
Efficient I/O for Neural Network Training with
Compressed Data

Zhao Zhang∗, Lei Huang∗, J. Gregory Pauloski‡, Ian T. Foster¶
∗Texas Advanced Computing Center

Email: zzhang, huang@tacc.utexas.edu
‡University of Texas at Austin

Email: jgpauloski@utexas.edu
¶University of Chicago & Argonne National Laboratory

Email: foster@uchicago.edu

Abstract—FanStore is a shared object store that enables
efficient and scalable neural network training on supercomputers.
By providing a global cache layer on node-local burst buffers
using a compressed representation, it significantly enhances the
processing capability of deep learning (DL) applications on exist-
ing hardware. In addition, FanStore allows POSIX-compliant file
access to the compressed data in user space. We investigate the
tradeoff between runtime overhead and data compression ratio
using real-world datasets and applications, and propose a com-
pressor selection algorithm to maximize storage capacity given
performance constraints. We consider both asynchronous (i.e.,
with prefetching) and synchronous I/O strategies, and propose
mechanisms for selecting compressors for both approaches. Using
FanStore, the same storage hardware can host 2–13× more data
for example applications without significant runtime overhead.
Empirically, our experiments show that FanStore scales to 512
compute nodes with near linear performance scalability.

I. INTRODUCTION

Deep learning (DL) methods are increasingly popular in
both academia and industry. Researchers and practitioners
explore DL methods for classification, extrapolation, interpola-
tion, inverse problems, and many other tasks. The training of
neural network models inevitably requires the use of HPC-
like systems [1] with their powerful memory and commu-
nication architectures. Recent work [2–7] shows the power
of supercomputers in reducing image classification (ResNet-
50 [8]) training time from hours to 132 seconds, without loss
of validation accuracy.

DL training involves repeated steps, in each of which
elements of the large training set T are processed in batches
of size B, B ≪ |T |, with the processing of each batch
involving each of N processors handling B/N elements,
exchanging gradient information with all other processors, and
then updating its weights based on gradients.

Traditional shared file systems cannot meet the resulting I/O
throughput needs at scale [9–11]. In one recent study, this led
to a weak scaling efficiency of only ∼25% with ResNet-50 on
64 GPUs [9], while researchers at Microsoft report a low GPU
utilization of 52%, partially due to the ignorance of locality
in a cloud setting [12]. On a supercomputer, the repeated,
highly concurrent, and frequent file accesses can result in
file system slowdown and unresponsiveness, thus negatively
impacting other users on the same machine.

The availability of burst buffers on many modern supercom-
puters suggests a potential solution to this problem. Serving
training data from burst buffers can drastically reduce I/O
overheads, and thus enable efficient training at scale [9, 13].
However, the use of burst buffers introduces new challenges.
If burst buffers are located on every compute node (a so-called
“node-local” architecture), it can be difficult to determine the
optimal node count for training, given the twin constraints
of: data fitting local-node burst buffers and training making
efficient use of all processors. We illustrate this challenge and
possible consequences in Figure 1. Performance depends on
a balance between batch size B and processor count N . If B
is too large (i.e., B > Bmax, for some optimizer-dependent
Bmax), training may converge to a suboptimal target [14]. If
B/N is too small, then data assigned to each processor cannot
make full use of the parallel architecture. We denote b as the
minimum per-node batch size required for 100% utilization
of a processor; we need Bmax/N ≥ b (i.e., N ≤ Bmax/b)
for efficient execution. The use of node-local burst buffers
introduces a third constraint: we need N to be large enough
such that N ×M ≥ |T | (i.e., N ≥ |T |/M), where M is the
size of each node’s burst buffer.

Fig. 1: Node count landscape and associated consequences
For example, the original ResNet-50 model trains on the

∼140 GB ImageNet dataset with a batch size of 256 [14].
On a cluster with four GPUs and 60 GB local storage per
node, it requires three nodes (with a total of 12 GPUs) to host
the data, but the batch size of 256 can achieve greater than
90% utilization on no more than two GPUs. Thus the overall
efficiency is < 2/12 = 17%. We find that many DL applications
are in this situation, namely that the need for substantial total
aggregate burst-buffer memory to hold training data pushes
them too far to the right in Figure 1. In such cases, using

fewer compute nodes to host the data can significantly enhance
hardware utilization.

In this paper, we investigate the use of lossless compression
techniques to reduce the overall data size and thus push the
minimum efficient scale to the left along the axis in Figure 1.
We evaluate over 180 compressor and option combinations
and study the performance impacts for DL training using
both benchmarks and real-world datasets and applications. Our
experiments show that, with proper compressors, it is possible
for DL applications to preserve the baseline performance (with
data stored locally and no compression) even with decom-
pression overhead. Such improvement is made possible by the
I/O mechanisms in DL frameworks: 1) With asynchronous I/O
(also known as prefetch), the decompression overhead can be
masked by the computation and communication of each iter-
ation; 2) With synchronous I/O, the decompression overhead
may be compensated by the time saved with less I/O quantity
(details are in §VI-A). To ease the compressor selection, we
design a numerical algorithm to make compressor decisions
given the application and I/O performance.

Based on this study, we extend FanStore [15], a distributed
object store, with compression techniques in data storage
and file access over interconnect. FanStore integrates several
metadata and data placement strategies for scalability. It hosts
the compressed dataset across nodes and provides a global
namespace. Training programs can access the compressed rep-
resentation using the POSIX-compliant interface completely
in user space, so FanStore can be used without intrusive code
changes or root privilege. With the selected compressors, the
example applications preserve the baseline performance with
raw data and can host 2-13x more data on the same storage
hardware. Our experiments also show that with FanStore, DL
applications scale to 512 processors with over 90% weak
scaling efficiency.

