
MOFA: Discovering Materials for Carbon Capture
with a GenAI- and Simulation-Based Workflow

Xiaoli Yan∗†#, Nathaniel Hudson∗‡#, Hyun Park∗§, Daniel Grzenda‡, J. Gregory Pauloski‡, Marcus Schwarting‡,
Haochen Pan‡, Hassan Harb∗, Samuel Foreman∗, Chris Knight∗, Tom Gibbs¶, Kyle Chard∗‡, Santanu Chaudhuri∗†,

Emad Tajkhorshid§, Ian Foster∗‡, Mohamad Moosavi∥, Logan Ward∗, E. A. Huerta∗‡§
∗Argonne National Laboratory; Lemont, IL, United States
†University of Illinois Chicago; Chicago, IL, United States

‡University of Chicago; Chicago, IL, United States
§University of Illinois Urbana-Champaign; Urbana, IL, United States

¶NVIDIA Inc.; Santa Clara, CA, United States
∥University of Toronto; Toronto, Ontario

Abstract—We present MOFA, an open-source generative AI
(GenAI) plus simulation workflow for high-throughput gen-
eration of metal-organic frameworks (MOFs) on large-scale
high-performance computing (HPC) systems. MOFA addresses
key challenges in integrating GPU-accelerated computing for
GPU-intensive GenAI tasks, including distributed training and
inference, alongside CPU- and GPU-optimized tasks for screening
and filtering AI-generated MOFs using molecular dynamics,
density functional theory, and Monte Carlo simulations. These
heterogeneous tasks are unified within an online learning frame-
work that optimizes the utilization of available CPU and GPU
resources across HPC systems. Performance metrics from a
450-node (14,400 AMD Zen 3 CPUs + 1800 NVIDIA A100
GPUs) supercomputer run demonstrate that MOFA achieves high-
throughput generation of novel MOF structures, with CO2 ad-
sorption capacities ranking among the top 10 in the hypothetical
MOF (hMOF) dataset. Furthermore, the production of high-
quality MOFs exhibits a linear relationship with the number of
nodes utilized. The modular architecture of MOFA will facilitate
its integration into other scientific applications that dynamically
combine GenAI with large-scale simulations.

Index Terms—Generative AI, High Throughput Workflow,
Heterogeneous Computing, Online Learning, Atomistic Simula-
tions, Metal-Organic Frameworks, Carbon Capture

I. INTRODUCTION

Carbon dioxide (CO2) has been identified as the primary
contributor to the elevation of earth’s atmospheric temperature
[1]. The combustion of fossil fuel is the major source of CO2

emission. CO2 emitted and absorbed by non-human activity
can be a self-contained cycle. Developing new technologies to
capture CO2 from the human activity can be one of the most
efficient solutions to mitigate the global climate change.

Metal-Organic Frameworks (MOFs) are materials that have
drawn much attention in the scientific community for their po-
tential in numerous applications, including carbon capture [2],
[3]. MOFs typically comprise two main types of components:
(i) an organic molecule (“linker” or “ligand”; synonymous)
and (ii) an inorganic metal (“cluster”), organized in a topology
that can allow them, for example, to store gases like hydrogen

#Equal contribution.

or carbon dioxide [4]. This ability makes MOFs exciting for
applications other than carbon capture such as catalysis [5],
drug discovery [6], and luminescence sensing [7].

Generative AI (GenAI) methods are by now widely used to
rapidly generate fluid text and high-resolution images. Image
generative tools using denoising diffusion models (e.g., Stable
Diffusion [8]) can generate photo-realistic images in response
to a text prompt. In materials science, diffusion models can
be trained instead to generate novel molecular structures with
target chemical properties as prompts [9]–[11]. But there
remain challenges regarding how to (i) intelligently traverse
chemical space and (ii) efficiently execute large-scale, high-
throughput MOF generative workflows at scale.

A simple brute-force approach to creating many new MOF
structures would be to combine metal nodes with organic
linkers in different geometries exhaustively. However, the
chemical search space for MOFs is intractably large due to
the many possible metal nodes, organic linkers, and pore
geometries [12]. The use of a generic chemical GenAI model
to produce linkers is also infeasible, as the resulting molecules
are not more likely to produce better MOFs than those found
with brute-force searches. We instead need a GenAI that is
fine-tuned to generate those rare molecules that yield MOF
structures with interesting chemical properties—thus requiring
fewer guesses to reach the same answer.

We approach this task of producing a GenAI model able
to efficiently explore the large space of possible MOFs as
follows. First, we construct an initial GenAI model for MOF
linker generation, MOFLinker, by fine-tuning an existing model
developed for drug discovery on subspaces of high-performing
MOFs. Then, we refine MOFLinker over time by repeating
steps: (i) generate new linkers with MOFLinker, (ii) assemble
new MOFs from generated linkers, (iii) screen assembled
MOFs to eliminate non-promising linkers, and (iv) retrain
MOFLinker using performant linkers identified through screen-
ing with the goal of improving the quality of linkers produced.
The screening step, in particular, is crucial to the success of
this workflow. Screening combines simple structural tests of



MOF feasibility with the use of expensive quantum chemistry
tools (CP2K [13], LAMMPS [14], RASPA [15]) to compute impor-
tant MOF properties such as stability and porosity.

Our workflow thus combines GenAI, in the form of
MOFLinker, with both molecule assembly and a variety of
screening computations to navigate chemical space. This
combination of elements makes efficient workflow execution
challenging. First, massively parallel high-performance com-
puting (HPC) is needed to enable rapid screening of many
candidates molecules. Second, tasks in the workflow have
heterogeneous hardware requirements, with different tasks
executing most efficiently on CPUs (e.g., molecule structure
assembly), GPUs (e.g., GenAI training and inference), or
a mix of both (e.g., quantum chemistry simulations). This
diversity poses a heterogeneous computing challenge: a high-
throughput MOF generation workflow needs to create new and
relevant MOF structures while coordinating the heterogeneous
needs of the different task types. Ideally, such a workflow will
produce more novel, valid, and relevant MOF structures when
consuming more node-hours on an HPC system.

To address these challenges, we introduce MOFA, an open-
source computational workflow that uses online learning to
generate novel MOF structures for carbon capture.1 We focus
the design of MOFA around the objective of generating MOFs
for carbon capture. At a high level, MOFA is a heterogeneous
workflow consisting of two task types: (i) GPU-optimized
tasks for inference and training of a GenAI diffusion model
for generating the building blocks of new MOFs and (ii) CPU-
and GPU-optimized tasks that screen generated MOFs based
on chemical properties calculated through atomistic simula-
tions. To dynamically schedule tasks with varying resource
requirements, MOFA is built on the Parsl [16] and Colmena
frameworks [17] to scale the workload across heterogeneous
resources on large-scale computational systems.

The central contributions of this paper are as follows:

1) We describe an HPC-coupled-generative AI workflow,
MOFA, for high-throughput discovery of MOFs for carbon
capture on heterogeneous HPC systems. Its open source,
modular implementation will facilitate its use for both
computer science research and other applications that
combine GenAI and large scale simulations.

2) We demonstrate, via a 450-node (14,400 AMD Zen 3
CPUs + 1800 NVIDIA A100 GPUs), 3-hour run, that
MOFA can produce 114 MOFs per hour with competitive
CO2 adsorption capacities, with one MOF in the top 5
(4.05 mol/kg at 0.1 bar) and ten MOFs in the top 10%
(1–2 mol/kg at 0.1 bar) of the 4547-MOF structurally
similar subset of the 137,652-MOF hMOF dataset [18].

3) We demonstrate in this and other runs, plus supporting
analyses, that MOFA achieves high computational effi-
ciency on modern GPU- and CPU-based HPC systems.

1Repository for MOFA can be found here: https://github.com/XXX/YYY
(redacted to adhere to double-blind review).

II. RELATED WORK

Current approaches to accelerating the rational discovery of
MOFs combine one or several of the following methods: AI,
high throughput screening, and atomistic simulations. Here,
we discuss related work in MOF discovery and systems for
executing heterogeneous computing workflows.

A. MOFs & Their Discovery

MOFs are versatile materials composed of metal ion clusters
coordinated with organic linkers to form porous crystalline
structures [19], [20]. Their tunable pore sizes, high surface ar-
eas, and structural flexibility have attracted significant attention
since the 1990s, enabling them to serve in a range of applica-
tions such as gas storage, separation, and catalysis [21]–[24].

