
ways: by configuring the Task Queues to automatically proxy
large task objects and by proxying objects manually in the
Thinker before task submission. The two methods can be
employed at the same time; in neither case do the Python
functions comprising the Colmena tasks need to be modified.

Configuring the Task Queues to automatically proxy
objects is the simplest way to obtain potential performance
benefits. In this approach, the user configures ProxyStore
with parameters such as the communication protocols to
be used, and passes that configuration to the queues.
Task objects (positional and keyword arguments) are then
replaced automatically with proxies when a new task is
created, and the result of a task is proxied automatically
after execution. However, this automated approach provides
limited routes for optimizing transfer performance. Thus it
can also be beneficial to proxy objects manually, for example

Prepared using sagej.cls

5

when an object is used by many tasks. In this case, the user
may create a proxy within the Thinker and pass that proxy as
a task argument.

Similar to how the Task Server abstraction makes it
simple to redeploy a Colmena application on a different
workflow engine or HPC system, ProxyStore decouples
the configuration of communication protocols used to
transmit task data from the application. This reduces friction
when migrating applications across systems with different
networking or storage stacks. No application code needs to
be changed—only the ProxyStore configuration.

Scaling on Supercomputers
Workflow engines such as Parsl permit most applications
to scale to dozens of nodes without special effort. The
applications described in the section on Other Successes
taught the Colmena development team many strategies for
accessing scales in the hundreds or thousands of nodes:

1. Passing data by reference is critical for tasks that
involve data larger than O(100) kB or workflows
that span more than one system (Ward et al. 2023).
Passing large data via the workflow system leads to
communicating tasks to compute nodes becoming a
bottleneck. Object proxies are a powerful solution to
such problems because task code need not be changed
to resolve references, and caching accelerates tasks
that reuse data, such as inference tasks that use the
same model over many input batches.

2. Avoiding unnecessary reinitialization across functions
can accelerate workflows. It is common for multiple
tasks executed on the same worker to re-initialize the
same expensive objects because workflow engines are
designed to work with pure functions. In other words,
the workers are not stateful actors. We circumvent this,
for example, by keeping lookup tables or machine
learning models used by tasks in RAM when not in
use, rather than loading them from disk each time
(Dharuman et al. 2023).

3. Acting on task completion rather than result reception
is possible in cases when a task finishing could
inform the creation of a new task without the need to
receive or process results yet. Employing ProxyStore
to separate control messages and data flow means
that result notifications can be received two orders of
magnitude sooner, which can be exploited to hide the
latency of data transfer (Ward et al. 2023; Harb et al.
2023). That is, we can act on a task finishing and defer
processing the results until result data are available.

Case Study: Molecular Design

We used the design of molecules for redox-flow batteries as
the prototype application for Colmena (Ward et al. 2021).
The application runs tasks that compute the performance
of a molecule (i.e., solvation energy, redox potential),
train a model that predicts performance quickly, or infer
the performance of new molecules. As in other examples
of AI-driven design (Doan et al. 2020; Montoya et al.
2020; Badra et al. 2022; Curtarolo et al. 2003; Zhang

0 1 2 3 4 5 6
Time (h)

0

200

400

600

800

1000

No
de

s A
llo

ca
te

d/
Us

ed

inference
training

simulation

Figure 2. Allocation of HPC nodes between different tasks over
time for a Colmena-based molecular design application. Nodes
may either run quantum chemistry simulations (yellow), train a
machine learning model (blue), or use the model to infer the
properties of a molecule (red). The application first runs
inference on all nodes and then runs simulation tasks until
sufficient data is available to begin re-training machine learning
and re-running inference on a subset of nodes. Light shades
indicate periods where either no computation was running or
the running calculation did not complete before the end of the
allocation. Figure from Ward et al. (2021).

Figure 3. Weak scaling of inference rate as a function of node
count for a molecular design application that uses message
passing neural networks. Experiments were performed on the
Theta Supercomputer at Argonne National Laboratory. Figure
from Ward et al. (2021).

et al. 2020), our Colmena application achieves orders-
of-magnitude improvements over unguided searches. The
advantage of Colmena is that we could access another 20%
increase in the number of high-performing molecules found
by co-scheduling simulation and AI tasks (see Figure 2).
Achieving this increase in scientific performance while also
maintaining effective use of the HPC resources required
many innovations, addressing challenges at different parts of
the application.

Reducing Communication Overheads
The initial step in our molecular design application is to
identify a set of target molecules by running inference over
all molecules. Inference tasks transmit large amounts of data
(copies of the models, molecules, inference results) between
many nodes, which presents a clear challenge to scaling.
Large scales require faster transfer rates to keep all nodes
populated with work and, as visible in Figure 3, data transfer
became rate-limiting at only 512 nodes.

We identified the connection between the Task Server
and worker nodes as the source of the problem. Result
data would remain on a compute node for as long as 10
seconds, which signals that the channels exchanging control

Prepared using sagej.cls

6

messages between the workflow engine and workers have
become saturated. We alleviated the communication backlog
by removing as much data from the control messages as
possible and passing it instead through a “Value Server”
(now available as ProxyStore (Pauloski et al. 2023)) that
routes data directly between the Thinker and compute nodes.

We integrated ProxyStore into Colmena as part of the
Task Queues. The new queue intercepted inputs larger than
a chosen size (10 MB in our case), stored their serialized
representation in a Redis instance running on the same node
as the Task Server, and replaced them with a reference. A
similar swap occurs on the compute node for result objects
larger than a certain size. Neither modifications to Colmena
require changes to the source codes of the tasks and, as
shown in Figure 3, improved the scaling limit to above
2000 nodes.

Using Specialized Hardware for AI Tasks
Our AI-based optimization algorithm works best when
the time between acquiring new data and updating
recommendations for new simulations is minimized.
Updating recommendations requires retraining machine
learning models and then rerunning inference, a task that
requires about 45 minutes on the CPU-only nodes on the
Theta supercomputer at Argonne National Laboratory (see
Figure 2). We shortened this time by offloading machine
learning computations to a GPU cluster, which required
solving an amplified set of problems in data transfer (Ward
et al. 2023).