This work makes three contributions:

• Efficient and scalable file access to a compressed rep-
resentation of many datasets, achieved by combining
new data structures, scalable metadata placement, and
consistency models for different data usage types.

• A compressor selection algorithm that evaluates the ben-
efit and overhead of candidate compressors and selects
the compressor with the highest possible storage capacity
given the performance constraint.

• The open source implementation of FanStore (https://
github.com/tacc/fanstore), tested on the Intel x86 64 and
IBM POWER9 architectures that cover over 96.6% of the
machines in the TOP500 list as of June 2019.

The rest of the paper is as follows. §II introduces distributed
DL training and compression algorithms. §III reviews related
work in I/O optimization for distributed DL training. §IV dis-
cusses the design of FanStore and §V presents implementation
details. We review our I/O implementation and describe our
compressor selection algorithm in §VI. We present experi-
ments in §VII and conclude and envision future work in §VIII.

II. BACKGROUND

We introduce the technical background of distributed DL
training, its I/O pattern, and compression techniques.

A. Distributed DL Training

In the popular data parallel approach to distributed training,
the model is replicated and training batches are distributed
across nodes at each iteration [16]. Researchers have used this
approach to scale ImageNet training on thousands of CPUs,
GPUs, and TPUs [2–7]. Compared to the single node case, the
data parallel approach runs in a similar way in the forward
computation, while it divides the backward propagation to
three steps. The first step is to compute the gradients on
each node; the second step is to run an allreduce function
in MPI so that each node has the identical averaged gra-
dients for each weight; the last step is to apply updates to
weights. In practice, the allreduce step uses a buffer, and an
allreduce is invoked once the buffer is full. Weight updates
are streamlined with allreduce operations. An “Epoch” in
training is when all items in the training dataset have been
visited once statistically. The relation between the number
of iterations, epoch count, data size, and batch size is as
following: num iter = num epoch∗data size

batch size

B. Distributed DL I/O

Unlike traditional compute-intensive HPC applications that
demonstrate bursty I/O behavior [17–20], distributed DL train-
ing has a long-lasting, repeated, high volume, and highly
concurrent I/O pattern.

1) Metadata access: A training program first enumerates
the supplied training data items and calculates the number of
iterations per epoch, given the specified batch size. This step
cause a workload burst in the metadata server. For example,
the ImageNet dataset has 1.3 million files in 2002 directories.
Reading all metadata for these files involves 2002 readdir()
calls and 1.3 million stat() calls from one I/O process.

This situation is exacerbated at scale. For example, when
running a Keras, TensorFlow, and Horovod stack on four
nodes, each with six GPUs, Horovod requires launching one
TensorFlow process per GPU, resulting in 4×6=24 processes
in total. Keras then launches four I/O threads per process, by
default, to read training data. There will then be a total of
4×24=96 independent I/O threads running, each generating
the workload described in the previous paragraph. We have
observed file system slowdown and unresponsiveness due to
this metadata access pattern on our machines.

2) Read: At the start of each iteration, each process reads
batch size files from the shared file system. Thus, in the
above example, the four nodes read a total of 96×batch size
files concurrently. The iterative training process makes this
read pattern persist until the end of training.

3) Write: DL programs write several output files including
checkpoint files, sample output, and log files. It is a common
practice to number the checkpoint files with epoch count, as
previous models may have a better generalization than later
ones. Unless resuming from a checkpoint, these files are not

read by the training program again. Sample output files are
usually written by Generative Adversarial Networks (GAN),
when the generator produces artifacts that are similar to real
ones. These sample outputs are examined by researchers with
expertise to verify the effectiveness of the GAN. DL programs
also write log files, often containing information about each
iteration and summaries of each epoch to keep track of training
progress. Once written, all these three types of output files are
rarely read again by the training program.

C. Data Compression

Compression techniques have been studied in file sys-
tems [21] and I/O forwarding [22]. Lossy data compres-
sion [23–26] with controlled data distortion was evaluated for
its efficacy in scientific computing scenarios. Another family
of compression algorithms is lossless compression. These
algorithms employ one or several of encoding and dictionary-
based algorithms to preserve the original data values. They
can be generic, such as Huffman coding [27] and Lempel-
Ziv compression [28, 29], or be format specific, such as
JPEG2000 [30] and LZW for TIFF [31].

We focus here on lossless compressors, since the impact of
lossy compression on training performance, while shown to
have promise in some cases [32, 33], is unclear in general.

III. RELATED WORK

I/O optimization has been extensively studied in the context
of different classes of target application, including HPC,
workflow, and AI.

Model performance (e.g., test accuracy and test loss) is criti-
cal for DL training. A global dataset view, in which every node
sees the same data set with identical directory structure and
files, is a key to preserving model performance [15]. Current
DL I/O optimization methods all enforce this constraint.

A common way to reduce the I/O workload is to encapsulate
the large dataset into one or several files in a customized for-
mat, then let training programs read the dataset through a cus-
tomized interface. Examples include TFRecord in TensorFlow,
IORecord in MXNet, and LMDB in Caffe. The encapsulated
dataset can be placed in shared file system or local storage,
if the dataset fits. Previous work [34] applies optimization
such as inter-process contention reduction, sequential seek
elimination, and randomization reduction in I/O with LMDB
at large scale. In general, this method can reduce metadata
workload on the server, but read/write traffic remains the same,
and the heavy I/O traffic persists through the training process.

A technical workaround is to partition the dataset into
chunks, and let each node only see its own chunks. After
every few epochs, the chunks are permuted across the nodes.
Using this method, every compute node sees a partial dataset
with a larger variance at a given time, and the global view is
maintained eventually when all compute nodes see all data.
However, the impact of the time-divided variance on the
training convergence is unclear. In addition, permuting the
dataset introduces additional overhead.