Prior to the adoption of GenAI approaches, MOF screen-
ing workflows often used brute-force [25], [26], heuristics-
driven [3], [27], or sampling strategies [28] to define and
prioritize candidate MOF structures. GenAI models, which are
capable of producing novel experiments based on previous
successful attempts, can augment these existing workflow
strategies. Model architectures such as diffusion, generative
adversarial networks, and variational autoencoders have been
employed in applications such as de novo drug screening [29],
shape optimization [30], chemical synthesis identification [31],
and drug discovery [32].

In the context of MOF design, MOFDiff [33] is a coarse-
grained diffusion architecture developed to produce MOF
structures with effective CO2 separation capabilities. MOFDiff
starts with a coarse-grained representation of a MOF (com-
prised of nodes and connecting linkers), and diffusion-based
denoising supplies a refined, full-atom representation which
can be assessed with various simulation methods. Similarly,
SmVAE [34] introduces a variational autoencoder that effec-
tively encodes MOF building blocks and stochastically de-
codes novel MOF structures which are targeted for higher CO2
capacity. Finally, GHP-MOFassemble is a fine-tuned version
of the DiffLinker architecture (a GenAI model originally
trained for drug design and discovery) meant for the produc-
tion of de novo linkers for MOFs [11]. For our proposed MOFA,
we approach GenAI-driven MOF discovery by fine-tuning the
DiffLinker architecture in a high throughput, online learning
workflow which periodically re-trains over time.

B. Heterogeneous Computing Workflows

The demands of scientific workflows that couple AI methods
with simulation tools [35] has spurred the use of heteroge-
neous hardware within a single application. Simulation code
may need many CPU and/or GPU cores across many nodes,
while AI models are executed most efficiently on specialized
accelerators (e.g., GPUs, wafer-scale systems [36]) with high-
bandwidth memory. Further challenges include flexible routing
of results between different components, re-allocation of re-
sources between different task types, and reducing workflow
latencies so systems can respond quickly to new information.

Workflow systems enable the expression and execution of
applications composed of multiple distinct task types. The



Validate 
StructureDatabase  

(Re-)Train
MofLinker

Generate
Linkers

Process
Linkers

Assemble
MOFs

PriorityQueueOptimize CellsLegend

Database

Training Task

Queueing

Generative Tasks

Structures

Chemistry Simulation

Estimate 
Adsorption

Queue

Queue

Fig. 1: MOFA implements an online learning loop that refines a generative AI model, MOFLinker, using the MOFs it has
generated. The initial steps in the workflow validate linker molecules produced by the generative model before using those
that pass validation to assemble MOFs. New MOFs are placed in a LIFO queue, from which they are retrieved to be evaluated
for stability, and the gas capacity of the most stable are further evaluated to refine the structures and estimate properties of
interest. The structures and their computed properties are collected in a database and used to retrain the GenAI model. All
steps run concurrently. Note: The width of the arrows for “Structures” corresponds with the amount of structures being passed
between each pair of tasks in the workflow.

dependencies between tasks are often represented as a directed
acyclic graph (DAG) such that the workflow system can
optimize placement and execution of tasks in the graph across
local or remote resources. This programming model supports
the development of sophisticated computational science appli-
cations, and thus, many workflow systems have been devel-
oped to meet the needs of the scientific community. Dask [37],
FireWorks [38], Parsl [16], Pegasus [39], and Swift [40] all
provide mechanisms to express a workflow (tasks and their
dependencies) and a runtime for scheduling and dispatching
tasks across available resources, such as an HPC cluster.

Solutions for executing an application across heteroge-
neous resources depend on the physical configuration of those
resources. For example, the challenges faced are different
when employing two distinct machines with heterogeneous
hardware configurations than when utilizing a single node
or a homogeneous cluster. In the multi-system case, data
transfer between remote machines can limit performance and
scalability. Additionally, specific tasks may be better suited
for a particular hardware configuration, causing bottlenecks
in throughput. In the single-system case, resource allocation
and contention across heterogeneous resources (e.g., CPUs and
GPUs) of single node must be considered. Some workflow
systems, such as Parsl, Ray [41], and TaskVine [42], support
fine-grain allocation of resources such that a subset of CPU
cores, memory, or accelerators within a single node can be
assigned to a task. Function-as-a-Service platforms, such as
AWS Lambda [43], Google Cloud Functions [44], and Globus
Compute [45], support the remote execution of tasks across but
lack the fine-grain resource scheduling of workflow systems.

Many science applications have leveraged this increasing

hardware heterogeneity and fine-grained workflow systems to
improve their computational systems. Workflow management
systems have allowed scientists to achieve new computational
scales [46], [47] across a variety of fields, including virol-
ogy [48], materials science [49], and astronomy [50].

III. MOFA DESIGN

Here we provide an abstract formulation for computational
MOF design, detail the sequential creation of MOFs from AI
generated linkers, and discuss the policies within MOFA that
enable dynamic MOF generation.

A. Abstract Formulation

We design MOFA as a multi-objective, inverse material de-
sign workflow [51]–[54]. The goal of multi-objective, inverse
material design is to identify materials specified by certain
input variables Ii with properties Pj that satisfy constraints
Ck. In MOFA, the materials being designed are MOFs, the input
variables are linkers and inorganic metals, and the properties
and associated constraints are defined as such to produce
chemically stable MOFs with high CO2 adsorption capacity
for carbon capture.

MOF properties of MOFs can only be estimated via phys-
ical or computational experiments (i.e., there are no formal
functional representations for mapping MOFs to desirable
properties). For MOFA, we employ computational methods to
estimate properties of interest. Because these properties can
only be estimated experimentally, many existing and effective
multi-objective optimization methods cannot be directly ap-
plied to this problem. Instead, this problem can be viewed as
an Optimal Experimental Design (OED) problem [55] where
we choose actions to perform when aiming to optimize an



objective (or set of properties). In OED, it is desirable to
account for the cost of different actions (e.g., time to perform
certain experiments) such as by screening undesirable inputs.
As an example, if given a candidate MOF, it might not
be worth performing computationally-intensive estimation of
properties if we can more cheaply determine that the candidate
MOF is not chemically valid.

We first describe the sequential actions taken—referred to
as tasks—to generate a MOF, extending the nomenclature
from prior work in steering computational campaigns [17].
A generator G produces a set of linkers l ∈ L (e.g., by
sampling from a known dataset or generated from an AI
model). Each linker l is screened using an assay a ∈ A to
estimate a property P (l) ∈ P of the linker with the linker
being discarded if P (l) does not meet some constraint. A new
MOF m ∈ M is assembled from a subset of linkers L′ ⊂ L.
A series of increasingly expensive but discerning screening
steps are applied to each MOF to find a subset of M with
desirable properties. The specifics of this formal definition are
described in Section III-B.

While each step in this sequential process could be paral-
lelized via a single program, multiple data (SPMD) without
expression of task dependencies—such an architecture would
lead to inefficiencies in staging and sequencing. Instead, we
choose a task parallelism architecture based on the expression
of task dependencies. This allows concurrent execution of
multiple actions of the same kind, and/or actions of different
kinds. We describe in Section III-C how MOFA defines policies
to determine when generation, assembly, and screening should
be performed.

B. Sequential MOF Generation

The following list outlines the discovery pathway of AI-
generated MOFs (see Fig. 1), after which we discuss the details
of each step (summarized in Table I).

1) Generate linkers: Use AI model to generate linkers in a
form suitable for assembly with pre-selected metal nodes.

2) Process linkers: Filter linkers without net-zero charge or
valid valence number; prepare remainder for assembly.

3) Assemble MOFs: Combine linkers with metal nodes;
discard if inter-atomic separations below threshold.

4) Validate structure: Validate MOFs for chemical sound-
ness; compute properties; discard if below thresholds.

5) Optimize cells: Further optimize each MOF structure;
calculate atomic partial charges of selected MOFs.

6) Estimate adsorption: Estimate CO2 adsorption capacity
of successful MOFs and store in database.

7) Retrain: Retrain MOFLinker using original linker
database and linkers of newly screened MOFs.