We augmented the Colmena and Value Server framework
used in Ward et al. (2021) to provide multi-resource compute
and secure data transfer between resources via Globus. An
earlier version of Colmena required users to maintain SSH
tunnels on at least three ports (two for the workflow engine,
and one for the Value Store), which increases maintenance
burden and may be disallowed on some systems. Our next
implementation used Globus Compute—previously known
as FuncX (Chard et al. 2020)—to route task requests through
a cloud service and Globus Transfer to move task data
between systems. Communicating tasks through Globus
Compute required 100 ms and performing data transfer
required at least 1 s: higher latencies than with our Parsl-
based implementation but still small enough to mitigate.

We hid the data transfer latency by modifying the Thinker
to use bulk transfers of task data in advance of tasks
being executed. Such optimized transfers are performed by
manually creating proxies for task data rather than relying on
the automated mechanisms introduced in Ward et al. (2021).
Our molecular design app uses bulk transfer at several points:
the molecules used in inference tasks once at the beginning
of a run, the data used for training tasks each time model
training starts, and the models used for inference as soon as
model training completes. Enacting the transfers manually
reduces the number of times a transfer must be started (at
a cost of 1 s each) and manually creating the proxy allows
reusing them between tasks. Reuse is visible in data transfer,
accounting for less than 1% of execution time for many
inference tasks during a run.

The new data transfer coupled with the ability to
hide latencies with tailored steering policies makes
the convenience of cloud services available without

0 1 2 3 4 5 6
Node Hours Expended (hr)

0

100

M
ol

ec
ul

es
Fo

un
d (a)

Parsl
Parsl+Redis

FuncX+Globus

Parsl Parsl+Redis FuncX+Globus
0

500

1000

1500

M
L

M
ak

es
pa

n
(s

) (b)

0.0

0.2

0.4

0.6

CP
U

Id
le

 T
im

e
(s

)

Figure 4. (a) Scientific output of our molecular design
application over time and (b) key performance timings (time to
complete machine learning tasks, average time between tasks
for CPU workers) of a multi-site implementation of our molecular
design application with different Colmena backends. Our
implementations using the Parsl workflow engine and Parsl with
Redis to transmit task data both required maintaining SSH
tunnels between sites. The implementation with FuncX and
Globus does not require direct network connections between
sites, yet has similar scientific output and comparable
performance timings.

performance penalties. Figure 4 shows that scientific output
is unharmed by using a more resilient, Globus-Compute-
based implementation, and the makespan of the machine
learning tasks is even better. We attributed the increased
performance in machine learning to the ahead-of-time
transfer and noted that the increased latency in CPU idle time
does not reduce overall utilization below 99%. In short, we
made Colmena a suitable tool for workflows that can benefit
from differing types of hardware for each task.

Better Performance through Integrating More AI
The large number of trailing tasks at the end of Figure 2
signals an opportunity: we can gain performance by breaking
tasks into smaller parts. Beyond the gains of just ensuring
less information is lost at the end of an allocation,
introducing smaller tasks provides more opportunities for
making smarter decisions with AI. More decision points
create both more tasks and sensitivity to latency in waiting
for decisions, leading to a stronger need for highly parallel
computing systems. We consequently are exploring finer
granularity of AI and simulation tasks for the exascale
version of our molecular design application.

We build multiple steps into our simulation workload by
introducing multiple levels of fidelity. Rather than compute
the performance of a molecule at the target level of accuracy,
as in Ward et al. (2021), we now perform parts of the
calculation incrementally (e.g., one property before another)
and use multiple levels of accuracy for our simulation
codes (i.e., smaller basis sets, cheaper DFT functionals).
As demonstrated by Woo et al. (2023) and Reyes et al.
(2022), these additional steps in accuracy reduce the cost
of an optimization algorithm because it is possible to stop
evaluating low-performing candidates before incurring the
full computational cost.

Prepared using sagej.cls

7

Figure 5. Utilization of each of 480 nodes (1920 GPUs) of
ALCF’s Polaris supercomputer over time for a Colmena
application that simultaneously trains a reinforcement learning
model that generates proteins, generates new proteins with
that model, and evaluates the quality of the proteins. Periods of
higher utilization are represented as deeper shades and color
indicates the type of task being run.

Ongoing Challenges
A few sources of performance degradation remain elusive.

The under-utilization during the first minutes of Figure 2
and during each subsequent batch of inference tasks is a
result of the delay in loading Python libraries. Speeding
the library load rate can be accomplished by reducing the
number of reads from the global filesystem (Kamatar et al.
2023). We have yet to be able to make such solutions
accessible to Colmena applications or the workflow engines
that underlie them.

Individual molecule simulation tasks may involve launch-
ing an MPI executable multiple times, which can lead to
significant overheads on large systems. We have studied
this problem using Colmena as a use case (Alsaadi et al.
2022) and intend to continue participating in the workflow
community to adopt the latest advancements.

Ensuring each node running computations is used to its
full extent is challenging because of the variety of tasks in an
AI workflow and potential variance in resource needs within
tasks of a single type. The molecular design application
described here has served as a test case for exploring systems
that identify automatically how to partition individual nodes
for multiple tasks (Phung et al. 2021) and for evaluating the
effect of partitioning individual compute units within a node
for tasks (Dhakal et al. 2023). We continue to investigate
methods for node partitioning.

Other Successes
We have implemented various applications using Colmena
since our first prototypes in mid-2021 (Ward et al. 2023;
Dharuman et al. 2023; Harb et al. 2023), each highlighting
different challenges and opportunities for braiding AI into
workflows. We discuss two of these applications below.

Protein Generation
The large machine learning models central to the success
of the protein design work of Dharuman et al. (2023) were
the primary source of scaling challenges. The core of this
application is a genome-scale language model (GenSLM)
which produces genetic sequences that are then filtered to
find the best-performing sequences (Zvyagin et al. 2023).

