
Aggregating Local Storage for Scalable Deep Learning I/O

Zhao Zhang∗, Lei Huang∗, J. Gregory Pauloski‡, Ian T. Foster¶
∗Texas Advanced Computing Center

Email: zzhang, huang@tacc.utexas.edu
‡University of Texas at Austin

Email: jgpauloski@utexas.edu
¶University of Chicago & Argonne National Laboratory

Email: foster@uchicago.edu

Abstract—Deep learning applications introduce heavy I/O
loads on computer systems. The inherently long-running, highly
concurrent, and random file accesses can easily saturate tradi-
tional shared file systems and negatively impact other users. We
investigate here a solution to these problems based on leveraging
local storage and the interconnect to serve training datasets
at scale. We present FanStore, a user-level transient object
store that provides low-latency and scalable POSIX file access
by integrating the function interception technique and various
metadata/data placement strategies. On a single node, FanStore
provides performance similar to that of the XFS journaling file
system. On many nodes, our experiments with real applications
show that FanStore achieves over 90% scaling efficiency.

I. INTRODUCTION

Deep learning (DL) is an emerging and increasingly popular
application paradigm, and we see increasing use of super-
computer systems for model training [1–4]. Distributed DL
training often involves large datasets and introduces heavy
I/O workload. Taking image classification as an example, the
ImageNet-1k dataset [5] contains 1.3 million small files (from
bytes to megabytes) that are spread across 2,002 directories.
Training a ResNet-50 [6] neural network usually runs for 90
epochs, which means every file will be accessed 90 times.
The total 117 million file accesses are distributed across the
training procedure. Depending on the scale, the concurrency
of file access can be in the order of O(N), where N is the
number of processors, e.g., CPUs and GPUs.

A common way to build DL applications starts with datasets
on a shared file system. Training programs take directories as
categories and files as training data. In this straightforward
way, users can easily scale DL training on more nodes with
larger datasets by simply switching the data paths. However,
as the dataset grows, the I/O traffic of thousands of directo-
ries and millions of files can easily saturate the shared file
system due to the high access frequency, concurrency, and the
sustained workload. In a typical cluster setting, such an I/O
workload causes other users to experience degraded file system
performance or even unresponsiveness. A second way is to
encapsulate the larger number of small files in an optimized
data format, such as Tensorflow’s TFRecord [7]. Using the
customized data format can dramatically reduce the metadata
workload, but the data workload remains the same and the
limited bandwidth between file system and compute nodes is a
performance bottleneck. Additionally, users have to make code
changes to read data from the corresponding format. Another

technical workaround, copying the complete dataset to the
local disks of each compute node, is only a viable solution
when each local disk is large enough.

In this paper, we present FanStore, a runtime shared file
system to enable efficient and scalable distributed DL training.
It leverages the local storage space and interconnect to enhance
the I/O capacity of existing computer clusters and supercom-
puters. FanStore is designed based on the findings of a profile
study on distributed DL I/O behavior (Please find details in
§II). FanStore exposes a POSIX file access interface with
relaxed multi-read single-write consistency, so users do not
have to make intrusive code changes to take advantage of the
optimized I/O performance. FanStore employs the function in-
terception technique to enable the POSIX file access interface
in user space. With little overhead, I/O performance through
FanStore is close to the hardware limit. FanStore preserves
the global view of a dataset by broadcasting metadata and
distributing file data, with remote file access as a round-trip
MPI [8] message. By combining the relaxed consistency and
various techniques, FanStore can scale distributed DL training
to 512 nodes with over 90% efficiency.

This paper makes the following contributions:
• A distributed DL training I/O profile study, with identified

opportunities for file system consistency relaxing and I/O
optimizations.

• The investigation of various techniques that make high
utilization of existing hardware with improved overall
training performance.

• The verification of the effectiveness of FanStore’s design
using three real applications that cover the convolutional,
recurrent, and generative adversarial network architec-
tures.

• The open source implementation of FanStore, accessible
at https://github.com/TACC/fanstore.