A key challenge in generating novel molecular structures is
ensuring that the model is unaffected by transformations on the
molecular structure in the E(3) group (e.g., translation, reflec-
tion, rotation, and permutations) [56], [57]. DiffLinker [32]
is a state-of-the-art E(3)-equivariant diffusion model originally
trained to produce novel molecular structures for drug discov-
ery. DiffLinker was trained on the GEOM dataset [58] for

drug discovery; here, we fine-tune it with molecular fragments
from the hypothetical MOF (hMOF) dataset [18] to produce a
new model, MOFLinker, that we use to generate MOF linkers.

Since MOFLinker does not consider hydrogen atoms during
generation (it treats them implicitly), to process linkers for
assembly we add hydrogen atoms at appropriate locations
along the linker and check that their bond lengths and angles
are reasonable. OpenBabel [59] is used to determine the
bond order and hydrogen atom numbers. Once hydrogen
atoms are added, bond order is determined. We use the force
field MMFF [60] in the RDKit [61] package to reduce stress
in the linker molecule through energy minimization. Some
linkers may fail these processes and are discarded; remaining
linkers are a well-defined molecule with net-zero charge and
valid valence number. Last, the linker anchor parts must be
modified before assembly. Two types of linker are generated
in the workflow: benzenecarboxylic acid (BCA) linker and
benzonitrile (BZN) linker. A BCA linker’s carboxylic acid groups
are removed, and a dummy atom with element astatine (At)
takes the carbon atom’s original position; in a BZN linker, the
nitrogen atoms within its cyano groups are identified, and a
dummy atom with element francium (Fr) is placed 2Å away
from each nitrogen atom in the direction away from the linker
molecule. At and Fr are used to label dummy element sites
because they are both radioactive and rarely seen in MOFs.

Thereafter, MOF assembly uses the processed linkers and
pre-selected metal nodes to construct new MOFs. The MOF
topology code label is adapted from the Reticular Chemistry
Structure Resource (RCSR) database [62], a process that is
automated with custom Python code. We run several assess-
ments and preparatory tasks using RDKit to ensure that a
generated MOF is both reasonable and ready to be simulated
with molecular dynamics. We impute bonds for its given
atomic coordinate structure, and determine its SMILES string.
Then, we check that the generated MOF has reasonable bond
lengths and angles. Last, we run a distance-based assessment
to ensure that no pair of atoms are overlapping based on
a predetermined threshold computed from the experimental
database OChemDb [63]. If each of these heuristic-based steps
pass, the MOF is ready for simulation; if not, it is discarded.

The next step is to validate structures of MOFs with
molecular dynamics simulations. A pre-simulation screen,
cif2lammps [64], is used to ensure that atomic structures
and chemical bonds are chemically valid within the scope of
UFF4MOF [65], [66], a force field used to accelerate the opti-
mization of MOF structures. Then, a LAMMPS [14] simulation
is performed to examine the stability and porous properties
of MOFs that have passed prior screens. For each MOF, a
2×2×2 supercell structure is equilibrated under a triclinic
isothermal-isobaric ensemble at ⟨p⟩ = 1 atm and ⟨T ⟩ = 300K,
such that the cell lengths and angles of the MOF structure
can be equilibrated. These simulations are run for 106 steps
with a step size of 0.5 fs. The Linear Lagrangian Strain
Tensor (LLST): S = 0.5(e+ eT ) is calculated for each MOF,
where e = R2R

−1
1 − I; R1 and R2 are the unit cell vectors

for the initial MOF structure and the final MOF structure after



TABLE I: Details for task types described in Section III-B. Some tasks employ multiple steps or codes. Remain is the percent
of the original structures (linkers for the first two tasks, MOFs for subsequent tasks) that remain, on average, after the task is
performed. Time in the last column is per structure except for retraining, which is the time to re-train over the entire dataset.
The resource, remain, and time values are those chosen for or observed during our 450 node run.

Task Type Description Code Resource Remain (%) Time (s)
Generate linkers Generate Generate novel linkers MOFLinker/PyTorch 1 GPU 100.0 0.37

Process linkers Screen Screen/optimize linkers RDKit/OpenBabel 1 CPU 22.8 0.12

Assemble MOFs Assemble Connect linkers & metal clusters Custom 1 CPU 100.00 0.46
Screen Check bonds & atomic distances RDKit 1 CPU 99.90 2.56

Validate structure Screen Check geometry & bonds cif2lammps 0.5 GPU 15.20 19.98
Screen Test stability & porosity LAMMPS 0.5 GPU 8.60 204.52

Optimize cells Screen Optimize cell structure CP2K 2 nodes 0.03 1517.53

Estimate adsorption Screen Compute partial charges Chargemol 1 CPU 0.03 211.78
Estimate Estimate CO2 adsorption RASPA 1 CPU 0.03 1892.89

Retrain Retrain Retrain with newly screened MOFs MOFLinker/PyTorch 1 node 96.50

the LAMMPS simulation; and I is the 3×3 identity matrix.
Eigenvalues of the LLST are calculated, and the maximum
absolute value of these eigenvalues is chosen as the metric to
evaluate the lattice distortion before and after the simulation.

CP2K v2024.1 with Quickstep [13], [67] is then used to
optimize cells for each MOF. Each calculation starts with
an initial structure from the prior molecular dynamics sim-
ulations, which is then optimized with a limited number of
L-BFGS [68] steps. Gaussian and Plane Wave (GPW) method
along with Perdew–Burke–Ernzerhof (PBE) [69] exchange-
correlation functional is applied. The short range variant
of the molecularly optimized basis functions with double-
zeta valence recommended by Goedecker, Teter, and Hutter
(DZVP-MOLOPT-SR-GTH) [70], [71] are used. Additionally,
DFT-D3 of van der Waals correction by Grimme [72] is added.

The atomic partial charge is calculated using the Chargemol
program with the Density Derived Electrostatic and Chemical
(DDEC6) method [73], [74]. MOFs electronic density in
the 3D space is calculated by a single-point energy calcu-
lation with CP2K, and the Chargemol program estimates the
point charge on each atom that would best fit the calcu-
lated electronic density. The MOFs failed in atomic partial
charge assignment are discarded. If the MOFs are successfully
assigned with atomic partial charge, their CO2 adsorption
value are evaluated using the Grand Canonical Monte Carlo
(GCMC) simulation in RASPA [15] (i.e., estimate adsorption).
Specifically, we want to estimate CO2 capacity at 0.1 bar
pressure and 300 K. Given the high computational cost and
serial execution of GCMC, simulations are conducted under
the assumption that MOF structures are rigid. The atoms of
the MOF structures are assigned with Lennard-Jones param-
eters from the UFF4MOF force field; the default force field
model for CO2 within RASPA is used. Coulomb forces capture
electrostatic interactions in MOFs, crucial for gas adsorption.
Ewald summation efficiently handles long-range interactions
in periodic systems. Together, they enhance GCMC, enabling

accurate estimates of CO2 capacity in MOFs. Adsorption
capacities are stored in the database.

Periodically, MOFLinker is retrained on MOFs identi-
fied by previous computations. Retraining starts from the
weights learned from pre-training on the hMOF and GEOM
datasets [58], and uses a new training set of linkers from as
few as 32 and as many as 8192 of the best-performing MOFs
yet found during a run. The training sets are composed of
MOFs with high stability (<25% lattice strain) and, at first,
only those in the lowest 50% of lattice strain and then, after
64 gas adsorption calculations have completed, only those
with the highest gas adsorption. Our intent is for the fine-
tuned MOFLinker models to generate linkers similar to those
in MOFs with optimal stability and capacity. Retraining is first
performed once 64 stability calculations have completed, and
subsequently after the preceding retraining run has finished
and the training set size expands by any amount. Retraining
requires 30–300 seconds, depending on training set size.

C. Workflow Policies
Policies are necessary to dynamically determine what steps

to perform at any moment because the sequential screening
of entities (linkers and MOFs) means that the number of
possible actions and the cost of each action varies throughout
the execution of MOFA. MOFA utilizes the following policies:

• Linkers are continuously generated and processed.
• MOF assembly is performed on the most recently gen-

erated linkers as soon as enough linkers four linkers of
each type (BCA and BZN) are available. Assembly runs
continuously on one parallel worker for every 256 used
for stability calculations.

• Computations are performed to assess stability of the
most recently assembled MOFs, with a new computation
started whenever a stability worker is idle.

• Adsorption computations are performed on the most
stable MOFs, again with sufficient computations running
to maintain full utilization of available workers.



• MOFLinker is retrained when at least 64 MOFs with
lattice strains below 25% have been found.