Then, another large language model (Lin et al. 2023) is
used to fold the translated protein sequence, and a series
of simulation steps are applied to the folded protein. With
Colmena, we could deploy all of these disparate task
types together in a manner that balanced maximizing HPC
utilization with scientific performance.

The central tradeoff of the protein design workflow is
that generating or processing sequences without interruption
maximizes system utilization, but more frequent reporting
improves algorithm performance through better information
flow. As shown in Figure 5, the largest periods of under-
utilization in our application after the cold-start phase are
the periods where the reinforcement learning training is
being stopped and then restarted to update the version of the
model used for generation. Balancing this tradeoff required
designing a Colmena application that lowered the cost of
reporting through the following strategies:

• Performing CPU-bound tasks asynchronously from
the GPU-intensive machine learning and simulation
tasks. The Thinker application for Colmena was
designed to process task results only after launching
new tasks, ensuring that GPU tasks were dispatched
with minimal delay.

• Caching large models in CPU memory was necessary
to allow tasks that both use large amounts of GPU
models (e.g., protein folding, diversity scoring) to
share the compute node. Keeping the model saved in
memory increased the throughput of folding tasks by
30% and prevented the nodes used for folding from
being idled while downstream tasks were completed.

• Minimizing access to global filesystems by having
any task write intermediate data to local temporary
storage (e.g., RAM disk) during computation, then
passing completed results in-memory via ProxyStore
rather than relying on the global filesystem to transmit
results. Even though the data is serialized twice (once
to local, once to ProxyStore), limiting the frequency of
writes to the global filesystem is worthwhile.

A dynamic workflow system, such as Colmena, simplified
expressing each of these strategies.

Our work with this application has allowed us to identify
avenues for future improvements in Colmena. Adding the
ability for Colmena to report intermediate results would
provide the largest improvement by eschewing the need to
restart tasks. Integrating Colmena with in-situ workflow tools
such as Decaf (Yildiz et al. 2021) or with streaming systems
such as Flink (Carbone et al. 2015) could allow for AI tasks
to act as standalone services, while simulation tasks are
served by a workflow system. Expressing AI applications
that blend workflows centered on atomic tasks and persistent
services is a research area ripe for exploration.

Steering Molecular Dynamics
Molecular dynamics (MD) simulation of complex biomolec-
ular systems is a prominent HPC application (Casalino et al.
2021; Dommer et al. 2023; Trifan et al. 2022; Phillips et al.
2002) that acts as a computational microscope (Dror et al.
2012) revealing biophysical details difficult to observe via
experiment. Due to high free energy barriers, many important

Prepared using sagej.cls

8

Optimization
objective

MD Simulation ML Training ML Inference

• Sampled states
• Biophysical event
• Runtime constraint

…
Parsl-based execution

Colmena
Thinker

Data-flow

1 2 3

Physics engine Representation learning (VAE) Outlier ranking

Figure 6. DeepDriveMD accelerates the sampling of rare
biophysical events within molecular dynamics (MD) simulations.
A Colmena Thinker orchestrates an ensemble of MD simulation
tasks while asynchronously training a machine learning (ML)
model such as a variational autoencoder (VAE). ML inference
and outlier detection are used to guide the simulation state
sampling towards a customizable optimization objective.

phenomena are difficult or impossible to sample using con-
ventional MD, even with powerful supercomputers (Hospital
et al. 2015). To approach this problem, Lee et al. (2019) and
Brace et al. (2022) developed the DeepDriveMD framework,
illustrated in Figure 6, for coupling ML/AI methods to MD
simulations to track the simulated state space and guide
simulations to sample more biophysically interesting events,
constituting rare events.

The design pattern underlying DeepDriveMD involves
steering an ensemble of many simulations using a trained
ML model, such as a variational autoencoder (Bhowmik
et al. 2018), for inference. To keep the model up to
date with the new data coming from the simulations,
it must be periodically retrained. However, updating the
model necessitates a speed versus accuracy tradeoff. Making
immediate decisions on which simulations to stop or
continue requires the use of a stale model (i.e., one that is not
completely up-to-date). On the other hand, the delay induced
by training may enable more accurate decisions that could
better explore the simulation state space and ultimately lead
to faster convergence for rare-event sampling.

DeepDriveMD, as a representative example of the
Colmena steering paradigm, illustrates several broadly
applicable strategies:

• Asynchronous simulation and ML training decreases
the lead time for training ML models over a
synchronized execution pattern, as the ML training
is not blocked by simulation stragglers. In addition,
hardware accelerators can be employed to further
reduce the training time (Brace et al. 2021).

• Streaming simulation data for training and inference
minimizes the file system I/O of the workflow,
which is important for attaining high performance on
leadership-scale facilities beyond 1,000 nodes.

• On-demand ML inference allows the Thinker applica-
tion to make decisions to stop or continue simulations
without having to wait for the latest training task to
finish, which leads to higher resource utilization and
more MD sampling throughout a campaign.

While DeepDriveMD has shown up to 100–1000× speed-
ups for sampling protein folding pathways of certain
biomolecular systems (Brace et al. 2022), we note that
success is largely dependent on the proper alignment of the
ML/AI method and the simulation data being generated.
Hyperparameter tuning can play a large role in determining
the success of sampling rare events, and domain-specific
biophysical calculations are still needed to guide AI-
driven sampling properly. Incorporating hyperparameter
tuning frameworks such as DeepHyper (Balaprakash et al.
2018) may increase the robustness of AI-steered simulation
workflows. Furthermore, uncertainty quantification through
model ensembling (Egele et al. 2022), reinforcement
learning adaptions (Shamsi et al. 2018), and incorporating
statistically rigorous weighted ensemble approaches (Russo
et al. 2022) represent promising future directions for such
workflows.

Next Steps
Our past and ongoing work building applications for
Colmena has clarified a few routes for future development.

Templates for Common Patterns
We developed Colmena with the goal of giving application
designers the freedom to write any steering policy, but
we found many common elements that were repeated
across applications. One common example is an agent that
submits the top task from a priority queue paired with
an agent that updates the priority queue based on other
completed computations. Providing a library of templates
will accelerate application development while ensuring
access to well-tuned implementations of scheduling patterns.