The rest of this paper is as follows: We review related
work in §III. §IV discusses the FanStore design and imple-
mentation. Performance measurements with real applications
are presented and discussed in §V. We conclude in §VI.

II. DL I/O PROFILE

We next review how distributed DL works in a data par-
allel manner and its I/O behavior. Then we summarize the
I/O frequency, concurrency, and consistency. For the ease
of understanding, we will use the ResNet-50 training case



with the ImageNet-1k dataset implemented with Keras [9],
TensorFlow [7], and Horovod [10]. Keras provides a concise
programming interface with back end support of TensorFlow
and other frameworks, while Horovod works at the communi-
cation layer of TensorFlow and enables distributed training.
The summarized I/O pattern applies to the three example
applications discussed in this paper and other widely used DL
frameworks (e.g., PyTorch and Caffe) and applications.

A. I/O in Data Parallel Distributed DL

Data parallelism is a commonly used approach distributed
DL training in which the data of each mini-batch are scattered
to processors while the model (parameters) is replicated. In the
beginning of training, the program will traverse the metadata in
the training and validation directories to calculate the number
of files, then determine the number of iterations in each
epoch and in total. From the first iteration, each node will
concurrently read a mini-batch of training files. The size of the
mini-batch is a user specified parameter, and the mini-batch
size is critical to final convergence: mini-batch sizes larger
than published numbers are divergence prone during training.
The training process then carries out forward computation
along the neural network, and computes the loss. Then, each
node will use the computed loss to calculate the gradients
with regard to the parameters, which is referred to as a back-
propagation algorithm. Since each node has a different set of
training items, the derived loss and respective gradients are
different across nodes. Usually, the training process calls the
Allreduce collective communication primitive to compute the
sum (then mean) of the gradients before applying the stochas-
tic gradient descent (SGD) method to update parameters. One
iteration finishes after all parameters are updated. If the end
of the current iteration overlaps with the end of an epoch,
the training process may validate the model on the validation
dataset and checkpoint the model to file system. The complete
training process iterates until all epochs finish.

B. Global Dataset View

With the global dataset view, every compute node sees
the same directory structure and file contents. Maintaining a
global view of the training dataset is critical for convergence
in distributed DL training. Another way to store a large dataset
in local storage across multiple nodes is to let each node
store an exclusive subset, which results in the partitioned
dataset view. Figure 1 shows the last 30 epochs of the 90-
epoch ResNet-50 training on the ImageNet-1k dataset with
both views. The experiment runs on 16 Nvidia GTX 1080 Ti
GPUs with batch size of 512. The partitioned dataset view
loses ∼4% of validation accuracy, which is unacceptable.

C. Metadata Access

At a high level, the metadata access of distributed DL
has high volume and concurrency. Metadata are accessed in
two places, once at the beginning of the training process,
where the program gathers information on the training and
validation dataset, and again during each iteration, where the

Fig. 1: Validation Accuracy of ResNet-50 on ImageNet-1k
Dataset with Global and Partitioned View. Please note this
is not a standard ResNet-50 benchmark run with baseline
validation accuracy of 74.9%. It is a less fine-tuned run to
show the training divergence with partitioned dataset view.

program launches multiple threads per process to read files.
For example, each Keras process uses four I/O threads by
default.

In the ImageNet-1k dataset, each process accesses the
metadata of 2,002 directories and 1.3 million files at the
beginning of training. On a cluster of N GPUs, usually
running one process per GPU, there will be 4N simultaneous
readdir() or stat() operations. The highly concurrent metadata
access of large volume can easily saturate the metadata server
in a traditional shared file system such as Lustre [11] and
GPFS [12].