The concurrent execution of many steps, with information
flowing from one to another and a need to access the most
recent (or, in the case of adsorption calculations, the most
stable) entity in order to maximize scientific performance,
introduces many execution challenges which we discuss in
the following section.

IV. EXECUTING MOFA

The dynamic mix of tasks within MOFA requires careful
attention to policy expression, scheduling, and resource al-
location to achieve both high system utilization and efficient
and scalable MOF discovery. We architect MOFA to leverage
heterogeneous resources and to reduce system latencies (e.g.,
time to receive a task result) so that new tasks can be
determined based on up-to-date information.

A. Policy Expression

We build MOFA on Colmena [17], [75], [76], a Python library
for steering simulation ensembles. In Colmena, a central pro-
cess, the Thinker, executes a set of policies expressed through
agents that can perform actions by submitting tasks to a Task
Server, which manages the remote, asynchronous execution of
tasks requested by agents. Functionally, a task is implemented
as a Python function that is executed on a remote process,
and agents are threads within the main Thinker process that
manage resources, submit tasks, and process task results.

Each of the seven steps described in Section III-B are tasks
managed by Colmena agents. A set of agents are implemented
to express the MOFA policies described in Section III-C. For ex-
ample, one agent is responsible for receiving assembled MOFs,
notifying a second agent that resources are available for a new
assemble MOFs task, and adding the new MOF to a LIFO
queue, to be processed by a third agent that launches a validate
structures task when resources are available. The goal of these
policies is to ensure that resources are appropriately allocated
between tasks, such as to avoid allocating resources to validate
structures when there are insufficient assembled MOFs, and to
ensure timely propagation between tasks so that agents make
decisions with the most up-to-date information, such as by
allocating resources for simulating a more recently created
MOF (assuming that MOF quality improves over time).

Prior to this work, Colmena did not have a way to express
generator tasks—i.e., tasks that continually yield intermediate
data without necessarily returning—which makes it challeng-
ing to express MOFA’s generative AI tasks. Thus, we extended
Colmena to support Python generator functions that stream
intermediate results back to a central process to be consumed
and acted upon by an agent.

B. Resource Allocation and Communication

MOFA uses Parsl to schedule and execute tasks. We con-
figure a Parsl executor for each resource type and map
task types within Colmena to the respective executors. Rather
than submitting a large bag-of-tasks to Parsl, MOFA only

submits tasks when resources allocated to a task type are
available. This choice enables agents to reallocate resources
amongst task types depending on the dynamic load across
workflow components (e.g., queue lengths). Notification of a
task completion may trigger reallocation of resources and must
be done swiftly to maintain high utilization of those resources.
Realizing responsive communication requires reducing costs
associated with transmitting results from compute workers to
the Thinker and for the Thinker to use them to then decide
the next task.

We optimize communication latency by separating workflow
control messages (e.g., those used by Colmena and Parsl)
from result data transfer with ProxyStore [77], [78]. Sending
data through a separate channel speeds the workflow engine’s
control process, and decouples actions that involve simply
knowing that a task has completed from those that require
reading the data. For example, the Thinker launches the next
atomistic simulation as soon as another finishes (O(1) ms
latency) and then launches a retraining task once the data from
the simulation is processed (O(100) ms latency).

We further accelerate the decision process by distributing
the compute-intensive parts of the post-processing (e.g., pro-
cess linkers) across idle cores on compute nodes. Distributing
tasks to idle cores prevents agents in the Thinker from
having to perform post-processing themselves—which would
otherwise slow down its ability to respond to new events as
quickly. A final strategy is to process batches of results from
inference tasks while others are being run. We stream results
from inference workers to idle cores on other nodes.

Using our Colmena agents and Parsl executors, we allocate
resources for task type as follows (see Table I):

1) Generate linkers is performed on a single GPU with a
batch size selected to maximize GPU utilization.

2) Process linkers, assemble MOFs, and estimate ad-
sorption tasks are placed on the idle cores of nodes
running validate structure tasks. All tasks are isolated
by enforcing thread affinity.

3) Validate structure is configured such that two task
invocations share one GPU (via NVIDIA’s Multi-Process
Service, MPS [79]) but are pinned to different CPUs.

4) Optimize cells runs across two dedicated nodes via MPI.
5) Retrain is performed in a data parallel fashion across all

4 GPUs of a single dedicated node.
The agents cooperate to re-allocate available resources from

the pool between tasks types as needed. A visualization of
these and how they are executed across nodes in the HPC
cluster can be seen in Fig. 2.

V. EVALUATION

We measure MOFA performance along two axes: (i) compu-
tational efficiency on an HPC cluster and (ii) scientific output.
We performed experiments on between 32 and 450 nodes of
the Argonne Leadership Computing Facility’s Polaris Super-
computer, an HPE Apollo supercomputer with 560 nodes, each
with one AMD EPYC Milan 7543P (32-core, 2.8 GHz) and
four 40 GB NVIDIA A100 GPUs.



Process
Linkers

Estimate
Adsorption 

Optimize Cells

Retrain worker

GPUsCPUsCPUs GPUs

Generate linkers
worker

Generate
Linkers

Assemble
MOFs

Validate
Structures

Legend

Agent

Resource (CPU and GPU)

Generate Linkers

Retrain

Single-Core Tasks

Validate Structures

Optimize Cells

Task

Work�ow

Colmena Thinker

Optimize cells task
launcher

GPUsCPUs

Validate structures and
single-core tasks worker

GPUsCPUs

Optimize cells task
follower

GPUsCPUs

Retrain

Fig. 2: Task and resource allocation in the MOFA workflow. The top section shows the Colmena Thinker, containing seven agents
(rounded-corner boxes), each corresponding to one of the seven tasks. The bottom section depicts five types of MOFA workers,
each with a 32-core CPU and four GPUs, with distinct resource allocation schemata for different MOFA tasks.

128 256 450
# Nodes

98.5

99.0

99.5

100.0

W
or

ke
r

Ut
il.

1-
H

ou
rA

ve
ra

ge
(%

)

Retrain
Generate Linkers

Validate Structure
Optimize Cells

Fig. 3: Active time of compute nodes on Polaris, as measured
by the average time each workflow worker spent processing
work over one hour.

A. Utilization of Heterogeneous Resources

We first calculate the fraction of time that workers spend
doing useful work by analyzing timestamps generated when
each worker starts and completes a task. As shown in Fig. 3,
the workers for all four task types spend over 99% of their
time executing tasks. The workflow makes effective use of
every one of the 450 nodes.

Next, we inspect the utilization of hardware within the
nodes. MOFA achieves consistent utilization across each type of
node during the entire 3-hour run. We see in Fig. 4 that average
GPU and CPU utilization remain constant during a 450-node
run for all except the single node workers. The single node
workers run training tasks, which are large and frequent during
the beginning of the run when the application is retraining
on any stable MOF and infrequent as the training waits until
new gas capacity computations complete. Only the single node
workers maintain near-100% utilization of the GPU and all
have less than full utilization of the CPU. This suggests that

0

25

50

75
U
ti
l.
(%
)

Generate Linkers (1 GPU)

0

5

10

15

20

Optimize Cells
(Multi Node)

0.0 0.5 1.0 1.5 2.0 2.5
Walltime (Hr.)

0

10

20

30

40

U
ti
l.
(%
)

Validate Structure (<1 GPU)

0.0 0.5 1.0 1.5 2.0 2.5
Walltime (Hr.)

0

25

50

75

100
Retrain (Single Node)

GPU CPU

Fig. 4: MOFA’s utilization of Polaris compute nodes as fraction
of peak varies with the code running.

we can benefit from further use of NVIDIA’s Multi Process
Service across all other worker types that under-utilize the
GPU (i.e., all but single node workers) in order to execute
more tasks per node.

There is room available to offload more post-processing
from the Thinker to idle CPUs on the compute nodes. The
validate structure tasks, which are allocated <1 GPU, use
approximately one quarter of the CPU cores throughout the
entire run, and generate linkers tasks, which are allocated
one GPU, use only one eighth. Thus, there remain idle CPUs
and it is possible to continue our strategy of distributed post-
processing across idle cores without hindering other tasks.



25 26 27 28 29

Nodes

102

104

106

Ra
te

(1
/h
r)

Retrain
Assemble MOFs

Validate Structure
Optimize Cells

Fig. 5: Sustained throughput in tasks per hour for the four main
workflow stages as a function of system scale. The dashed
lines indicate ideal scaling computed from the rates at the
smallest node count.