Integration with Model Repositories
Machine learning approaches for even well-established
problems are far from stagnant, which means the AI
components of applications will be continually refreshed.
We plan to integrate Colmena with machine learning model
repositories such as Hugging Face (Hugging Face 2023)
and Garden (Garden Project 2023) so that models can be
treated as interchangeable components rather than hard-
coded elements within an application.

Intelligent Initialization
The cost of reloading machine learning models has been a
consistent challenge in developing Colmena applications, yet
one we have only addressed with ad-hoc solutions. A next
step in Colmena development, in tandem with our workflow
engine partners, will be to develop “model registries” or
stateful actors that persist a shared state on workers between
invocations of the same task. Our initial prototype also
provides mechanisms to define routes for clearing stateful
objects as they become unneeded (Brace and Pauloski 2023).

Streaming Intermediate Results
Running some tasks as persistent services, rather than
discrete tasks, will provide many advantages including
bypassing startup costs and dividing the costs of data
transfer. Introducing services will require breaking the

Prepared using sagej.cls

9

102

103

104
Ti

m
e

(m
s) Reaction

28.5

29.0

Ti
m

e
(m

s)

Decision

25 26 27 28 29

Worker Count

0

100

Ti
m

e
(m

s) Dispatch

Figure 7. Latencies measured for a proxy application on up to
8 nodes of ALCF’s Polaris supercomputer with task data sizes
of 10 MB, a mean task length of 10 s, and a task length variance
of 1 s. Each subplot shows a latency measure of particular
relevance to dynamic workflows: Reaction: Task completion
communicated from compute node to steering process;
Decision: Steering process decides the next task; Dispatch:
New task delivered to idle compute node. In each case, the
dashed line indicates the total latency and the shaded region
the latency corresponding to latency without data transfer.

assumption of workflow engines that functions are pure, so a
current and future aspect of research in Colmena is extending
our programming model to support generator tasks that yield
results continually without returning. To achieve the required
performance for deploying AI at larger scales, the generator
tasks will need to be integrated within the data fabric (i.e.,
ProxyStore) as well.

Proxy Application for Dynamic Workflows
The core challenge of dynamic workflows, in our experience,
is the ability to rapidly respond to the completion of tasks
with new tasks. The latency comes in three parts: a reaction
time between when a computation completes to when the
Thinker is notified, a decision time to produce the next time,
and a dispatch time for the new task to be delivered to a
compute node. We propose a single proxy application to
determine the maximum scaling of a workflow system.

Our proxy application attempts to maintain a constant
amount of tasks in the workflow. The Thinker starts by
preparing a list of computations then launching exactly as
many as available workers, then launching a new task as
soon as another is completed until the original queue of
work is exhausted. The tasks take an empty array as input,
sleep for a duration drawn from a normal distribution, then
return a random byte string. The task rate of the workflow
is varied by changing the worker numbers and the sleep
duration distribution, and the data communication costs are
varied by altering the size of of the input and output data.

Figure 7 shows the performance of our Proxy application
on ALCF’s Polaris supercomputer. We find that the major
limit to applications for Colmena is latency of reacting
to completed tasks, which becomes large after 256 tasks
of approximately 10s each with data sizes of 10MB – an
approximate task rate of 25 tasks/second. The fact that
the latency increases with worker count helps identify a

maximum sustainable task rate given hardware and data
sizes, which can be used to guide application design.
The proxy application narrows down that our performance
could benefit from further tuning of data fabric employed
ProxyStore, or multiprocessing for processing completed
tasks in Colmena.

As of Colmena v0.6.1, the “task-limit” applications are
available as demonstration code in our GitHub repository.

Conclusions
We reviewed the inspiration, implementation, and impact
of Colmena, a tool we designed as part of the Exascale
Computing Project to explore routes for integrating AI
into computational workflows on supercomputing systems.
Colmena allows scientists to describe workflow execution
policies as Python functions that schedule computations
and data transfer on an HPC system. We have employed
Colmena successfully to implement applications that engage
different types of machine learning (supervised, generative,
unsupervised) in a variety of scientific domains—work
that has both identified broadly applicable strategies for
combining AI and simulation and suggested priorities
for further algorithmic and systems research. We intend
to continue simplifying the creation of new Colmena
applications while exploring more routes for tailoring
workflows to best use AI.

Acknowledgements

LW, GP, RC, RT, and IF acknowledge support by the ExaLearn Co-
design Center (Alexander et al. 2021) of the Exascale Computing
Project (17-SC-20-SC) (Alexander et al. 2020), a collaborative
effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration, to develop Colmena
and evaluate its performance on HPC. YB and KC were supported
to integrate Parsl with Colmena by NSF Grant 1550588 and the
ExaWorks Project within the Exascale Computing Project. GP,
VHS, and KC were supported to develop ProxyStore by NSF Grant
2004894. This research used resources of the Argonne Leadership
Computing Facility (ALCF), a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357, including via the
ALCF Data Science Program. It also used resources provided by
the University of Chicago’s Research Computing Center.

References

Alexander F, Almgren A, Bell J, Bhattacharjee A, Chen J, Colella
P, Daniel D, DeSlippe J, Diachin L, Draeger E, Dubey A,
Dunning T, Evans T, Foster I, Francois M, Germann T, Gordon
M, Habib S, Halappanavar M, Hamilton S, Hart W, Huang
Z, Hungerford A, Kasen D, Kent PRC, Kolev T, Kothe DB,
Kronfeld A, Luo Y, Mackenzie P, McCallen D, Messer B,
Mniszewski S, Oehmen C, Perazzo A, Perez D, Richards D,
Rider WJ, Rieben R, Roche K, Siegel A, Sprague M, Steefel C,
Stevens R, Syamlal M, Taylor M, Turner J, Vay JL, Voter AF,
Windus TL and Yelick K (2020) Exascale applications: Skin in
the game. Philosophical Transactions of the Royal Society A
378(2166): 20190056.