Another approach to reduce I/O workload for DL is to
host a shared file system across the local storage space of
the compute nodes [13, 35]. This method extends the storage
capacity from single node storage to cumulative storage space
and preserves the POSIX-compliant interface to the dataset,
but the metadata problem is left unaddressed in most of today’s
file systems and burst buffer solutions.

In contrast, FanStore localizes metadata server operations
and leverages the data compression technique to explore
further opportunity to enlarge on-node storage capacity using
the same hardware without losing training performance. It also
maintains the global data view using different strategies for
input and output data. In addition, FanStore enables POSIX-
compliant file access with the function interception method
which achieves near raw hardware performance.

IV. DESIGN

This section discusses the design of FanStore including
the interface, compressed representation, access on the com-
pressed data, and caching policy.

A. Interface

FanStore supports data access through the POSIX-compliant
interface. A file or directory can be accessed using its path,
e.g., /path/to/dir/file. FanStore leverages the function intercep-
tion technique to achieve high performance I/O. It intercepts
and implements the functions in GNU C Library.

1 int open(const char *filename, int flags[, mode_t
mode])

2 int close(int fd)
3 ssize_t read(int fd, void *buffer, size_t size)
4 ssize_t write(int fd, const void *buffer, size_t

size)
5 off_t lseek(int fd, off_t offset, int whence)
6 DIR * opendir (const char *dirname)
7 struct dirent * readdir(DIR *dirstream)
8 int closedir (DIR *dirstream)
9 int stat(const char *filename, struct stat *buf)

Listing 1: FanStore Interface

Listing 1 shows the interface conceptually, while the actual
implementation intercepts the 64 bit version of these functions.
open() and close() open and release a file, respectively. read(),
lseek(), write() provide the low level input, positioning, and
output functions. opendir(), readdir(), closedir() handle oper-
ations on directories. stat() retrieves metadata (file attributes)
from file system.

With these interface implemented, FanStore achieves a min-
imal POSIX-compliant interface. FanStore now implements a
multi-read single-write I/O model, where each file in FanStore
can be read multiple times and concurrently, while each file
can be written only once by one process. An output file
cannot be updated once a close() function is applied to the file
descriptor. This restricted writing model suffices for distributed
DL training, as concurrent writes to the same output file are
rare, and those output files are never read by the training
program again (as discussed in §II-B).

TABLE I: The compressed data representation

num files file path compressor stat size data
4 bytes 256 bytes 2 bytes 144 bytes 8 bytes variable

file path compressor stat size data
256 bytes 2 bytes 144 bytes 8 bytes variable
file path compressor stat size data
256 bytes 2 bytes 144 bytes 8 bytes variable

...

B. Compressed Data Representation

FanStore uses a compressed data representation to enhance
storage capacity. Table I shows the data layout of the represen-
tation. A data preparation tool (details in §V-B) partitions the
dataset into several partitions, selects compression algorithms,
and concatenates the compressed input files. Each partition
starts with the number of files, followed by, for each file, the
file path, compressor used (an integer identifier), metadata,
compressed data size, and compressed data. The compressed
dataset is stored in the shared file system and needs to be
prepared only once. Upon use, programs need to load the
compressed data representation to local storage.

C. Accessing Compressed Representation

1) Loading: Upon training, a parallel program loads the
partitioned compressed dataset from the shared file system to
local storage, with each node holding one or several partitions.
The program uses knowledge of the partition size and available
local storage space to make dynamic decisions on how many
partitions to load on each node. The program then scans each
partition to extract the metadata and compressed file data. It
inserts the locality information into the extra fields in the file
metadata. The metadata are stored in RAM using a hash table.
The compressed file data are stored as byte arrays in a hash
table keyed by the file path, if users specify RAM as the back
end; if local disks (e.g., SSD) are the back end, the compressed
data files are stored in the local file system. After all partitions
are loaded, the parallel program uses allgather() to exchange
the metadata scattered on compute nodes so as to construct a
global metadata view. Thus all subsequent metadata traffic on
the training dataset is local.

2) Accessing: Distributed DL training involves three types
of data access: 1) directory metadata, 2) file metadata, and
3) file data. Directory info (readdir()) is returned immediately
with the metadata stored in RAM. File metadata (stat()) is
handled in a similar way. Thus the high volume and highly
concurrent directory and file metadata access are handled
completely in RAM on each compute node. No traffic is placed
on the metadata servers of the shared file system.

To access file data, the training program issues a request
through GNU C library functions (open()). Figure 2 shows
the internal logic for open() request. FanStore intercepts this
function call and its parameters, then looks for the file in the
backend. If the compressed file data is local, it will decompress
the data and stores the plain file data in a cache region. If the
compressed file data is remote, it will send an MPI message to
retrieve the compressed data, then decompress it and store the

Fig. 2: FanStore handling an open request locally. Orange
indicates file path, yellow with stripes is compressed data,
solid yellow is uncompressed data. Backend is on the same
node as FanStore daemon.

Fig. 3: FanStore handling a read request. Orange indicates file
path; solid yellow is uncompressed data.

plain file in the cache region. Either way, the decompression
is done at runtime. To respond to subsequent read() calls,
FanStore returns the requested data from the cache region,
as shown in Figure 3.

In this way, all file access is processed within the compute
nodes over the interconnect, and no I/O traffic is placed to the
shared file system.

3) Caching: FanStore uses a shared memory pool to cache
the decompressed file data. The design principle is to use a
minimum amount of RAM for caching, as the DL training
program itself can be memory intensive. One characteristic of
the file access patterns in DL training is that every file has
an identical probability to be accessed at every iteration. So
FanStore implements a variant of the FIFO (first in first out)
caching policy, where we enforce the FIFO rule except for the
file that is being accessed by more than one I/O thread. As
shown in Figure 4, we use a thread-safe hash table to keep
track of the opened files and the number of I/O requests on
them at runtime. Once a file is opened and decompressed, the
counter of this file increases by one; and the counter decreases
by one when it is closed. The cache entry is released if the
counter of a file is zero.