D. Data Access

The file data access of distributed DL is highly concurrent
and persists through the whole training process. The individual
file size ranges from a few bytes to a few mega bytes.
Modern DL frameworks such as Keras and Caffe support
asynchronous I/O, where the I/O overlaps with computation
for faster training speed, often referred to as data prefetch.
Assuming a cluster of N GPUs, the mini-batch size is specified
proportionally to GPU count to maintain high utilization of the
hardware. In the ResNet-50 example, we use a mini-batch size
of 64N . Thus the data access is in the form of 4N concurrent
threads reading 64N files for each iteration. When a file is
read, it is read sequentially and completely. There is no random
read that starts from an arbitrary offset nor partial read from
a file. Each ResNet-50 iteration runs for ∼300 ms. If the I/O
performance cannot keep up with the pace of computation,
there will be wasted hardware cycles. This data access pattern
persists until the final iteration. Since it is not rare to use tens,
hundreds, or even thousands of GPUs or CPUs for distributed
DL training, it is critical for the file system to keep up with
the computational hardware in a scalable manner.

Besides accessing the training and validation dataset, dis-
tributed DL may also write to the file system. The master
process can periodically write the model to the file system as
a checkpoint. In applications such as generative adversarial
networks, the training program may output the generated

2



synthetic data to the file system for human examination. In
all of these case, the write operations are writing to new
files without overwriting file or concurrently writing to the
same file. (Although the checkpoint can be overwritten, it is
common practice to write to a file labeled with epoch number.)
Unless the training program starts from the last checkpoint,
these written files are not read again by the training program.

The I/O behavior of distributed DL training shows a multi-
read single-write consistency pattern. An input directory or file
can be accessed by multiple processes/threads simultaneously,
while each output file is written exclusively by a single
process/thread with no further access. Thus it is free of read-
after-write or write-after-write hazards.

III. RELATED WORK

The problem of massively concurrent access to many small
files has been studied extensively in the HPC community.

One type of optimization focuses on distributed metadata
server design [13–15]. GIGA+ [13] use a dynamic metadata
server scaling design to deal with incremental file count
growth, while ZHT [14] and GlusterFS [15] propose a static
zero-hop hash table for scalable metadata management. Both
metadata server designs can achieve decent scaling perfor-
mance for massively concurrent file I/O. However, since meta-
data are spread across servers, directory access with readdir()
has to communicate with all servers to gather information.
Thus both designs will result in slow directory access for
distributed DL training, given the large metadata volume and
highly concurrent access.

A second optimization technique seeks to relax file system
consistency. For example, HDFS [16] restricts file writing to
appending, while AMFS implements multi-read single-write
consistency [17] to provide highly efficient and scalable I/O
support for workflow applications on supercomputers. In the
context of distributed DL training, further relaxing file system
consistency can achieve better performance, as the output files
are rarely read by the training program.

To preserve the POSIX file access interface, users usually
have to mount these file systems through FUSE [18] in user
space. The overhead through FUSE is not trivial [19]. In our
work, we use the system call interception technique to remedy
this performance issue.

IV. DESIGN AND IMPLEMENTATION

We next discuss the FanStore architecture and implemen-
tation. In general, FanStore is concerned only with enabling
read accesses to data; it leaves write operations to the shared
file system, as typically only one training process writes
checkpoints or sample output (as discussed in §II).

A. Design Requirements

FanStore, at a high level, uses local storage space and
interconnect to reduce the I/O traffic between compute nodes
and shared file system. As discussed in §II, the requirements
of FanStore are:

• a global namespace,

• high volume metadata access with high concurrency,
• high volume data access with high concurrency,
• a POSIX file access interface in user space,

To address these requirements, FanStore exploits different data
placement and caching strategies for metadata and file data.
It exposes the POSIX file access interface via the function
interception technique which works in user space without
significant loss of performance. It also implements a general
lossless compression algorithm to support data compression
for all data types.

B. Architecture

FanStore has two major components: the data preparation
tool and the FanStore daemon. Users use the data preparation
tool to package the dataset on the shared file system so that
FanStore daemons can load the dataset efficiently into the
local storage space. The FanStore daemon maintains runtime
information on system status, and manages two types of data:
metadata and file data. FanStore can use local storage, e.g.,
RAM, RAM disk, SSD, and HDD, as the storage backend.
Figure 2 provides an overview of the FanStore architecture.