B. Effect of Scale on Task Throughput

The rate at which our application evaluates new MOFs
increases linearly with scale, as desired. We measured the
throughput by counting the total number of generated linkers,
assembled MOFs, structures validated, and cells optimized
and estimated then determining a sustained rate using linear
regression. As shown in Fig. 5, the throughput for each stage
increases linearly from 32 nodes up to a full machine run.

The key to scaling in MOFA is low inter-stage latencies in the
pipeline, because the MOFA steering logic only submits enough
tasks as available compute resources: results must be processed
and new tasks submitted without delay to allow later stages to
work on the most up-to-date data. Consequently, we assess the
crucial timings between several stages of the execution plan as
a function of scale to identify potential bottlenecks to further
scaling. As shown in Fig. 6, we find that the latencies for each
of the five critical steps of our application are not degraded
by scale. We assess each below:

• Process linkers latency is the time between generating
a batch of linkers in a generate linkers task to the
Thinker receiving the processed batch from a process
linkers task. This O(10) s latency is primarily due to
the process linkers task runtime; it is constant across
node counts, indicating that sufficient CPUs are available
for processing. It could be reduced by increasing the
parallelism of batch processing.

• Validate structures latency is the time between a LAMMPS
simulation completing and its result being stored in the
database.

• Retrain latency is the time between finishing retraining a
model to that model being used in a generate linkers task.
Generate linkers tasks complete more frequently at larger
scales, leading to a lower latency with scale. The latency
could be further reduced by adding a mechanism to halt
generate linkers tasks when a new model is available.

• Compute partial charges latency is the time from an

23 24 25 26 27 28 29

Nodes

10 2

10 1

100

101

102

La
te
nc
y
(s
ec
)

Process Linkers
Validate
Structure

Retrain
Compute Partial
Charges

Estimate
Adsorption

Fig. 6: Mean and inter-quartile range of key latencies, defined
in Section V-B, as a function of node count.

0.0 0.5 1.0 1.5 2.0 2.5
Walltime (Hr.)

0
2.5k
5.0k
7.5k

10.0k
St

ab
le

 M
OF

s F
ou

nd

n = 32
n = 64

n = 128
n = 256

n = 450
linear scaling

Fig. 7: Number of stable MOFs found over time for MOFA runs
on from 32 to 450 nodes. Dashed lines indicated the number
of stable MOFs expected by scaling the rate of finding stable
MOFs over the entire duration of the 32-node run.

optimize cells task finishing to an estimate adsorption
task starting. It remains ∼1 s at all scales.

• Estimate adsorption latency is the time between screening
and estimation within estimate adsorption tasks. This also
reaches ∼1 s at the largest scale.

Latencies are kept low by high speed interconnects and
messages that for many steps are much less than 1 MB, which
do not saturate the network. The largest tasks (assemble MOFs
with 10–40 MB inputs and 1–2 MB outputs, process linkers
with 100–500 KB inputs and outputs, and validate structures
with 400–600 KB outputs) do require high performance con-
nections to keep communication time in the sub-second range.
We observe >1 GB/s transfer rates for many assemble MOF
tasks, in particular. These bandwidth requirements are clearly
achievable for Polaris at near full-system scales, and we do
not anticipate problems with further scaling.



C. Ability to Find Stable MOFs

Fig. 7 shows the number of stable MOFs (defined as
LAMMPS calculation indicating <10% chemical strain) over
time. We attribute the modest increase over time in the rate
at which stable MOFs are generated to repeated retraining of
DiffLinker improving the quality of generated linkers.

We assessed the effect of retraining by repeating the 32-node
and 64-node runs with the retraining portion of the workflow
disabled. The effect of retraining on the stable MOF discovery
rate is significant, increasing the number found at 90 minutes
from 133 to 313 on 32 nodes and from 393 to 641 on 64 nodes.
The increase in performance is because the fraction of MOFs
found to be stable improves. The fraction of MOFs found to
be stable increases from 5 to 11% when using retraining on
32 nodes and from 8 to 12% for 64 nodes. Learning from
intermediate workflow results is clearly beneficial in MOFA.

The resources devoted to retraining stay constant at different
scales, yet the impact becomes larger. After 90 minutes, the
450-node run has found 9.7 stable MOFs per node hour
expended, vs. 9.5 for the 256-node run and only 6.5 for the
32-node. We attribute the steady improvement in discovery
rate prior to 90 minutes for the 450-node case to more data
being gathered, leading to better machine learning models,
and—consequently—a more effective MOFLinker at the same
walltime. (The rate for the 450-node run diminishes after 90
minutes because, unlike the smaller runs, MOFA has by then
acquired enough data to switch from retraining based on only
stability to a a more stringent combination of stability and gas
adsorption capacity.)

D. Novelty and Chemistry Insights of Generated MOFs

To evaluate the effectiveness of using MOFA to search for
MOFs with high stability and CO2 adsorption, we evaluated
the molecules chemical properties over time. In Fig. 10 we
compared the cumulative distribution functions (CDFs) of
chemical stability of the generated MOFs for each hour
MOFA ran. We observe that over time the stability of the
MOFs increased, shown by a larger proportion of MOFs
having a lower chemical strain. This suggests that our MOFA
workflow is properly learning to generate MOFs for one of
our target objectives. To understand the chemical novelty of
these MOFA-generated molecules, in Fig. 9 we plot embedding
representations of each of the molecules using a UMAP
projection based on 38 chemical properties. While some areas
of chemical space were shared between the hMOF database
and the MOFA-generated linkers, we find that our approach
provides candidates that are chemically diverse while shar-
ing important chemical similarities with previously identified
successful MOFs.

While the chemical stability of the generated MOFs was
promising, the goal of MOFA is to generate molecules with
high CO2 adsorption. The MOFA-generated MOFs include one
with CO2 capacity in the top five of the hMOF dataset, i.e.,
4.05 mol/kg at 0.1 bar: see Fig. 8. Ten other MOFs produced
by the 450-node run also rank in the top 10% of hMOF, with

Fig. 8: The generated MOF with highest CO2 capacity (4.05
mol/kg at 0.1 bar) produced by a 450-node, 3-hour MOFA run on
Polaris. Brown: carbon; red: oxygen; white: hydrogen; yellow:
sulfur; grey (big): zinc; blue white (small): nitrogen.

capacities of 1–2 mol/kg at 0.1 bar. In brief, with a single 450-
node, 3-hour run, MOFA has enabled us to build a set of novel
MOFs with good, and one with very high, CO2 capacities.
These results demonstrate MOFA’s capabilities for materials
science discovery, and suggest avenues to further improve its
performance.

VI. IMPACT & FUTURE WORK

MOFA, as a high-throughput generative workflow, presents
an opportunity for the discovery of novel MOFs that have
a wide array of applications (e.g., reducing greenhouse gas
emissions, catalysis); it is also a compelling application for
AI and systems researchers interested in active learning, task
scheduling, and data management at large scales.

A. Efficient MOF Discovery

The promise of MOFs for carbon capture is multifaceted:
(i) their high surface area (from 1000 to 10,000 m2g-1,
exceeding those of traditional porous materials such as car-
bons and zeolites) and porosity improve CO2 adsorption and
selectivity [80]; (ii) their pore size and shape may be tailored
by carefully selecting their organic linkers and the connectivity
of the metal ion clusters; (iii) they may be designed to
maintain their structural integrity under harsh environmental
conditions; and (iv) they can be fabricated at large scale
with low-cost and simple synthetic methods [81]. All these
features promote MOFs as a desirable future energy material
for carbon capture [82], [83]. Furthermore, given their unique
properties, MOFs have been applied in a number of areas
beside carbon capture, including energy storage, catalysis,
optoelectronics, and sensing [84]. Researchers could therefore
adjust the simulation criteria of MOFA to search for novel MOFs
with applications beyond carbon capture.



Fig. 9: UMAP plot of the diversity of MOFA-generated linkers
compared to linkers from the hMOF database (represented
with an RDKit embedding). While some regions of chemical
space overlap between hMOF and MOFA-generated linkers, the
latter explores structures and moieties that differ significantly
from those in the original training set—highlighting MOFA’s
ability to discover new structures within the space of hMOF.