Alexander FJ, Ang J, Bilbrey JA, Balewski J, Casey T, Chard R,
Choi J, Choudhury S, Debusschere B, DeGennaro AM, Dryden
N, Ellis JA, Foster I, Cardona CG, Ghosh S, Harrington P,

Prepared using sagej.cls

10

Huang Y, Jha S, Johnston T, Kagawa A, Kannan R, Kumar N,
Liu Z, Maruyama N, Matsuoka S, McCarthy E, Mohd-Yusof J,
Nugent P, Oyama Y, Proffen T, Pugmire D, Rajamanickam S,
Ramakrishniah V, Schram M, Seal SK, Sivaraman G, Sweeney
C, Tan L, Thakur R, Van Essen B, Ward L, Welch P, Wolf M,
Xantheas SS, Yager KG, Yoo S and Yoon BJ (2021) Co-design
center for exascale machine learning technologies (ExaLearn).
The International Journal of High Performance Computing
Applications 35(6): 598–616.

Alsaadi A, Ward L, Merzky A, Chard K, Foster I, Jha S and Turilli
M (2022) RADICAL-Pilot and Parsl: Executing heterogeneous
workflows on HPC platforms. In: IEEE/ACM Workshop on
Workflows in Support of Large-Scale Science. IEEE. DOI:
10.1109/works56498.2022.00009. URL http://dx.doi.

org/10.1109/WORKS56498.2022.00009.
Babuji Y, Woodard A, Li Z, Clifford B, Kumar R, Lacinski L, Chard

R, Wozniak J, Foster I, Wilde M, Katz D and Chard K (2019)
Parsl: Pervasive parallel programming in Python. In: ACM
International Symposium on High-Performance Parallel and
Distributed Computing.

Badra J, Owoyele O, Pal P and Som S (2022) A machine
learning-genetic algorithm approach for rapid optimization
of internal combustion engines. In: Artificial Intelli-
gence and Data Driven Optimization of Internal Com-
bustion Engines. Elsevier, p. 125–158. DOI:10.1016/
b978-0-323-88457-0.00003-5. URL http://dx.doi.

org/10.1016/B978-0-323-88457-0.00003-5.
Balaprakash P, Salim M, Uram TD, Vishwanath V and Wild SM

(2018) DeepHyper: Asynchronous hyperparameter search for
deep neural networks. In: 2018 IEEE 25th international
conference on high performance computing (HiPC). IEEE, pp.
42–51.

Bhowmik D, Gao S, Young MT and Ramanathan A (2018) Deep
clustering of protein folding simulations. BMC bioinformatics
19: 47–58.

Brace A and Pauloski JG (2023) https://github.com/

braceal/parsl_object_registry. Accessed: 2024-
02-13.

Brace A, Salim M, Subbiah V, Ma H, Emani M, Trifa A, Clyde
AR, Adams C, Uram T, Yoo H et al. (2021) Stream-AI-
MD: Streaming AI-driven adaptive molecular simulations for
heterogeneous computing platforms. In: Proceedings of the
Platform for Advanced Scientific Computing Conference. pp.
1–13.

Brace A, Yakushin I, Ma H, Trifan A, Munson T, Foster I,
Ramanathan A, Lee H, Turilli M and Jha S (2022) Coupling
streaming AI and HPC ensembles to achieve 100–1000× faster
biomolecular simulations. In: IEEE International Parallel and
Distributed Processing Symposium. IEEE, pp. 806–816.

Caccin M, Li Z, Kermode JR and De Vita A (2015) A framework for
machine-learning-augmented multiscale atomistic simulations
on parallel supercomputers. International Journal of Quantum
Chemistry 115(16): 1129–1139. DOI:10.1002/qua.24952.
URL http://dx.doi.org/10.1002/qua.24952.

Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S and
Tzoumas K (2015) Apache Flink: Stream and batch processing
in a single engine. The Bulletin of the Technical Committee on
Data Engineering 38(4).

Carriero N and Gelernter D (1988) Applications experience with
Linda. ACM SIGPLAN Notices 23(9): 173–187.

Casalino L, Dommer AC, Gaieb Z, Barros EP, Sztain T, Ahn SH,
Trifan A, Brace A, Bogetti AT, Clyde A et al. (2021) AI-
driven multiscale simulations illuminate mechanisms of SARS-
CoV-2 spike dynamics. The International Journal of High
Performance Computing Applications 35(5): 432–451.

Chard R, Babuji Y, Li Z, Skluzacek T, Woodard A, Blaiszik B,
Foster I and Chard K (2020) funcX: A federated function
serving fabric for science. In: 29th Intl Symp on High-
Performance Parallel Dist Computing.

Curtarolo S, Morgan D, Persson K, Rodgers J and Ceder G (2003)
Predicting crystal structures with data mining of quantum
calculations. Physical Review Letters 91(13). DOI:10.1103/
physrevlett.91.135503. URL http://dx.doi.org/10.

1103/PhysRevLett.91.135503.
Dhakal A, Raith P, Ward L, Hong Enriquez RP, Rattihalli G, Chard

K, Foster I and Milojicic D (2023) Fine-grained accelerator
partitioning for machine learning and scientific computing
in function as a service platform. In: Proceedings of the
SC’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, SC-
W 2023. ACM. DOI:10.1145/3624062.3624238. URL http:

//dx.doi.org/10.1145/3624062.3624238.
Dharuman G, Ward L, Ma H, Setty PV, Gokdemir O, Foreman

S, Emani M, Hippe K, Brace A, Keipert K, Gibbs T,
Foster I, Anandkumar A, Vishwanath V and Ramanathan
A (2023) Protein generation via genome-scale language
models with bio-physical scoring. In: Proceedings of the
SC’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, SC-
W 2023. ACM. DOI:10.1145/3624062.3626087. URL http:

//dx.doi.org/10.1145/3624062.3626087.
Doan HA, Agarwal G, Qian H, Counihan MJ, Rodrı́guez-López J,

Moore JS and Assary RS (2020) Quantum chemistry-informed
active learning to accelerate the design and discovery of
sustainable energy storage materials. Chemistry of Materials
32(15): 6338–6346. URL https://doi.org/10.1021/

acs.chemmater.0c00768.
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn

SH, Russo J, Oliveira S, Morris C, Bogetti A et al. (2023)
COVIDisAirborne: AI-enabled multiscale computational
microscopy of delta SARS-CoV-2 in a respiratory aerosol.
The International Journal of High Performance Computing
Applications 37(1): 28–44.