FanStore places metadata in RAM and file data in storage
backend by default, and maintains several data structures
(e.g., open file counter table) for high-throughput file access.
Worker threads in each FanStore daemon handle file system
requests intercepted from the DL training program. These
worker threads manipulate the metadata stored locally and
retrieve file data either from local storage or remote node via
interconnect.

Fig. 2: FanStore architecture overview

C. Data Preparation

FanStore requires a data preparation step before training,
where a user will have to pass into the data preparation tool a
list of all files involved. Large datasets originally stored in
the shared file system are then reorganized into partitions.
Each partition contains an exclusive subset of the files. Table I
shows the data layout in a partition. Each partition starts with

3



an integer (four bytes) of the file count, followed by a 256
byte long file name, a 144 byte long stat structure as the
file’s metadata, and the data size after compression. Then the
actual data are appended. The rest of the files are organized
continuously.

Upon loading, FanStore traverses each partition to dump the
actual data into local storage backend and builds an index of
file path and storage place, which includes both the node id
and the data offset. Such a design dramatically reduces the
metadata count compared to the case of storing the files on
the shared file system.

When using FanStore, the original relative file path is
prefixed with a predefined mount point. For example, the
path img train on the shared file system will be available as
/tmp/fs user id/img train. The internal structure remains un-
changed, and all nodes share the same view of the namespace
of training and validation datasets.

D. Metadata Management

FanStore keeps metadata in a hashtable in RAM. Each entry
has the file path as the key and the metadata record as the
value. In addition to the standard POSIX information, each
metadata record maintains the file location. All the metadata
of input files are replicated across nodes to maintain the global
view of the dataset. In each FanStore process, the file metadata
of a directory is preprocessed and cached in a hash table to
allow readdir() to return immediately.

E. Data management

We have observed two access patterns for training and
validation datasets: the training dataset is usually larger than
the validation dataset, and each training process can randomly
access files in the training dataset in each iteration. In contrast,
a subset of the validation dataset is read by each process
during validation, and this is usually done at the end of
each epoch. Based on this observation, FanStore allows users
to specify a directory so that all files in this directory will
be replicated across all nodes. This replication can improve
validation performance due to higher locality hit rate.

As discussed in §II-D, an input file is read completely in
sequential order. Thus, FanStore stores each input file as a
byte array without a block abstraction or striping.

Upon receiving a file open request, the FanStore worker
thread checks metadata to determine its availability and lo-
cation. If the file exists in local storage, the thread pulls the
file to memory and then returns its content. If the file exists
on a remote node, the thread communicates with that node to
retrieve its content. If the file does not exist, the thread returns
an error code. The communication in FanStore is implemented
by using MPI send() and recv().

Each file in the training dataset has a uniform probability
of being accessed, and each file access is independent of other
file access operations. Thus, a conventional cache will not
perform well: if it holds 20% of the dataset, then the cache
hit rate will be 20% in expectation in each iteration. FanStore
therefore implements a simpler caching mechanism: a file is

cached in memory only until the file descriptor is released.
We intend to use as little RAM space as possible, given that
the training process can be memory hungry. Occasionally,
multiple training processes on the same node can access the
same file simultaneously. Closing the file descriptor or evicting
the file from cache can result in a stale state in other process.
FanStore maintains a file counter table in memory with the
file path as the key and the number of processes that are
currently accessing it as the value. When a file is accessed, the
corresponding counter increases by one. Upon the release of
a file descriptor, the corresponding counter decreases by one.
If the counter is zero, the file content is evicted from cache.

When scaling out distributed DL training, there will be more
aggregated local storage space, though the dataset may not fit
in a single node. In this case, FanStore allows users to specify
a replication factor of N, so that each node can host N different
partitions.

F. POSIX Interface
Users on clusters usually do not have root privilege making

it infeasible to mount FanStore as a kernel module. Exposing
POSIX file access interface through FUSE is a viable solution.
However, FUSE introduces non-trivial overhead as the system
call crosses the user-kernel boundary [20]. Such overhead
results in significant slowdown in DL training.