V. IMPLEMENTATION

We now discuss the implementation details of FanStore on
its components, parallel runtime and communication, parallel
data loading, and fault tolerance.

A. Overview

Overall, training programs see FanStore as a shared file
system with a mount point specified by users. The dataset
is accessible using the same relative path when the dataset is
prepared. For example, directory dir/cate1/file1 is accessible as

Fig. 4: FanStore handling a close request. Orange indicates
file path; entries with stripes are evicted.

/fs/dir/cate1/file1. So users only need to change the directory
path in the training program to use FanStore.

FanStore has three components: the data preparation tool,
the function interceptor, and the FanStore daemon. Function-
ally, the data preparation tool is used to package the dataset in
the shared file system using the compressed data representa-
tion. The function interceptor intercepts the I/O function calls
in GNU C library and uses FanStore daemon for according
functions. The FanStore daemon manages the metadata, local
data access, remote data retrieval, data decompression, and
cache for decompressed data. It also handles the requests from
the function interceptor.

B. Data Preparation

The data preparation tool is a standalone multi-threaded
program that takes input parameters of data path, partition
count, and compression algorithm. In addition to data scatter-
ing, users can also specify a directory to be broadcast to all
nodes, for use for the validation dataset from which every node
reads all files. The data preparation tool produces datasets in
the form of several packaged partitions.

Upon preparation, the tool produces a list of files in the
specified path, then divides the list into several chunks. Each
thread processes file list chunks in a round-robin manner,
traversing all files in the list, compressing and concatenating
each file sequentially using the compressed data representa-
tion, as discussed in §IV-B. A dataset can be prepared once and
used for subsequent training repeatedly, unless it is updated.

C. Function Interception

We combine two techniques for function interception. The
first technique is to preload a dynamic library [36] with
identical function names. The second is trampoline [37], which
rewrites the first several instructions of a function to use a
customized implementation in user space, then jumps back to
the remainder or the end of the original function.

For some I/O functions in GNU C library, they can be called
internally. In such cases, these functions are directly accessed
without looking up the dynamical libraries, so the dynamic
library preload technique does not work. Instead, we intercept
functions such as open(), close()), read(), and stat() using the
trampoline technique. For those functions that are not called
internally, such as seek() and write(), we intercept them using
the dynamic library preload technique.

The dynamic library preload interceptor is implemented in
a shared library called wrapper.so. To use it, users need to

set export LD PRELOAD=/path/to/wrapper.so. It rewrites the
corresponding I/O functions in GNU C library when executed.

D. Parallel Runtime and Communication

FanStore is designed to be a scalable shared object store
with a target of thousands of compute nodes. Thus, instead of
a master slave model, FanStore processes see each other as a
peers. Users launch FanStore using an MPI task launcher, such
as mpiexec.hydra. In practice, FanStore should be launched
with one process on each node. Each FanStore process uses
its rank as the identifier.

When launched, each process uses its rank to determine
which partitions to load. It evaluates first, using the method
described in §IV-C1, whether there is enough storage space
for the assigned partitions; if so, it also evaluates whether it
has space for extra partitions. The more data served from
local storage, the less communication passes through the
interconnect, improving I/O performance.

FanStore needs communication at four places: 1) Metadata
broadcast; 2) storing additional partitions; 3) remote file re-
trieval; 4) write metadata insertion. In general, FanStore uses
MPI for communication. Specifically, the metadata broadcast
is implemented with the MPI Allgather() collective function.
Once decided to load additional partitions, FanStore does not
read them off the shared file system, but rather copies it from
neighbors in a virtual ring topology. In this way, the additional
copy forms a data transfer from one process to its neighbor.
Assuming each partition is about the same size, this data
transfer does not introduce contention from a topological point
of view. The remote file retrieval is implemented with MPI
send() and recv(). The last communication scenario happens
when a file is closed. Once the file is closed, the write cache
entry is dumped to back end and the metadata is forwarded
via an MPI message to the node with the corresponding rank.

E. Fault Tolerance

Model performance such as test accuracy or loss is sensitive
to the batch size. If one node fails during training, the batch
size changes, which may lead the model to a stale state. As
a common practice, DL programs usually write checkpoints
named with epoch numbers, as discussed in §II-B3. Thus
FanStore does not address the fault tolerance issue explicitly,
users can resume training from the last checkpoint in the
shared file system.

VI. COMPRESSION

The wide variety of compressors, datasets, and application
I/O sensitivities makes it challenging to quantify the benefits
and overheads of different compressors for a specific applica-
tion and target dataset(s). We describe here a numerical algo-
rithm for selecting compressors with the highest compression
ratio under the performance constraint.

A. I/O Implementation

I/O in DL training may be implemented either syn-
chronously or asynchronously. In the synchronous approach,

(a) Synchronous I/O with computation

(b) Asynchronous I/O with computation

Fig. 5: Common I/O methods in DL frameworks

I/O and computation are sequential in each iteration, as shown
in Figure 5(a); in the asynchronous approach, I/O is performed
in parallel with the previous computation, as shown in Fig-
ure 5(b), with the training batch read in the I/O phase of Iter
i fed to the computation of Iter i+1. Asynchronous I/O makes
better utilization of the compute hardware; Keras, PyTorch,
TensorFlow, and Caffe all provide such functionality. Note that
“Compute” in Figure 5 includes the forward computation, the
allreduce on parameters, and the backward computation.

Fetching compressed data involves two steps: read and
decompression. Compressed data lowers the time cost of read,
as each iteration reads less data, but introduces decompression
costs, which vary depending on the compressor. Decom-
pression performance is thus the key to enhancing storage
capacity without losing application performance. With the
constraint of no application performance loss, synchronous
I/O requires that decompression time be less than the time
saved reading compressed data. Asynchronous I/O imposes
the weaker condition that decompression time be shorter than
the difference between the per-iteration time and compressed
data read time.