Dror RO, Dirks RM, Grossman J, Xu H and Shaw DE (2012)
Biomolecular simulation: A computational microscope for
molecular biology. Annual review of biophysics 41: 429–452.

Dunn A, Brenneck J and Jain A (2019) Rocketsled: A software
library for optimizing high-throughput computational searches.
J Physics: Materials 2(3): 034002.

Egele R, Maulik R, Raghavan K, Lusch B, Guyon I and
Balaprakash P (2022) AutoDEUQ: Automated deep ensemble
with uncertainty quantification. In: 26th International
Conference on Pattern Recognition (ICPR). IEEE, pp. 1908–
1914.

Ejarque J, Badia RM, Albertin L, Aloisio G, Baglione E, Becerra Y,
Boschert S, Berlin JR, D’Anca A, Elia D, Exertier F, Fiore S,
Flich J, Folch A, Gibbons SJ, Koldunov N, Lordan F, Lorito S,
Løvholt F, Macı́as J and Volpe M (2022) Enabling dynamic
and intelligent workflows for HPC, data analytics, and AI

Prepared using sagej.cls

http://dx.doi.org/10.1109/WORKS56498.2022.00009
http://dx.doi.org/10.1109/WORKS56498.2022.00009
http://dx.doi.org/10.1016/B978-0-323-88457-0.00003-5
http://dx.doi.org/10.1016/B978-0-323-88457-0.00003-5
https://github.com/braceal/parsl_object_registry
https://github.com/braceal/parsl_object_registry
http://dx.doi.org/10.1002/qua.24952
http://dx.doi.org/10.1103/PhysRevLett.91.135503
http://dx.doi.org/10.1103/PhysRevLett.91.135503
http://dx.doi.org/10.1145/3624062.3624238
http://dx.doi.org/10.1145/3624062.3624238
http://dx.doi.org/10.1145/3624062.3626087
http://dx.doi.org/10.1145/3624062.3626087
https://doi.org/10.1021/acs.chemmater.0c00768
https://doi.org/10.1021/acs.chemmater.0c00768

11

convergence. Future Generation Computer Systems 134: 414–
429.

Ferreira da Silva R, Badia RM, Bard D, Foster IT, Jha S and Suter F
(2024) Frontiers in scientific workflows: Pervasive integration
with high-performance computing. Computer 57(8): 36–44.
DOI:10.1109/mc.2024.3401542. URL http://dx.doi.

org/10.1109/MC.2024.3401542.
Foster I and Taylor S (1989) Strand: New Concepts in Parallel

Programming. Prentice-Hall, Inc.
Fox G, Adiga A, Chen J, Beckstein O, Jha S, Glazier JA, Kadupitiya

J, Jadhao V, Kim M, Qiu J, Sluka JP, Somogyi E and
Marathe M (2019) Learning everywhere: Pervasive machine
learning for effective high-performance computation. In: IEEE
International Parallel and Distributed Processing Symposium
Workshops.

Frey J, Tannenbaum T, Livny M, Foster I and Tuecke S (2002)
Condor-G: A computation management agent for multi-
institutional grids. Cluster Computing 5: 237–246.

Garden Project (2023) https://garden-ai.

readthedocs.io/. Accessed: 2024-02-13.
Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato

JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J,
Hirzel TD, Adams RP and Aspuru-Guzik A (2018) Automatic
chemical design using a data-driven continuous representation
of molecules. ACS Central Science 4(2): 268–276. DOI:
10.1021/acscentsci.7b00572. URL http://dx.doi.org/

10.1021/acscentsci.7b00572.
Harb H, Elliott SN, Ward L, Foster IT, Klippenstein SJ, Curtiss

LA and Assary RS (2023) Uncovering novel liquid organic
hydrogen carriers: A systematic exploration of chemical
compound space using cheminformatics and quantum chemical
methods. Digital Discovery 2(6): 1813–1830. DOI:10.1039/
d3dd00123g. URL http://dx.doi.org/10.1039/

D3DD00123G.
Herath C and Plale B (2010) Streamflow programming model

for data streaming in scientific workflows. In: 10th
IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing. DOI:10.1109/ccgrid.2010.116.

Hospital A, Goñi JR, Orozco M and Gelpı́ JL (2015) Molecular
dynamics simulations: Advances and applications. Advances
and Applications in Bioinformatics and Chemistry : 37–47.

Hudson S, Larson J, Navarro JL and Wild SM (2022) libEnsemble:
A library to coordinate the concurrent evaluation of dynamic
ensembles of calculations. IEEE Transactions on Parallel and
Distributed Systems 33(4): 977–988. DOI:10.1109/tpds.2021.
3082815.

Huerta E, Park H, Yan X, Zhu R, Chaudhuri S, Cooper D, Foster
I and Tajkhorshid E (2023) GHP-MOFassemble: Diffusion
modeling, high throughput screening, and molecular dynamics
for rational discovery of novel metal-organic frameworks
for carbon capture at scale. DOI:10.21203/rs.3.rs-3084157/
v1. URL http://dx.doi.org/10.21203/rs.3.

rs-3084157/v1.
Hugging Face (2023) https://huggingface.co/.

Accessed: 2024-02-13.
Jacobsen T, Jørgensen M and Hammer B (2018) On-the-fly machine

learning of atomic potential in density functional theory
structure optimization. Physical Review Letters 120(2). DOI:
10.1103/physrevlett.120.026102. URL http://dx.doi.

org/10.1103/PhysRevLett.120.026102.