0.0 0.2 0.4 0.6 0.8 1.0
CDF Value

10
1

10
0

Lo
g 

S
tra

in

Hour
0 1 2

Fig. 10: The empirical cumulative distribution of the stability
of MOFs generated by our 64-node run binned by the hour
they were generated. MOF stability (measured by strain)
improves over time as the workflow runs.

However, the many possible clusters and linkers mean
that, in principle at least, millions of different MOFs may
be created with different properties simply by varying the
choice of building blocks. Experimental screening of millions
of potential MOFs is impractical, and atomistic simulations,
like experiments, are too expensive to be used for trial-and-
error exploration of the vast MOF chemical design space.
MOFA presents a rigourous approach for efficiently exploring

this space by coupling GenAI, high-throughput screening, and
atomistic simulations to accelerate the rational discovery of
stable, chemically diverse, and high performing MOFs.

We note several other ways in which MOFA can be applied
for scientific discovery. We have applied it to create an open
source database of high-quality MOFs (URL ommitted for
double-blind review). We aspire also to connect MOFA with
robotics laboratories that synthesize high performing MOFs,
and then provide input data regarding experimental synthesiz-
ability scores, and cost-effectiveness to manufacture and use
such MOFs at scale.

B. Algorithm Research Opportunities
MOFA also presents opportunities for algorithm research.

As described in Fig. 1, MOFA employs queue prioritization
strategies to determine which structures are used by the next
stage in the workflow. However, many molecule screening
procedures (e.g., those in the context of de novo drug discovery
[85]) take advantage of adaptive approaches that modify
the experiments performed during screening based on new
information. MOFA can be readily configured to permit adaptive
approaches such as active learning or model-predictive control:
for example, by dynamically re-prioritizing queues with an
active learning agent that optimizes different workflow objec-
tives (e.g., candidate stability, diversity, gas capacity). Better
algorithms can improve scientific outcomes and/or improve
resource allocation, such as by re-prioritizing the DFT simula-
tion queue so that computationally expensive experiments are
only performed on structures with high predicted gas capacity.

C. Systems Research Opportunities
MOFA’s modular design facilitates the evaluation of different

technologies. The configuration of Section IV works well
for our execution environment, but can easily be adapted
to support future systems research. The MOFA workflow also
represents a unique workload due to its complexity and
heterogeneity.

The Colmena system that MOFA uses for orchestration ex-
poses abstractions including Thinker to Task Server queues
for transmitting task requests and streaming results; ProxyS-
tore for intermediate data transfer; and the Task Server for
task execution. Each of these abstractions enables the use
of alternate implementations. For example, researchers can
evaluate message broker systems by comparing task latencies
in MOFA. ProxyStore enables comparing scalability, latency,
and throughput of object stores for intermediate data transfer
with its robust plugin system. Alternate Task Server imple-
mentations can be easily created to execute MOFA with different
execution engines/workflow systems.

VII. CONCLUSION

We have presented MOFA, an HPC-coupled-generative AI
workflow for the accelerated discovery of MOFs for carbon
capture. This workflow leverages heterogeneous computing
resources to maximize novel MOF generation through the or-
chestration of generative-AI, high throughput in-silica screen-
ing, and high fidelity atomistic simulations. We optimized



MOFA’s performance by running tasks asynchronously across
these workflow modules to maximize resource utilization and
throughput of stable MOF generation. Once generated, these
MOFs were screened for stability and CO2 capacity. MOFA is
capable of generating over 100 novel MOFs per hour, and
produced 11 promising new candidates for carbon capture in
a 450-node three hour run. We demonstrate the effectiveness
of MOFA in novel MOF design for carbon capture, while also
highlighting the modular nature of our workflow. It is our hope
that MOFA’s modular design will enable future research efforts
in distributed systems, as well as in materials science and other
science domains that involve AI and large scale simulations.

ACKNOWLEDGMENTS

This work was supported by Laboratory Directed Research
and Development (LDRD) funding from Argonne National
Laboratory, provided by the Director, Office of Science, of
the U.S. Department of Energy under Contract No. DE-
AC02-06CH11357. This research was partially supported by
the Catalyst Design for Decarbonization Center, an Energy
Frontier Research Center funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences under award
no. DE-SC0023383. This work used resources of the Argonne
Leadership Computing Facility, a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and
G. Russell, “Climate impact of increasing atmospheric carbon dioxide,”
Science, vol. 213, pp. 957–966, Aug. 1981.

[2] Y. Zhang, Y. Zhang, X. Wang, J. Yu, and B. Ding, “Ultrahigh metal–
organic framework loading and flexible nanofibrous membranes for
efficient CO2 capture with long-term, ultrastable recyclability,” ACS
Applied Materials & Interfaces, vol. 10, no. 40, pp. 34802–34810, 2018.

[3] M. Fernandez, P. G. Boyd, T. D. Daff, M. Z. Aghaji, and T. K. Woo,
“Rapid and accurate machine learning recognition of high performing
metal organic frameworks for CO2 capture,” The Journal of Physical
Chemistry Letters, vol. 5, no. 17, pp. 3056–3060, 2014.

[4] H. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li, and H.-C. Zhou, “Recent ad-
vances in gas storage and separation using metal–organic frameworks,”
Materials Today, vol. 21, no. 2, pp. 108–121, 2018.

[5] M. Hao, M. Qiu, H. Yang, B. Hu, and X. Wang, “Recent advances on
preparation and environmental applications of MOF-derived carbons in
catalysis,” Science of the Total Environment, vol. 760, p. 143333, 2021.

[6] H. D. Lawson, S. P. Walton, and C. Chan, “Metal–organic frameworks
for drug delivery: A design perspective,” ACS Applied Materials &
Interfaces, vol. 13, no. 6, pp. 7004–7020, 2021.

[7] Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, and H.-C. Zhou, “Lu-
minescent sensors based on metal-organic frameworks,” Coordination
Chemistry Reviews, vol. 354, 08 2017.

[8] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684–
10695, 2022.

[9] K. M. Jablonka, D. Ongari, S. M. Moosavi, and B. Smit, “Big-data
science in porous materials: Materials genomics and machine learning,”
Chemical Reviews, vol. 120, no. 16, pp. 8066–8129, 2020.

[10] Y. Kang and J. Kim, “ChatMOF: An artificial intelligence system
for predicting and generating metal-organic frameworks using large
language models,” Nature Communications, vol. 15, no. 1, p. 4705, 2024.

[11] H. Park, X. Yan, R. Zhu, E. A. Huerta, S. Chaudhuri, D. Cooper, I. Fos-
ter, and E. Tajkhorshid, “A generative artificial intelligence framework
based on a molecular diffusion model for the design of metal-organic
frameworks for carbon capture,” Communications Chemistry, vol. 7,
no. 1, p. 21, 2024.

[12] S. M. Moosavi, A. Nandy, K. M. Jablonka, D. Ongari, J. P. Janet, P. G.
Boyd, Y. Lee, B. Smit, and H. J. Kulik, “Understanding the diversity
of the metal-organic framework ecosystem,” Nature Communications,
vol. 11, no. 1, pp. 1–10, 2020.

[13] T. D. Kühne, M. Iannuzzi, M. D. Ben, V. V. Rybkin, P. Seewald,
F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze,
J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik,
M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller,
R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter,
A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass,
I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele,
M. Krack, and J. Hutter, “CP2K: An electronic structure and molecular
dynamics software package - Quickstep: Efficient and accurate electronic
structure calculations,” The Journal of Chemical Physics, vol. 152,
p. 194103, May 2020.

[14] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - A flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications, vol. 271, p. 108171, 2022.

[15] D. Dubbeldam, S. Calero, D. E. Ellis, and R. Q. Snurr, “RASPA:
Molecular simulation software for adsorption and diffusion in flexible
nanoporous materials,” Molecular Simulation, vol. 42, no. 2, pp. 81–101,
2016.

[16] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. Wozniak, I. Foster, M. Wilde, and K. Chard,
“Parsl: Pervasive Parallel Programming in Python,” in 28th ACM In-
ternational Symposium on High-Performance Parallel and Distributed
Computing (HPDC), 2019.

[17] L. Ward, G. Sivaraman, J. Pauloski, Y. Babuji, R. Chard, N. Dandu, P. C.
Redfern, R. S. Assary, K. Chard, L. A. Curtiss, R. Thakur, and I. Foster,
“Colmena: Scalable machine-learning-based steering of ensemble sim-
ulations for high performance computing,” in IEEE/ACM Workshop on
Machine Learning in High Performance Computing Environments, (Los
Alamitos, CA, USA), pp. 9–20, IEEE Computer Society, nov 2021.

