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Better and More Ambitious Science

Computing continuum: cyberinfrastructure
spanning edge devices, the cloud, and
supercomputers

Faster & more reliable networks
Specialized accelerators

Data locality

Performance requirements
Compute availability & costs
Better cloud management
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Imagine you are a computational scientist...

With a distributed science application to build...

What framework do you use?

TCHEHUI\IUEEXIEE)F Introduction | 4 glObUS labs
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What resources will | use? l

aWs D
Supercomputer Public Cloud A bit of everything?
j
v
9 dask °§> RA\L‘Z @ Many different
5 | Mwstame frameworks and
r PGI"SZ. Spqr’( < > Google Cloud Functions paradlgms a‘t Once?
Distributed/Parallel Framework Serverless
. v J (¢ ~ J
Strong Ecosystem Weak Ecosystem
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Challenges in Programming the Continuum

Distribute computational tasks across federated devices? Possible.
-> Globus Compute distributed FaaS Model

Manage intermediate data between tasks? Limited.
-> Interoperability between distributed/parallel frameworks is challenging
-> Cloud object storage is reliable/available but expensive for data-intensive apps
-> P2P CDNs are good for edge devices but bad for clusters

Build persistent and loosely coupled components? Limited.
-> Easy in cloud-native apps (microservice architectures)
-> Hard in federated apps (requires ad-hoc solutions)

:@@-| THE UNIVERSITY OF
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Programming the Continuum

New programming techniques enable and accelerate task-centric
science applications executed across the computing continuum.

P1 | What are the limitations in existing distributed computing frameworks? —— eScience 24 (Best Paper)

P2 | How to represent and efficiently move objects across federated systems? + SC 23 & HPPSS 24

P3 | How to support common high-level data flow patterns? — TPDS 24

P4 | How to build and deploy stateful agents across federated systems?  —— IEEE Computer* & SC ‘25*

MLHPC 21, [JHPCA 23, HCW ‘23, IUHPCA 24, CCGRID ‘25

Better, easier, & faster science! —— '/ Review/Progress

*Under Review / In Progress

:@@-| THE UNIVERSITY OF
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s@ Task Performance Suite

N ProxyStore

'2 Proxy Patterns

@ Federated Agents
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Modern Science Applications are Task-centric

Applications are composed as a set of discrete
tasks designed to automate computational
processes to achieve a scientific goal

Applications !" Challenges

e Heterogeneous Resources e Bioinformatics e Coupling Al/ML/Quantum
e Software Modularity e Cosmology e Cloud and HPC Integration
e Monitoring e High Energy Physics e Data Flow/Provenance

e Performance e Materials Science e Standards/Interoperability
e Reproducibility e Molecular Dynamics e Performance

e and many more! e and many more! e and many more!

[1] “Scientific Workflows: Moving Across Paradigms” (https://dl.acm.org/doi/10.1145/3012429)
[2] Workflows Community Summit (https:/arxiv.org/abs/2304.00019)

B THE UNIVERSITY OF

CHICAGO
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Task Execution Frameworks

Manage the execution of tasks in parallel across arbitrary hardware.

Workflow Management Systems Concurrent Executors
Define, manage, and execute workflows represented by a directed acyclic On-demand asynchronous
graph (DAG) of tasks execution of tasks

' | @R

Explicit Implicit
DAG defined via configuration file Task dependencies derived through
or domain specific language dynamic evaluation of a procedural script
H Rreow 20 Pegasus @dask o3> RAY swift,»| | HOW do we benchmark
af .o, 3 1 and compare execution
= 0% ) : "
nexcflow Freworkst i+ TaskVine  s"Pars frameworks?

THE UNIVERSITY OF Task Performance Suite | 10 glObUS labs
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TaPS: Task Performance Suite

-> Reference set of applications to ol Application Benchmark
. s Q.
standardize benchmarking 2 _
AppConfig App
workloads o
. ‘g Engine
-> Robust and reproducible 2 ——
configuration system gL Executor Transformer
2 . 2 5
- Benchmark task executors &data £/ 3 |38/ 2|[z|lS||2| 2
© © © o ﬁ iT Q
management systems 27|28 © ke 2
Task Data
Guide future research! Executors Management

https://taps.proxystore.dev/latest/api/

TCHEHUI\IUSXIES Task Performance Suite | 11 glObUS labS
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Applications: Benchmarking Workloads

Seven Real Apps
Two Synthetic

Diverse Patterns

Diverse Domains

Domain Task Type(s) Data Type(s)
cholesky Linear Algebra Python In-memory
docking Drug Discovery Executable, Python File
fedlearn Machine Learning Python In-memory