The overall data fetching cost is a non-linear combination of
read performance and decompression performance. The non-
linearity is due to the bounding factor of read performance,
which may be either throughput, measured in files/sec, if
training files are small, or bandwidth, measured in MB/s, if
training files are sufficiently large. In practice, we pick the
larger of the two possible bounding factors.

B. Compressor Selection

We use Equations 1 and 2 to select compressors. The actual
values of Cbatch and S′

batch are known application parameters.
Sbatch and Tptdecom(c) can be estimated with samples using
a set of candidate compressors. Tptread and Bdwread can be
determined by an I/O performance benchmark. The resulting
C is a set of candidate compressors that meet the performance
requirements. Then we select the compressor with the highest
compression ratio. Empirically, we evaluate 180 compressor
configurations on six real-world datasets and then validate
this compressor selection algorithm with three use cases. The
details is presented in §VII-D and §VII-E, respectively.

TABLE II: Statistics of the test datasets

Dataset Format # files # dirs Total size Avg size
EM tif 0.6 M 6 500 GB 1.6 MB
Tokamak npz 0.58 M 1 1.7 TB 1.2 KB
Lung image nii 1.4 K 2 2.2 GB 1.3 MB
Astronomy image FITS 17.7K 1 1 TB 6 MB
ImageNet jpg 1.3 M 2,002 140 GB 100 KB
Language txt 8 1 32 MB 4 MB

Csync = {c| Cbatch

Tptdecom(c)
+ Tread(Cbatch, Sbatch)

< Tread(Cbatch, S
′
batch)} (1)

Casync = {c| Cbatch

Tptdecom(c)
+ Tread(Cbatch, Sbatch) < Titer}

(2)

Tread(Cbatch, Sbatch) = max(
Cbatch

Tptread
,

Sbatch

Bdwread
)

(3)

where:

Cbatch = (files) batch size per iteration
Sbatch = (MB) I/O quantity w/ compression per iteration
S′
batch = (MB) I/O quantity w/o compression per iteration

Tptdecom(c) = (files/s) decompress. throughput of compressor c
Tread(Sizebatch) = (s) time of reading Sizebatch files from disk
Tptread = (files/s) throughput of file read
Bdwread = (MB/s) bandwidth of file read
Titer = (s) time of an iteration

VII. EXPERIMENTS

We now present the test platforms, datasets, and applications
that we use to evaluate the effectiveness of the FanStore design
and the compressor selection algorithm.

A. Platforms

We use three clusters. GTX has 16 nodes, each with four
Nvidia GTX 1080 Ti GPUs and ∼60 GB local SSD. V100 has
four nodes, each with four V100 GPUs, a POWER9 CPU, and
∼256 GB local RAM disk. Both clusters use a Mellanox FDR
Infiniband interconnect with up to 56 Gbps bandwidth and
sub-micro second latency. CPU is a 512 node cluster, where
each node has two Intel Xeon Platinum 8160 processors and
∼144 GB SSD, connected by a 100 Gb/sec Intel Omni-Path
(OPA) network with a fat tree topology.

Our chosen DL frameworks use CUDA 9.0 and CUDNN 7.0
on GTX and CUDA 10.0 and CUDNN 7.4.2 on V100. We use
TensorFlow 1.12.0, TensorLayer [38] 1.9.1, Keras [39] 2.2.2,
and Horovod [40] 0.15.2.

B. Datasets and Applications

We use six real-world datasets to evaluate 180 compressor
configurations provided by lzbench [41]. Table II summarizes
the statistics of these datasets.

The applications in the experiment are SRGAN [42],
FRNN [43], and ResNet-50. SRGAN in this case is used

TABLE III: POSIX-compliant solution read performance
(files/sec) comparison

Solution 128 KB 512 KB 2 MB 8 MB
FanStore 28 248 9689 2513 560
SSD-fuse 6687 2416 738 197
SSD 39 480 9752 2786 678
Lustre 1515 149 385 139

to process 3D scanning electron microscope (EM) imaging
data of neural tissue samples. It trains a generative adversarial
network (GAN) to increase the resolution of undersampled
images acquired on a point scanning imaging system (e.g.
a scanning electron or scanning confocal microscope). This
application trains for 2000 epochs.

FRNN is used to predict disruptions in tokamak reactors,
with the goal of improving both their performance and oper-
ating/repair costs. Practical disruption prediction in tokamaks
has recently improved by utilizing deep learning algorithms
with real-time machine diagnostics to predict via long short
term memory (LSTM) the onset of major disruptions.

ResNet-50 is a convolutional neural network for image
classification. The test case is training ResNet-50 with the
ImageNet-1k dataset, which has 1000 categories and 1.3
million images in total.

C. Compression-free Performance

The goal of this experiment is to understand FanStore’s
performance without compression and how it compares to
other technical solutions. Figure 6 shows the read throughput
comparison between FanStore and TFRecord. Across three
datasets of ImageNet, EM, and RS, FanStore reads 5–10×
faster than TFRecord on both the Intel Xeon Platinum 8160
and POWER9 processors.

We then compare FanStore with other POSIX-compliant
solutions of 1) FUSE over SSD, 2) SSD, and 3) Shared File
System (Lustre) using a simple benchmark with a variable
file size of 128 KB, 512 KB, 2 MB, and 8 MB. Table III
summarizes the read performance. FanStore achieves 71–99%
of raw SSD performance and is 2.9–4.4× faster than FUSE
over SSD and 4.0–64.7× faster than the Lustre deployment.
The high read throughput attributes to the low overhead
of function interception technique described in §V-C, as it
bypasses the system calls in kernel space. It is this high speed
read that enables the possibility of leveraging compression
techniques to enhance storage capacity without losing appli-
cation performance.