Kamatar A, Sakarvadia M, Hayot-Sasson V, Chard K and Foster
I (2023) Lazy Python dependency management in large-scale
systems. In: IEEE 19th International Conference on e-Science.
DOI:10.1109/e-science58273.2023.10254910.

Lee H, Turilli M, Jha S, Bhowmik D, Ma H and Ramanathan
A (2019) DeepDriveMD: Deep-learning driven adaptive
molecular simulations for protein folding. In: 3rd Workshop
on Deep Learning on Supercomputers.

Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil
R, Kabeli O, Shmueli Y, dos Santos Costa A, Fazel-Zarandi
M, Sercu T, Candido S and Rives A (2023) Evolutionary-scale
prediction of atomic-level protein structure with a language
model. Science 379(6637): 1123–1130. DOI:10.1126/
science.ade2574. URL http://dx.doi.org/10.1126/

science.ade2574.
Liu J, Pacitti E, Valduriez P and Mattoso M (2015) A

survey of data-intensive scientific workflow management.
Journal of Grid Computing 13(4): 457–493. DOI:10.1007/
s10723-015-9329-8. URL http://dx.doi.org/10.

1007/s10723-015-9329-8.
Montoya JH, Winther KT, Flores RA, Bligaard T, Hummelshøj

JS and Aykol M (2020) Autonomous intelligent agents for
accelerated materials discovery. Chemical Science 11(32):
8517–8532. DOI:10.1039/d0sc01101k. URL http://dx.

doi.org/10.1039/D0SC01101K.
Moritz P, Nishihara R, Wang S, Tumanov A, Liaw R, Liang E,

Elibol M, Yang Z, Paul W, Jordan MI and Stoica I (2018) Ray:
A distributed framework for emerging AI applications. In: 13th
USENIX OSDI. ISBN 978-1-939133-08-3, pp. 561–577.

Partee S, Ellis M, Rigazzi A, Shao AE, Bachman S, Marques
G and Robbins B (2022) Using machine learning at scale
in numerical simulations with SmartSim: An application to
ocean climate modeling. Journal of Computational Science
62: 101707. DOI:https://doi.org/10.1016/j.jocs.2022.101707.
URL https://www.sciencedirect.com/science/

article/pii/S1877750322001065.
Pauloski JG, Hayot-Sasson V, Ward L, Brace A, Bauer A, Chard

K and Foster I (2024) Object Proxy Patterns for Accelerating
Distributed Applications. URL https://arxiv.org/

abs/2407.01764.
Pauloski JG, Hayot-Sasson V, Ward L, Hudson N, Sabino C,

Baughman M, Chard K and Foster I (2023) Accelerating
communications in federated applications with transparent
object proxies. In: International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’23. DOI:10.1145/3581784.3607047.

Phillips JC, Zheng G, Kumar S and Kalé LV (2002) NAMD:
Biomolecular simulation on thousands of processors. In:
ACM/IEEE Conference on Supercomputing. IEEE, pp. 36–36.

Phung TS, Ward L, Chard K and Thain D (2021) Not all tasks are
created equal: Adaptive resource allocation for heterogeneous
tasks in dynamic workflows. In: IEEE Workshop on Workflows
in Support of Large-Scale Science. DOI:10.1109/works54523.
2021.00008. URL http://dx.doi.org/10.1109/

WORKS54523.2021.00008.
Reyes KG, Liu J and Vargas CJD (2022) Decision-making under

uncertainty for multi-stage pipelines: Simulation studies to
benchmark screening strategies. JOM 74(8): 2897–2907. DOI:
10.1007/s11837-022-05368-z. URL http://dx.doi.

org/10.1007/s11837-022-05368-z.

Prepared using sagej.cls

http://dx.doi.org/10.1109/MC.2024.3401542
http://dx.doi.org/10.1109/MC.2024.3401542
https://garden-ai.readthedocs.io/
https://garden-ai.readthedocs.io/
http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1039/D3DD00123G
http://dx.doi.org/10.1039/D3DD00123G
http://dx.doi.org/10.21203/rs.3.rs-3084157/v1
http://dx.doi.org/10.21203/rs.3.rs-3084157/v1
https://huggingface.co/
http://dx.doi.org/10.1103/PhysRevLett.120.026102
http://dx.doi.org/10.1103/PhysRevLett.120.026102
http://dx.doi.org/10.1126/science.ade2574
http://dx.doi.org/10.1126/science.ade2574
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1039/D0SC01101K
http://dx.doi.org/10.1039/D0SC01101K
https://www.sciencedirect.com/science/article/pii/S1877750322001065
https://www.sciencedirect.com/science/article/pii/S1877750322001065
https://arxiv.org/abs/2407.01764
https://arxiv.org/abs/2407.01764
http://dx.doi.org/10.1109/WORKS54523.2021.00008
http://dx.doi.org/10.1109/WORKS54523.2021.00008
http://dx.doi.org/10.1007/s11837-022-05368-z
http://dx.doi.org/10.1007/s11837-022-05368-z

12

Russo JD, Zhang S, Leung JM, Bogetti AT, Thompson JP,
DeGrave AJ, Torrillo PA, Pratt A, Wong KF, Xia J, Wong KF,
Xia J, Copperman J, Adelman JL, Zwier MC, LeBard DN,
Zuckerman DM and Chong LT (2022) WESTPA 2.0: High-
performance upgrades for weighted ensemble simulations and
analysis of longer-timescale applications. Journal of Chemical
Theory and Computation 18(2): 638–649.

Shamsi Z, Cheng KJ and Shukla D (2018) Reinforcement learning
based adaptive sampling: REAPing rewards by exploring
protein conformational landscapes. The Journal of Physical
Chemistry B 122(35): 8386–8395.

St John P, Phillips C, Kemper TW, Wilson AN, Guan Y, Crowley
MF, Nimlos MR and Larsen RE (2019) Message-passing
neural networks for high-throughput polymer screening. J
Chemical Physics 150(23).