[18] C. E. Wilmer, O. K. Farha, Y.-S. Bae, J. T. Hupp, and R. Q. Snurr,
“Structure–property relationships of porous materials for carbon dioxide
separation and capture,” Energy & Environmental Science, vol. 5, no. 12,
p. 9849, 2012.

[19] Q. Wang and D. Astruc, “State of the art and prospects in metal–organic
framework (MOF)-based and MOF-derived nanocatalysis,” Chemical
reviews, vol. 120, no. 2, pp. 1438–1511, 2019.

[20] L. P. L. Mosca, A. B. Gapan, R. A. Angeles, and E. C. R. Lopez,
“Stability of metal-organic frameworks: Recent advances and future
trends,” in 4th International Electronic Conference on Applied Sciences,
p. 146, MDPI, Nov. 2023.

[21] M. Fujita, Y. J. Kwon, S. Washizu, and K. Ogura, “Preparation,
clathration ability, and catalysis of a two-dimensional square network
material composed of cadmium (II) and 4, 4’-bipyridine,” Journal of
the American Chemical Society, vol. 116, no. 3, pp. 1151–1152, 1994.

[22] A. Corma, H. Garcia, and F. Llabrés i Xamena, “Engineering metal
organic frameworks for heterogeneous catalysis,” Chemical Reviews,
vol. 110, no. 8, pp. 4606–4655, 2010.

[23] Q. Yang, Q. Xu, and H.-L. Jiang, “Metal–organic frameworks meet
metal nanoparticles: Synergistic effect for enhanced catalysis,” Chemical
Society Reviews, vol. 46, no. 15, pp. 4774–4808, 2017.

[24] Y.-Z. Chen, R. Zhang, L. Jiao, and H.-L. Jiang, “Metal–organic
framework-derived porous materials for catalysis,” Coordination Chem-
istry Reviews, vol. 362, pp. 1–23, 2018.

[25] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp,
and R. Q. Snurr, “Large-scale screening of hypothetical metal–organic
frameworks,” Nature Chemistry, vol. 4, no. 2, pp. 83–89, 2012.

[26] H. Daglar and S. Keskin, “Computational screening of metal–organic
frameworks for membrane-based CO2/N2/H2O separations: Best ma-
terials for flue gas separation,” The Journal of Physical Chemistry C,
vol. 122, no. 30, pp. 17347–17357, 2018.

[27] M. Fernandez and A. S. Barnard, “Geometrical properties can predict
CO2 and N2 adsorption performance of metal–organic frameworks
(MOFs) at low pressure,” ACS Combinatorial Science, vol. 18, no. 5,
pp. 243–252, 2016.

[28] K. Mukherjee, A. W. Dowling, and Y. J. Colón, “Sequential design
of adsorption simulations in metal–organic frameworks,” Molecular
Systems Design & Engineering, vol. 7, no. 3, pp. 248–259, 2022.



[29] K. Swanson, G. Liu, D. B. Catacutan, A. Arnold, J. Zou, and J. M.
Stokes, “Generative AI for designing and validating easily synthesizable
and structurally novel antibiotics,” Nature Machine Intelligence, vol. 6,
no. 3, pp. 338–353, 2024.

[30] J. Li, M. Zhang, J. R. Martins, and C. Shu, “Efficient aerodynamic
shape optimization with deep-learning-based geometric filtering,” AIAA
Journal, vol. 58, no. 10, pp. 4243–4259, 2020.

[31] E. Kim, K. Huang, S. Jegelka, and E. Olivetti, “Virtual screening
of inorganic materials synthesis parameters with deep learning,” npj
Computational Materials, vol. 3, no. 1, p. 53, 2017.

[32] I. Igashov, H. Stärk, C. Vignac, A. Schneuing, V. G. Satorras, P. Frossard,
M. Welling, M. Bronstein, and B. Correia, “Equivariant 3D-conditional
diffusion models for molecular linker design,” Nature Machine Intelli-
gence, pp. 1–11, 2024.

[33] X. Fu, T. Xie, A. S. Rosen, T. Jaakkola, and J. Smith, “MOFDiff: Coarse-
grained diffusion for metal-organic framework design,” arXiv preprint
arXiv:2310.10732, 2023.

[34] Z. Yao, B. Sánchez-Lengeling, N. S. Bobbitt, B. J. Bucior, S. G. H.
Kumar, S. P. Collins, T. Burns, T. K. Woo, O. K. Farha, R. Q. Snurr,
and A. Aspuru-Guzik, “Inverse design of nanoporous crystalline reticular
materials with deep generative models,” Nature Machine Intelligence,
vol. 3, no. 1, pp. 76–86, 2021.

[35] G. Fox and S. Jha, “Learning everywhere: A taxonomy for the in-
tegration of machine learning and simulations,” in 15th International
Conference on eScience, pp. 439–448, IEEE, 2019.

[36] N. Dey, G. Gosal, Zhiming, Chen, H. Khachane, W. Marshall, R. Pathria,
M. Tom, and J. Hestness, “Cerebras-GPT: Open Compute-Optimal
Language Models Trained on the Cerebras Wafer-Scale Cluster,” 2023.

[37] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in 14th Python in Science Conference, vol. 130, p. 136,
2015.

[38] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and
K. A. Persson, “FireWorks: A dynamic workflow system designed for
high-throughput applications,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 17, pp. 5037–5059, 2015.

[39] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[40] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[41] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A dis-
tributed framework for emerging AI applications,” in 13th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’18,
(USA), p. 561–577, USENIX Association, 2018.

[42] B. Sly-Delgado, T. S. Phung, C. Thomas, D. Simonetti, A. Hennessee,
B. Tovar, and D. Thain, “TaskVine: Managing in-cluster storage for
high-throughput data intensive workflows,” in SC ’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, SC-W ’23, (New York, NY, USA), p. 1978–1988,
Association for Computing Machinery, 2023.

[43] “AWS Lambda.” https://aws.amazon.com/lambda. Accessed Jan 2023.
[44] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless

execution of scientific workflows: Experiments with Hyperflow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer
Systems, vol. 110, pp. 502–514, 2020.

[45] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “FuncX: A federated function serving fabric for
science,” in 29th International Symposium on High-performance Parallel
and Distributed Computing, pp. 65–76, 2020.

[46] A. Al-Saadi, D. H. Ahn, Y. Babuji, K. Chard, J. Corbett, M. Hategan,
S. Herbein, S. Jha, D. Laney, A. Merzky, et al., “Exaworks: Workflows
for exascale,” in IEEE Workshop on Workflows in Support of Large-Scale
Science, pp. 50–57, IEEE, 2021.

[47] L. T. Meyer, M. Schouler, R. A. Caulk, A. Ribés, and B. Raffin, “High
throughput training of deep surrogates from large ensemble runs,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–16, 2023.

[48] M. Zvyagin, A. Brace, K. Hippe, Y. Deng, B. Zhang, C. O. Bohorquez,
A. Clyde, B. Kale, D. Perez-Rivera, H. Ma, C. M. Mann, M. Irvin, J. G.
Pauloski, L. Ward, V. Hayot, M. Emani, S. Foreman, Z. Xie, D. Lin,

M. Shukla, W. Nie, J. Romero, C. Dallago, A. Vahdat, C. Xiao, T. Gibbs,
I. Foster, J. J. Davis, M. E. Papka, T. Brettin, R. Stevens, A. Anand-
kumar, V. Vishwanath, and A. Ramanathan, “GenSLMs: Genome-
scale language models reveal SARS-CoV-2 evolutionary dynamics,” The
International Journal of High Performance Computing Applications,
vol. 37, no. 6, pp. 683–705, 2023.

[49] J. Guo, L. Ward, Y. Babuji, N. Hoyt, M. Williamson, I. Foster, N. Jack-
son, C. Benmore, and G. Sivaraman, “Composition-transferable machine
learning potential for LiCl-KCl molten salts validated by high-energy X-
ray diffraction,” Physical Review B, vol. 106, no. 1, p. 014209, 2022.

[50] A. S. Villarreal, Y. Babuji, T. Uram, D. S. Katz, K. Chard, and
K. Heitmann, “Extreme scale survey simulation with Python workflows,”
in IEEE 17th International Conference on eScience, pp. 206–214, IEEE,
2021.