D. Compressor Evaluation

In this experiment, we study the efficacy of a set of
180 compressor configurations on the six real-world datasets
shown in Table II. We sample a few files from each dataset,
then use lzbench to examine the compression ratio and de-
compression cost.

Figure 7 shows EM (tif) and RS (npz) results in the
compression-ratio and decompression-time tradeoff space on
the Intel Xeon Platinum 8160 processors (SKX) and IBM

Fig. 6: FanStore vs. TFRecord read performance

TABLE IV: lzsse8 and lz4hc compression ratios on the
six datasets

Dataset EM Tok. Lung Astro ImageNet Lang.
lzsse8 2.3 2.6 5.7 2.6 1.0 2.8
lz4hc 2.0 3.0 6.5 2.2 1.0 2.6
lzma 4.0 3.6 10.8 3.4 1.0 4.0
xz 4.0 3.4 10.8 3.4 1.0 4.0

POWER9 processors (POWER9). For the ease of visual per-
ception, we only show the compressors either with highest
compression ratio or lowest decompression time. E.g., in Fig-
ure 7a, lzsse8 has the lowest decompression cost (540 µs)
and a compression ratio of 2.3. From the results, we see
that most of the compressors with low decompression cost
have a compression ratio between one and three, while their
decompression cost is roughly within an order of magnitude
to the memcpy baseline. On the other hand, most compressors
with highest compression ratio (three to four) have a two to
three orders of magnitude higher decompression cost. The
reactor status dataset (NPZ) is an exception, as each original
file is ∼1.2 KB. Table IV summarizes the compression ratio
of lzsse8, lz4hc, lzma, and xz on the six datasets.
Generally, lzsse8 and lz4hc decompress fast and lzma
and xz have the highest compression ratios.

The constraint of compressor selection is to preserve the
compression free performance, thus we prefer compressors
with low decompression cost. lzsse8 and lz4hc are such
compressors with a non-trivial compression ratio on Intel and
POWER9 processors, respectively. So we choose these two as
the default compressors on the two architectures.

E. Compressor Selection

In this experiment, we use SRGAN and FRNN to examine
how decompression cost translates to real application per-
formance and evaluate the effectiveness of the compressor
selection algorithm presented in §VI-B. All experiments are
run on four nodes of GTX (16 1080 Ti GPUs), V100 (16
V100 GPUs), and CPU.

The numerical algorithm presented in §VI-B requires in-
puts from three sources: 1) Titer, Cbatch, and S′

batch are
application parameters; 2) Tptread and Bdwread are FanStore
performance, and they vary on machines; 3) Tptdecom(c) and
compression ratio are from compressors and datasets.

(a) EM (tif) on SKX (b) RS (npz) on SKX (c) EM (tif) on POWER9 (d) RS (npz) on POWER9
Fig. 7: Sample results of 180 compressor configurations on TIF and NPZ datasets, for Intel Xeon Platinum 8160 processors
(SKX) and IBM POWER9 processors (POWER9). Green crosses indicate the highest decompression throughputs and red
pluses the highest compression ratios.

TABLE V: Inputs to the compressor selection algorithm

App Cluster IO Titer Cbatch Sbatch

SRGAN GTX sync 9689 ms 256 410 MB
SRGAN V100 sync 2416 ms 256 410 MB
FRNN CPU async 655 ms 512 615 KB

TABLE VI: FanStore performance for different file sizes, on
four nodes

Cluster file size Tptread(file/s) Bdwread(MB/s)

GTX 512 KB 9469 4969
2 MB 3158 6663

V100 512 KB 8654 4540
2 MB 5026 10546

CPU 1 KB 29103 30

We first profile SRGAN and FRNN with a small dataset
hosted in RAM disk to minimize I/O impact and then use
the time cost per iteration as Titer. Cbatch and S′

batch can be
derived from application parameters. Table V summarizes the
required inputs from applications. Then we profile FanStore’s
performance with various file sizes across scales on all three
clusters Table VI shows only a part of the results, which will
be used in subsequent analysis. Inputs from compressors are
in §VII-D.

Now we use the inputs from application profile, FanStore
benchmark, and compressors to examine the effectiveness of
the selection algorithm in three cases.

1) SRGAN on GTX: Since SRGAN uses synchronous I/O,
we use Equation 1 to select the compressors. In our hardware
setting, 4 GTX nodes have an aggregated local storage space
of 240 GB. While the complete dataset is 500 GB. A file of
1.6 MB is expected to be compressed to 762 KB, which is
close to 512 KB. Thus we use the row of 512 KB and 2 MB
on GTX in Table VI. So we are expecting a compression ratio
of 500/240 ≈ 2.1. Using Equation 3,

Tread(Cbatch, S
′
batch) = max

(
256

3158
,
410

6663

)
= 81 063 µs

Tread(Cbatch, Sbatch) = max
(

256

9469
,
410/2.1

4969

)
= 27 035 µs

With data compression, now we have 81 603–
27 035=54 568 µs to decompress 256 files in four-way
parallelism. Thus each file has 54 568/256/4=852 µs for
decompression.

We see in Table VII(a) that lzsse8 and lz4hc meet
both the compression ratio and decompression cost constraints.
For comparison purposes, we also measure performance with
brotli, zling, and lzma, with results shown in Fig-
ure 8(a). We see that when using lzsse8 and lz4hc, we
achieve identical performance to the baseline, while using
compressors with higher decompression costs result in 1.1–
2.3× slowdown. From another point of view, if users are
bounded by the scale (e.g., if the maximum batch size corre-
sponds to at most four GTX nodes), they may consider trading
10% of performance for the 3.4× more storage capacity of-
fered by brotli. Otherwise, hosting the dataset on shared file
systems leads to lower performance, as shown in Figure 9(b).