Thain D, Tannenbaum T and Livny M (2005) Distributed
computing in practice: The Condor experience. Concurrency
and Computation: Practice and Experience 17(2-4): 323–356.

Trifan A, Gorgun D, Salim M, Li Z, Brace A, Zvyagin
M, Ma H, Clyde A, Clark D, Hardy DJ et al. (2022)
Intelligent resolution: Integrating Cryo-EM with AI-driven
multi-resolution simulations to observe the severe acute
respiratory syndrome coronavirus-2 replication-transcription
machinery in action. The International Journal of High
Performance Computing Applications 36(5-6): 603–623.

Ward L, Pauloski JG, Hayot-Sasson V, Chard R, Babuji Y, Sivara-
man G, Choudhury S, Chard K, Thakur R and Foster I (2023)
Cloud services enable efficient AI-guided simulation work-
flows across heterogeneous resources. In: IEEE International
Parallel and Distributed Processing Symposium Workshops.
DOI:10.1109/ipdpsw59300.2023.00018. URL http://dx.

doi.org/10.1109/IPDPSW59300.2023.00018.
Ward L, Sivaraman G, Pauloski JG, Babuji Y, Chard R, Dandu

N, Redfern PC, Assary RS, Chard K, Curtiss LA, Thakur
R and Foster I (2021) Colmena: Scalable machine-learning-
based steering of ensemble simulations for high performance
computing. In: IEEE/ACM Workshop on Machine Learning
in High Performance Computing Environments. IEEE. DOI:
10.1109/mlhpc54614.2021.00007. URL http://dx.doi.

org/10.1109/MLHPC54614.2021.00007.
Wilde M, Foster I, Iskra K, Beckman P, Zhang Z, Espinosa A,

Hategan M, Clifford B and Raicu I (2009) Parallel scripting
for applications at the petascale and beyond. Computer 42(11):

50–60.
Woo HM, Qian X, Tan L, Jha S, Alexander FJ, Dougherty ER and

Yoon BJ (2023) Optimal decision-making in high-throughput
virtual screening pipelines. Patterns 4(11): 100875. DOI:10.
1016/j.patter.2023.100875. URL http://dx.doi.org/

10.1016/j.patter.2023.100875.
Wozniak JM, Jain R, Balaprakash P, Ozik J, Collier NT, Bauer

J, Xia F, Brettin T, Stevens R, Mohd-Yusof J, Cardona CG,
Essen BV and Baughman M (2018) CANDLE/Supervisor: A
workflow framework for machine learning applied to cancer
research. BMC Bioinformatics 19(S18).

Yildiz O, Morozov D, Nicolae B and Peterka T (2021) Dynamic
heterogeneous task specification and execution for in situ
workflows. In: Workshop on Workflows in Support of Large-
Scale Science.

Zamora Y, Ward L, Sivaraman G, Foster I and Hoffmann H
(2021) Proxima: Accelerating the integration of machine
learning in atomistic simulations. In: ACM International
Conference on Supercomputing, ICS ’21. ACM. DOI:10.
1145/3447818.3460370. URL http://dx.doi.org/10.

1145/3447818.3460370.
Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H and E

W (2020) DP-GEN: A concurrent learning platform for the
generation of reliable deep learning based potential energy
models. Computer Physics Communications 253: 107206.
DOI:10.1016/j.cpc.2020.107206. URL http://dx.doi.

org/10.1016/j.cpc.2020.107206.
Zhao Y, Dobson J, Foster I, Moreau L and Wilde M (2005) A

notation and system for expressing and executing cleanly typed
workflows on messy scientific data. ACM SIGMOD Record
34(3): 37–43.

Zvyagin M, Brace A, Hippe K, Deng Y, Zhang B, Bohorquez
CO, Clyde A, Kale B, Perez-Rivera D, Ma H, Mann CM,
Irvin M, Ozgulbas DG, Vassilieva N, Pauloski JG, Ward
L, Hayot-Sasson V, Emani M, Foreman S, Xie Z, Lin D,
Shukla M, Nie W, Romero J, Dallago C, Vahdat A, Xiao C,
Gibbs T, Foster I, Davis JJ, Papka ME, Brettin T, Stevens
R, Anandkumar A, Vishwanath V and Ramanathan A (2023)
GenSLMs: Genome-scale language models reveal SARS-CoV-
2 evolutionary dynamics. The International Journal of High
Performance Computing Applications 37(6): 683–705. DOI:
10.1177/10943420231201154. URL http://dx.doi.

org/10.1177/10943420231201154.

Prepared using sagej.cls

http://dx.doi.org/10.1109/IPDPSW59300.2023.00018
http://dx.doi.org/10.1109/IPDPSW59300.2023.00018
http://dx.doi.org/10.1109/MLHPC54614.2021.00007
http://dx.doi.org/10.1109/MLHPC54614.2021.00007
http://dx.doi.org/10.1016/j.patter.2023.100875
http://dx.doi.org/10.1016/j.patter.2023.100875
http://dx.doi.org/10.1145/3447818.3460370
http://dx.doi.org/10.1145/3447818.3460370
http://dx.doi.org/10.1016/j.cpc.2020.107206
http://dx.doi.org/10.1016/j.cpc.2020.107206
http://dx.doi.org/10.1177/10943420231201154
http://dx.doi.org/10.1177/10943420231201154

	Introduction
	Related Work
	AI Approaches for Science Workflows
	Workflow Engines
	Integrating AI and Workflows

	Design
	Programming Model
	Agent Types
	Threading

	Defining Tasks
	Task Queues
	Task Execution
	Data Fabric
	Scaling on Supercomputers

	Case Study: Molecular Design
	Reducing Communication Overheads
	Using Specialized Hardware for AI Tasks
	Better Performance through Integrating More AI
	Ongoing Challenges

	Other Successes
	Protein Generation
	Steering Molecular Dynamics

	Next Steps
	Templates for Common Patterns
	Integration with Model Repositories
	Intelligent Initialization
	Streaming Intermediate Results

	Proxy Application for Dynamic Workflows
	Conclusions