[51] Y.-Y. Zhang, W. Gao, S. Chen, H. Xiang, and X.-G. Gong, “Inverse
design of materials by multi-objective differential evolution,” Computa-
tional Materials Science, vol. 98, pp. 51–55, 2015.

[52] Y. Dan, Y. Zhao, X. Li, S. Li, M. Hu, and J. Hu, “Generative adversarial
networks (GAN) based efficient sampling of chemical composition space
for inverse design of inorganic materials,” npj Computational Materials,
vol. 6, no. 84, 2020.

[53] T. Long, N. M. Fortunato, I. Opahle, Y. Zhang, I. Samathrakis, C. Shen,
O. Gutfleisch, and H. Zhang, “Constrained crystals deep convolutional
generative adversarial network for the inverse design of crystal struc-
tures,” npj Computational Materials, vol. 7, no. 66, 2021.

[54] B. Kim, S. Lee, and J. Kim, “Inverse design of porous materials using
artificial neural networks,” Science Advances, vol. 6, no. 1, 2020.

[55] X. Huan, J. Jagalur, and Y. Marzouk, “Optimal experimental design:
Formulations and computations,” Acta Numerica, vol. 33, pp. 715–840,
2024.

[56] V. G. Satorras, E. Hoogeboom, and M. Welling, “E(n) equivariant graph
neural networks,” in International Conference on Machine Learning,
pp. 9323–9332, 2021.

[57] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth,
N. Molinari, T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials,”
Nature communications, vol. 13, no. 1, p. 2453, 2022.

[58] S. Axelrod and R. Gómez-Bombarelli, “GEOM, energy-annotated
molecular conformations for property prediction and molecular genera-
tion,” Scientific Data, vol. 9, no. 1, p. 185, 2022.

[59] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch,
and G. R. Hutchison, “Open Babel: An open chemical toolbox,” Journal
of Cheminformatics, vol. 3, p. 33, Dec. 2011.

[60] T. Halgren, “Merck molecular force field. II. MMFF94 van der Waals
and electrostatic parameters for intermolecular interactions,” J Comput
Chem, vol. 17, pp. 520–552, 1996.

[61] G. Landrum, “Rdkit documentation,” Release, vol. 1, no. 1-79, p. 4,
2013.

[62] M. O’Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, “The
Reticular Chemistry Structure Resource (RCSR) Database of, and
Symbols for, Crystal Nets,” Accounts of Chemical Research, vol. 41,
pp. 1782–1789, Dec. 2008.

[63] A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and
R. Rizzi, “OChemDb: The free on-line Open Chemistry Database portal
for searching and analysing crystal structure information,” Journal of
Applied Crystallography, vol. 51, pp. 1229–1236, 2018.

[64] R. Anderson, “cif2lammps.” https://github.com/rytheranderson/
cif2lammps.

[65] M. A. Addicoat, N. Vankova, I. F. Akter, and T. Heine, “Extension of the
universal force field to metal–organic frameworks,” Journal of Chemical
Theory and Computation, vol. 10, no. 2, pp. 880–891, 2014.

[66] D. E. Coupry, M. A. Addicoat, and T. Heine, “Extension of the universal
force field for metal–organic frameworks,” Journal of Chemical Theory
and Computation, vol. 12, no. 10, pp. 5215–5225, 2016.

[67] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing,
and J. Hutter, “Quickstep: Fast and accurate density functional calcu-
lations using a mixed Gaussian and plane waves approach,” Computer
Physics Communications, vol. 167, no. 2, pp. 103–128, 2005.

[68] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[69] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient
approximation made simple,” Physical Review Letters, vol. 77, p. 3865,
May 1996.

https://aws.amazon.com/lambda
https://github.com/rytheranderson/cif2lammps
https://github.com/rytheranderson/cif2lammps


[70] S. Goedecker, M. Teter, and J. Hutter, “Separable dual-space Gaussian
pseudopotentials,” Physical Review B, vol. 54, pp. 1703–1710, Jul 1996.

[71] J. VandeVondele and J. Hutter, “Gaussian basis sets for accurate calcu-
lations on molecular systems in gas and condensed phases,” The Journal
of Chemical Physics, vol. 127, p. 114105, Sept. 2007.

[72] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accu-
rateab initioparametrization of density functional dispersion correction
(dft-d) for the 94 elements h-pu,” The Journal of Chemical Physics,
vol. 132, Apr. 2010.

[73] T. A. Manz and N. G. Limasa, “Introducing DDEC6 atomic population
analysis: Part 1. Charge partitioning theory and methodology,” RSC
Advances, vol. 6, pp. 47771––47801, 2016.

[74] T. A. Manz and N. G. Limasa, “Introducing DDEC6 atomic population
analysis: Part 2. Computed results for a wide range of periodic and
nonperiodic materials,” RSC Advances, vol. 6, pp. 45727––45747, 2016.

[75] L. Ward, J. G. Pauloski, V. Hayot-Sasson, R. Chard, Y. Babuji, G. Sivara-
man, S. Choudhury, K. Chard, R. Thakur, and I. Foster, “Cloud services
enable efficient AI-guided simulation workflows across heterogeneous
resources,” in Heterogeneity in Computing Workshop, New York, NY,
USA: IEEE Computer Society, 2023.

[76] L. Ward, J. G. Pauloski, V. Hayot-Sasson, Y. Babuji, A. Brace, R. Chard,
K. Chard, R. Thakur, and I. Foster, “Employing artificial intelli-
gence to steer exascale workflows with Colmena,” The International
Journal of High Performance Computing Applications, vol. 0, no. 0,
p. 10943420241288242, 0.

[77] J. G. Pauloski, V. Hayot-Sasson, L. Ward, N. Hudson, C. Sabino,
M. Baughman, K. Chard, and I. Foster, “Accelerating communications in
federated applications with transparent object proxies,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’23, (New York, NY, USA), Association for Computing
Machinery, 2023.

[78] J. G. Pauloski, V. Hayot-Sasson, L. Ward, A. Brace, A. Bauer, K. Chard,
and I. Foster, “Object proxy patterns for accelerating distributed appli-
cations,” 2024. Preprint ArXiv:2407.01764.

[79] “NVIDIA Multi Process Service.” https://docs.nvidia.com/deploy/mps/
index.html.

[80] E. C. R. Lopez and J. V. D. Perez, “CD-MOFs for CO2 capture and sep-
aration: Current research and future outlook,” Engineering Proceedings,
vol. 56, no. 1, 2023.

[81] M. Witman, S. Ling, A. Gładysiak, K. Stylianou, B. Smit, B. Slater,
and M. Haranczyk, “Rational design of a low-cost, high-performance
metal-organic framework for hydrogen storage and carbon capture,” The
Journal of Physical Chemistry C, vol. 121, 12 2016.

[82] J. Li, W. Ye, and C. Chen, “Chapter 5 - Removal of toxic/radioactive
metal ions by metal-organic framework-based materials,” in Emerging
Natural and Tailored Nanomaterials for Radioactive Waste Treatment
and Environmental Remediation (C. Chen, ed.), vol. 29 of Interface
Science and Technology, pp. 217–279, Elsevier, 2019.

[83] M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and
M. Khatami, “A review on metal-organic frameworks: Synthesis and
applications,” TrAC Trends in Analytical Chemistry, vol. 118, pp. 401–
425, 2019.

[84] D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran, and C. Lee,
“Advances and applications of metal-organic frameworks (MOFs) in
emerging technologies: A comprehensive review,” Global Challenges,
vol. 8, no. 2, p. 2300244, 2024.

[85] L. Wang, Z. Zhou, X. Yang, S. Shi, X. Zeng, and D. Cao, “The
present state and challenges of active learning in drug discovery,” Drug
Discovery Today, p. 103985, 2024.

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html

	Introduction
	Related Work
	MOFs & Their Discovery
	Heterogeneous Computing Workflows

	MOFA Design
	Abstract Formulation
	Sequential MOF Generation
	Workflow Policies

	Executing MOFA
	Policy Expression
	Resource Allocation and Communication

	Evaluation
	Utilization of Heterogeneous Resources
	Effect of Scale on Task Throughput
	Ability to Find Stable MOFs
	Novelty and Chemistry Insights of Generated MOFs

	Impact & Future Work
	Efficient MOF Discovery
	Algorithm Research Opportunities
	Systems Research Opportunities

	Conclusion
	References