2) FRNN on CPU: FRNN uses asynchronous I/O, so we
use Equation 2 to estimate the acceptable decompression cost.
In similar calculation as the previous example, the acceptable
decompression cost is 4952 µs. This decompression cost can
be met by all compressors in the candidate suite. To verify the
results, we select compressors with the fastest decompression
or highest compression ratio, as shown in Table VII(b). The
results in Figure 8(b) show that all three compressors have
identical performance to the baseline without compression.
Note that the compression ratio of the reactor status dataset
is larger than the value estimated from individual files (6.5
for the complete dataset and 2.6 for individual files). This is
because each small file takes a fixed block size depending on
the specific file system configuration; concatenating them into
large chunks can make better use of the storage space.

3) SRGAN on V100: SRGAN runs 4× faster, and thus
reads files more often, on V100 than on GTX. To sustain the
baseline performance with compressed data, FanStore needs
a compressor with faster decompression. Using Equation 1
and the data in Table V and VI, we see that it requires a
decompression cost that is no larger than 125 µs. lz4fast
meets the decompression condition, but its compression ra-
tio is close to one. lz4hc is the fastest candidate with a

(a) SRGAN on 16 GTX GPUs (b) SRGAN on 16 V100 GPUs (c) FRNN on 4 SKX CPUs
Fig. 8: Application performance with various compressors and processors

(a) SRGAN on GTX (b) ResNet-50 on GTX (c) ResNet-50 on CPU

Fig. 9: SRGAN and ResNet performance at scale. Ideal performance is a linear scaling of performance on a single node with
data stored in RAM disk.

category compressor decom cost com ratio

selected lzsse8 619 ms 2.5
lz4hc 858 ms 2.1

comparison
brotli 4741 ms 3.4
zling 17123 ms 3.1
lzma 41261 ms 4.2

(a) SRGAN on GTX

compressor decom cost com ratio

lzf 0.41 µs 8.7
lzsse8 0.43 µs 6.5
brotli 5.23 ms 13.0

(b) FRNN on CPU

compressor decom cost com ratio

lz4hc 942 us 2.1
brotli 5650 us 3.1
lzma 43382 ms 4.2

(c) SRGAN on V100

TABLE VII: Selected compressors for three example–platform combinations

compression ratio of two. Thus we select lz4hc, lzma, and
brotli to examine the actual impact on the application.
The properties of these compressors are in Table VII(c).
Figure 8(c) shows the results. lz4hc achieves 95.3% of
baseline performance, doubling storage capacity for just 4.7%
performance loss. brotli and lzma achieve only 24.6%
and 72.8% of baseline, respectively. Another approach, not
evaluated here, would be to implement asynchronous I/O,
which improves overall performance and enables compression
without performance loss.

Discussion. We show the efficacy of the proposed compres-
sion selection algorithm empirically. It is a coarse-grained esti-
mation as we simplify the problem. Specifically, the FanStore
benchmark only uses one process per node, while in real-
ity, each training process may launch multiple threads. The
benchmark is implemented in C, which has a lower overhead
compared to the Python runtime, especially for small file
access. Even with this simplified approach, the compressor
selection algorithm almost always gives appropriate results
which meet the compression ratio requirement with the lowest
possible decompression cost.

F. Scalability

To showcase the scalability of FanStore, we use SRGAN
and ResNet-50 on GTX and CPU. Figure 9(a) shows the
scalability of SRGAN with FanStore using lzsse8. The
weak scaling efficiency is 97.9% using 64 1080 Ti GPUs
compared to the case of one node with four GPUs. Though the
ImageNet dataset cannot be compressed further, it is promising
to use ResNet-50 to examine the scalability of FanStore.
Figures 9(b) and 9(c) show the scaling performance of ResNet-
50 on GTX and CPU. The weak scaling efficiency is 90.4%
using 64 1080 Ti GPUs compared to the baseline on a single
node. To further show the scalability of FanStore, we run it
across scales on CPU. The weak scaling efficiency is 92.2%
on 512 Intel Xeon Platinum 8160 processors. We also tried
the same case using the Lustre file system on 512 nodes, but
found that it ran for one hour without starting training. This
was because the metadata server of Lustre was processing the
metadata workload and did not return.

VIII. CONCLUSION

We have presented FanStore, a distributed compressed ob-
ject store that supports massively concurrent file access via a

POSIX-compliant interface. FanStore operates in a new point
in the design space of deep learning training performance and
storage capacity that allows it to host 2–13× more data on
the local storage devices without sacrificing training perfor-
mance for real-world applications. FanStore scales linearly
to hundreds of compute nodes, with the potential to serve
thousands of GPUs. Evaluation on three test cases shows that
its compressor selection algorithm makes correct decisions
based on application and I/O performance. Overall, FanStore
enhances the ability of existing supercomputers and clusters
to accommodate more DL applications, more efficiently.

In future work we aim to investigate additional applica-
tions and compression methods, including lossy compressors
such as SZ [24] and ZFP [44] as examined in the CODAR
project [45].

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research, Contract DE-AC02-06CH11357, the Exascale Com-
puting Project, Project Number 17-SC-20-SC, and by NSF
ACI-1540931 and OAC-1818253.

REFERENCES

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” 2018. [Online]. Available:
http://arxiv.org/abs/1802.09941

[2] Y. You et al., “ImageNet training in minutes,” in 47th International
Conference on Parallel Processing. ACM, 2018, pp. 1:1–1:10.
[Online]. Available: http://doi.acm.org/10.1145/3225058.3225069

[3] V. Codreanu et al., “Scale out for large minibatch SGD: Residual
network training on ImageNet-1K with improved accuracy and reduced
time to train,” arXiv preprint arXiv:1711.04291, 2017.