To eliminate the performance overhead while preserving
user-space usability, FanStore implements the POSIX interface
using the function interception method [21]. I/O operations
from applications eventually call the low level functions such
as open(), close(), stat(), read(), write() in the GNU C Library
(glibc). The function interception method replaces the first
several instructions of the low level functions in glibc and
forces them to jump into a user space library where FanStore
logic is implemented. In this way, all I/O related function
calls stay in user space. Our current implementation supports
x86 64 and POWER9 architecture.

V. EXPERIMENTS

We use application experiments to evaluate the effectiveness
of the FanStore design and implementation. We present here
results of those experiments.

A. Hardware and Software Stack
We use two clusters for all experiments reported here. The

first cluster, Maverick2 (here, GPU Cluster) has 24 nodes,
each with one Intel Xeon E5-2620 CPU, four Nvidia 1080 Ti
GPUs, and a 60 GB local SSD. The nodes are connected by
a Mellanox FDR Infiniband interconnect with up to 56Gbps
bandwidth and a sub-micro second latency. The second cluster,
Stampede2 (here, CPU Cluster) has 512 nodes, each with two
Intel Xeon Platinum 8160 processors and 144 GB local SSD,
connected by a 100Gb/sec Intel Omni-Path (OPA) network
with a fat tree topology.

On the GPU cluster, DL frameworks use CUDA 9.0,
CUDNN 7.0, NCCL 2.1.4. Both clusters run CentOS 7.4,
Intel MPI 17.0.3, TensorFlow 1.8.0, TensorLayer [22] 1.9.1,
Keras [9] 2.2.2, and Horovod [10] 0.13.4.

4



TABLE I: Data layout in a partition

field num files file name stat misc data file name stat
byte range 0 - 3 4 - 259 260 - 403 404 - 411 412 - 411+data.size ... ...

TABLE II: Characteristics of application datasets

App Dataset Name # files # dirs total size file size
ResNet-50 ImageNet 1.3 million 2002 140 GB KB–MB
SRGAN EM 0.6 million 6 500 GB MB
FRNN RS 0.6 million 1 1.7 TB KB

B. Applications

We use three real world applications to evaluate FanStore
performance: ResNet-50 with ImageNet-1k, super resolution
generative adversarial network (SRGAN [23]) with a private
electron microscopy dataset [24], and fusion recurrent neural
network (FRNN [25]) with a reactor status dataset. Table II
summarizes the associated file counts and data sizes.

C. Data Preparation Cost

We first measure the time consumed by data preparation
when working with each of the three application datasets.
Preparing the ImageNet-1k, SRGAN, and RCNN datasets
takes 13, 11, and 14 minutes, respectively, on a single Intel
Xeon E5-2680 CPU node. These data preparation costs are
incurred only once, and are trivial compared to the subsequent
training times of hours or days.

D. Single Node Performance

We next compare FanStore performance against that of
alternative storage options and techniques on a single node.
Figure 3 compares the read performance of FanStore and
TFRecord on a single compute node. In both cases, data is
stored in the local SSD. Across the three datasets, FanStore
reads 4–6× faster than TFRecord.

Fig. 3: Read throughput: FanStore vs. TFRecord

Figure 4 shows ResNet-50, SRGAN, and FRNN perfor-
mance with data stored in FanStore, SSD through XFS, SSD-
fuse through bindfs [26], and Lustre (SFS). We report applica-
tion performance in items per second (items/sec). ResNet-50
achieves a sustained throughput with FanStore of 544 files/s,
which is 5.3% faster than on SSD (due to directory metadata
caching) and 2.0× faster than SFS. On the other hand, SRGAN
shows identical performance across all options. This is due to

the significant amount of computation performed in each iter-
ation. Even with the fastest storage in this case, the sustained
throughput is only 49 items/s for SRGAN. Similarly, FRNN
performs almost identically across the four storage options.

Fig. 4: Training throughput (Items/sec) with data stored on
different hardware and software

E. Multi-node Performance

In this experiment, we measure the real application perfor-
mance across scales on the GPU cluster or CPU cluster to
verify the effectiveness of FanStore’s design of scalability. If
not otherwise specified, each file has only one copy across
compute nodes in subsequent experiments. The performance
is measured in items/sec.

Figure 5 presents ResNet-50 performance across scales on
the GPU and CPU cluster. With the dataset stored in Lustre,
the training performance does not scale with the GPU count.
At the scale of 64 GPUs, the scaling efficiency with Lustre
is only 32.0%. On the other hand, with FanStore, the four-
node training runs 76.1% faster than Lustre, and the sustained
scaling efficiency is almost 100% on 64 GPUs compared to
that on 16 GPUs. The scaling efficiency with that of one node
as baseline is 90.4%. On 512 compute nodes in the CPU
cluster, the scaling efficiency is 92.2%.

In reality, the shared file system can not scale in a linear
fashion, and the performance can fluctuate depending on the
workload [27]. In contrast, FanStore’s performance relies only
on the interconnect and local storage. It is less prone to be
affected by I/O from other jobs on the same cluster.

Figure 6 and Figure 7 show the scalability of SRGAN on
the GPU cluster and FRNN on the CPU cluster, respectively.
SRGAN scales with 97.9% efficiency from one node to 16
nodes (64 GPUs). The close to linear scaling performance
attributes to the higher computation requirement in SRGAN
compared to that of ResNet-50. FRNN shows 93.3% efficiency
on 64 nodes compared to the baseline on one node.

On both clusters, FanStore enables highly scalable perfor-
mance across increasing node counts. The preprocessed dataset
has a fixed number of partitions: 48 for the GPU cluster
and 512 for the CPU cluster. These files are loaded to local

5



(a) ResNet-50 scalability with FanStore on GPU Cluster.

(b) ResNet-50 scalability with FanStore on CPU Cluster.

Fig. 5: ResNet-50 scalability when using FanStore for data
access, on GPU and CPU clusters.

Fig. 6: SRGAN scalability with FanStore on GPU Cluster

storage only at the beginning of the training process. Thus the
I/O workload to/from the shared file system remains constant
across different scales of training.

Even though SRGAN and FRNN perform similarly with
data stored in FanStore and Lustre at small scale, using
FanStore dramatically reduces the I/O workload. E.g, the 0.6
million file inputs during the 200-epoch SRGAN training
is now served with 48 large file reads and 120 million
network round trip MPI messages. Such I/O reduction results
in less risks for shared file system performance degradation or
unresponsiveness.

F. Discussion

In addition to real applications, we also run a benchmark
with varying file sizes of 128 KB, 512 KB, 2 MB, and
8 MB across the scales on the GPU and CPU clusters. The
detailed results are not presented due to the limited space in
this paper. FanStore’s capacity of I/O improvement is way
beyond ResNet-50, SRGAN, and FRNN. ImageNet-1k files
have an average size of 108 KB. Compared to the benchmark

Fig. 7: FRNN scalability with FanStore on CPU Cluster

throughput with 128 KB file on the GPU cluster, ResNet-
50 only uses 9.4% (7867 items/sec vs. 84233 items/sec) of
the sustained peak throughput of FanStore. ResNet-50 has 50
layers and 1.5 billion single precision floating operations per
image indicating FanStore can keep the scaling curve of an
application with 10.6× less computation per image as ResNet-
50. From the perspective of processors, FanStore can keep the
ResNet-50’s scalability with 10.6× more powerful hardware.

Up to 512 nodes on the CPU cluster, FanStore does not hit
the ceiling of scalability (with over 90% scaling efficiency).
This is due to the relaxed I/O consistency and the distributed
metadata and data service. FanStore’s performance largely
relies on the local storage and interconnect. With proper
replication setting, FanStore can keep up the scalability with
the underlying interconnect.

VI. CONCLUSION

We have presented FanStore, a transient runtime object store
that leverages local storage and interconnect in computer clus-
ters to enable efficient and scalable distributed deep learning
training. It dramatically enhances the I/O capacity on existing
hardware/software stack. FanStore incorporates various data
placement strategies and techniques of function interception,
and collective data management. FanStore preserves the global
namespace of the dataset and the POSIX file access interface
in user space. Real applications show that FanStore achieves
read performance that is close to XFS on a single node, and,
FanStore scales up to 512 compute nodes with over 90% weak
scaling efficiency. The design and implementation of FanStore
dramatically enhances the capability of existing hardware and
software in supporting the emerging distributed deep learning
applications.