[4] T. Akiba et al., “Extremely large minibatch SGD: Training ResNet-50
on ImageNet in 15 minutes,” arXiv preprint arXiv:1711.04325, 2017.

[5] C. Ying et al., “Image classification at supercomputer scale,” arXiv
preprint arXiv:1811.06992, 2018.

[6] X. Jia et al., “Highly scalable deep learning training system with
mixed-precision: Training ImageNet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

[7] H. Mikami et al., “ImageNet/ResNet-50 training in 224 seconds,” arXiv
preprint arXiv:1811.05233, 2018.

[8] K. He et al., “Deep residual learning for image recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–
778.

[9] Z. Zhang et al., “FanStore: Enabling efficient and scalable I/O for
distributed deep learning,” arXiv preprint arXiv:1809.10799, 2018.

[10] N. Hemsoth, “HPC file systems fail for deep learning at scale,” 2018,
http://bit.ly/2MgDGSj.

[11] T. Hoefler, “Twelve ways to fool the masses when reporting performance
of deep learning workloads,” 2018, http://bit.ly/2platwi.

[12] M. Jeon et al., “Multi-tenant GPU clusters for deep learning workloads:
Analysis and implications,” MSR-TR-2018, Tech. Rep., 2018.

[13] Y. Zhu et al., “Efficient user-level storage disaggregation for deep
learning,” in IEEE Cluster, 2019.

[14] P. Goyal et al., “Accurate, large minibatch SGD: Training ImageNet in
1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[15] Z. Zhang et al., “Aggregating local storage for scalable deep learning
i/o,” in 2019 IEEE/ACM Third Workshop on Deep Learning on Super-
computers (DLS), Nov 2019, pp. 69–75.

[16] J. Dean et al., “Large scale distributed deep networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1223–1231.

[17] A. Kougkas et al., “Leveraging burst buffer coordination to prevent I/O
interference,” in 12th International Conference on e-Science. IEEE,
2016, pp. 371–380.

[18] P. Carns et al., “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage, vol. 7, no. 3, p. 8, 2011.

[19] Y. Kim et al., “Workload characterization of a leadership class storage
cluster,” in 5th Petascale Data Storage Workshop. IEEE, 2010, pp.
1–5.

[20] N. Mi et al., “Efficient management of idleness in storage systems,”
ACM Transactions on Storage (TOS), vol. 5, no. 2, p. 4, 2009.

[21] M. Burrows et al., “On-line data compression in a log-structured file
system,” in ASPLOS, 1992, pp. 2–9.

[22] B. Welton et al., “Improving I/O forwarding throughput with data com-
pression,” in International Conference on Cluster Computing. IEEE,
2011, pp. 438–445.

[23] D. Tao et al., “Significantly improving lossy compression for scientific
data sets based on multidimensional prediction and error-controlled
quantization,” in International Parallel and Distributed Processing Sym-
posium. IEEE, 2017, pp. 1129–1139.

[24] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in International Parallel and Distributed Processing Sympo-
sium. IEEE, 2016, pp. 730–739.

[25] T. Lu et al., “Understanding and modeling lossy compression schemes
on HPC scientific data,” in International Parallel and Distributed
Processing Symposium. IEEE, 2018, pp. 348–357.

[26] A. H. Baker et al., “Toward a multi-method approach: lossy data
compression for climate simulation data,” in International Conference
on High Performance Computing. Springer, 2017, pp. 30–42.

[27] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[28] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[29] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on Information Theory, vol. 24,
no. 5, pp. 530–536, 1978.

[30] M. Rabbani, “JPEG2000: Image compression fundamentals, standards
and practice,” Journal of Electronic Imaging, vol. 11, no. 2, p. 286,
2002.

[31] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 17, no. 6, pp. 8–19, Jun. 1984. [Online]. Available:
https://doi.org/10.1109/MC.1984.1659158

[32] F. G. Zanjani et al., “Impact of JPEG 2000 compression on deep convo-
lutional neural networks for metastatic cancer detection in histopatho-
logical images,” Journal of Medical Imaging, vol. 6, no. 2, p. 027501,
2019.

[33] S. Dodge and L. Karam, “Understanding how image quality affects
deep neural networks,” in 8th International Conference on Quality of
Multimedia Experience. IEEE, 2016, pp. 1–6.

[34] S. Pumma et al., “Scalable deep learning via I/O analysis and optimiza-
tion,” ACM Transactions on Parallel Computing, vol. 1, no. 1, 2019.

[35] N. Liu et al., “On the role of burst buffers in leadership-class storage
systems,” in 28th Symposium on Mass Storage Systems and Technolo-
gies. IEEE, 2012, pp. 1–11.

[36] M. Kerrisk and P. Zijlstra, “Linux programmer’s manual,” The Linux
man-pages project, version, vol. 3, 2014.

[37] G. Hunt and D. Brubacher, “Detours: Binary interception of Win 3 2
functions,” in 3rd Usenix windows NT symposium, 1999.

[38] H. Dong et al., “TensorLayer: A versatile library for efficient deep
learning development,” in Multimedia Conference. ACM, 2017, pp.
1201–1204.

[39] F. Chollet et al., “Keras,” 2015, https://keras.io/.
[40] A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed deep

learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.
[41] P. Skibinski and et al., “lzbench,” https://github.com/inikep/lzbench,

2018.
[42] C. Ledig et al., “Photo-realistic single image super-resolution using a

generative adversarial network.” in CVPR, vol. 2, no. 3, 2017, p. 4.
[43] A. Svyatkovskiy and J. Kates-Harbeck, “PPPL deep learning dis-

ruption prediction package,” https://github.com/PPPLDeepLearning/
plasma-python.

[44] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[45] I. Foster et al., “Computing just what you need: Online data analysis
and reduction at extreme scales,” in European Conference on Parallel
Processing. Springer, 2017, pp. 3–19.