REFERENCES

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” CoRR, vol.
abs/1802.09941, 2018. [Online]. Available: http://arxiv.org/abs/1802.
09941

[2] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” in Proceedings of the 47th International Conference
on Parallel Processing, ser. ICPP 2018. ACM, 2018, pp. 1:1–1:10.
[Online]. Available: http://doi.acm.org/10.1145/3225058.3225069

[3] V. Codreanu, D. Podareanu, and V. Saletore, “Scale out for large mini-
batch SGD: Residual network training on ImageNet-1K with improved
accuracy and reduced time to train,” arXiv preprint arXiv:1711.04291,
2017.

6



[4] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
SGD: Training ResNet-50 on ImageNet in 15 minutes,” arXiv preprint
arXiv:1711.04325, 2017.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 2009, pp. 248–
255.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[7] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). Savannah,
Georgia, USA, 2016.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface standard,”
Parallel computing, vol. 22, no. 6, pp. 789–828, 1996.

[9] F. Chollet et al., “Keras,” 2015, https://keras.io/.
[10] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep

learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.
[11] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”

in Proceedings of the 2003 Linux symposium, vol. 2003, 2003, pp. 380–
386.

[12] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for
large computing clusters.” in FAST, vol. 2, no. 19, 2002.

[13] S. Patil and G. Gibson, “Scale and concurrency of GIGA+: file system
directories with millions of files,” in Proceedings of the 9th USENIX
Conference on File and Storage Technologies. USENIX Association,
2011, pp. 13–13.

[14] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu, “Zht: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” in Parallel & distributed pro-
cessing (IPDPS), 2013 IEEE 27th international symposium on. IEEE,
2013, pp. 775–787.

[15] A. Davies and A. Orsaria, “Scale out with glusterfs,” Linux Journal, vol.
2013, no. 235, p. 1, 2013.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. Ieee, 2010, pp. 1–10.

[17] Z. Zhang, D. S. Katz, J. M. Wozniak, A. Espinosa, and I. Foster,
“Design and analysis of data management in scalable parallel scripting,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC12). IEEE Computer
Society Press, 2012, p. 85.

[18] M. Szeredi, “Fuse: Filesystem in userspace,” http://fuse.sourceforge.net.
[19] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To fuse or not to fuse:

Performance of user-space file systems.” in FAST, 2017, pp. 59–72.
[20] Y. Zhu, T. Wang, K. Mohror, A. Moody, K. Sato, M. Khan, and W. Yu,

“Direct-fuse: Removing the middleman for high-performance fuse file
system support,” in Proceedings of the 8th International Workshop on
Runtime and Operating Systems for Supercomputers. ACM, 2018, p. 6.

[21] G. Hunt and D. Brubacher, “Detours: Binaryinterception of win32
functions,” in 3rd usenix windows nt symposium, 1999.

[22] H. Dong, A. Supratak, L. Mai, F. Liu, A. Oehmichen, S. Yu, and Y. Guo,
“Tensorlayer: a versatile library for efficient deep learning development,”
in Proceedings of the 2017 ACM on Multimedia Conference. ACM,
2017, pp. 1201–1204.

[23] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic
single image super-resolution using a generative adversarial network.”
in CVPR, vol. 2, no. 3, 2017, p. 4.

[24] L. Fang, F. Monroe, S. W. Novak, L. Kirk, C. Schiavon, B. Y. Seungy-
oon, T. Zhang, M. Wu, K. Kastner, Y. Kubota et al., “Deep learning-
based point-scanning super-resolution imaging,” bioRxiv, p. 740548,
2019.

[25] J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive
instabilities in controlled fusion plasmas through deep learning,” Nature,
vol. 568, no. 7753, p. 526, 2019.

[26] “bindfs,” https://bindfs.org/.
[27] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and

N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 8.

7