Real mapreduce | Text Analysis Python File, In-memory
moldesign | Molecular Design Python In-memory
montage Astronomy Executable File
physics Mechanics Python In-memory
. | synthetic | — Python In-memory
Synthetic -
failures - Depends on base app Depends on base app

Per-App Guides

N2 0 N N

Add your own!

https://taps.proxystore.dev/latest/apps/

f®:| THE UNIVERSITY OF

CHICAGO

moldesign

D-0-0-0-0-0D
b-0-0-0-0-0D
B-O-0000h

/ 2
e

g

fedlearn

synthetic

D—O—
D—O—

mapreduce

Input Data
Output Data

QO Task

[] Client Computation
— Task Dependency
-~ Control Flow

Task Performance Suite | 12
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What did we learn?

Many things!

But most important to this
story is...

=> No single executor is
the best at everything.

-> Large-scale federated
apps will need to use
multiple concurrently
for optimal results.

Dask

Globus Compute
Parsl|
ProcessPoolExecutor
Ray

TaskVine

Dask

Globus Compute
Parsl|
ProcessPoolExecutor
Ray

TaskVine

= =
= =—

Cholesky Docking Fedlearn

500 1000 1500 2000 2500 0 100 200 300

Mapreduce Moldesign Montage

10 20 30 40 50
Makespan (s) Makespan s) Makespan (s)

o

Application ~ Workers

Task Count  Max Serialized Object Size ~ Parameters

cholesky 64
docking 32
fedlearn 32
mapreduce 32
moldesign 32
montage 32

385
192
48
33
346
419

24 MB Matrix Size: 10 000x10 000, Block Size: 1000x 1000
O(1) kB Initial Simulations: 3, Batch Size: 8, Rounds: 3
20 MB Dataset: MNIST, Clients: 16, Batch Size: 32, Rounds: 3, Epochs/Round: 1
114 MB Dataset: Enron Email Corpus, Map Task Count: 32
O(1) MB Initial Simulations: 16, Batch Size: 16, Search Count: 64
O(1) kB —

https://github.com/proxystore/escience24-taps-analysis

Task Performance Suite | 13 glObUS labS
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<@ Task Performance Suite

N ProxyStore

'2 Proxy Patterns

@ Federated Agents
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Representing Intermediate Objects

In a federated environment, how do we...

- Represent an object x such that the producer and consumers of x can
globally reference x?
€ Assume x is immutable in the context of intermediate objects
-> Communicate x from producer to consumers when consumers
€ are not known ahead of time,
€ can be located in different places, and
€ have different optimal communication methods?

TCHEHUI‘IHSXIES ProxyStore | 15 glObUS labs
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Representing Intermediate Objects

Case Study: Ray

-> Ray represents x with an object ref

v/ Distributed reference counting
v Cheap to pass around
X Not valid outside of the Ray cluster it was created in

=> Ray communicates x using RPCs

v Fast & direct within a cluster
X RPC not possible outside of cluster

TCHEHUI‘IHSXIES ProxyStore | 16 glObUS labs
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Data flow management library for

\\\ ProxyStO re distributed Python workflows

e Represent and efficiently move

ProxyStore objects in federated applications
obj Object
Producer _»| Consumer e Proxy transparently decouples
- ore -
. control and data flow

Proxy ~ ¥

e " ob] External . e Best of both pass-by-reference

Apparent Data — ' cfﬁﬂﬁ“’iic True Data and pass-by-value
Path Path

e Use any mediated communication
method via plugins

:@@-| THE UNIVERSITY OF
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Proxy Objects

from proxystore.connectors import RedisConnector

What is a proxy (in this context)? from proxystore.store import Store
e Self-contained wide-area reference to a from proxystore.proxy import Proxy
target object

1
v

. .. def foo(x: Bar)
e Transparently resolve target just-in-time

when first used assert isinstance(x, Bar)
What are the benefits?
® Performance (pass_by_reference, async with StOI"E( ‘demo’, RedisConnector‘( oo )) as store:

resolve, skip unused objects) x = Bar(...)
p = store.proxy(x)

e Reduce code complexity ..

] i ) assert isinstance(p, Proxy)
e Partial resolution of complex objects foo(p)
e Access control

&P TCHEHUI\IHSXIES ProxyStore | 18 g[obug labs
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(2) Store gives object to (5) Object resolution

Connector and generates a N happens transparently
Proxy with metadata/Factory. Producer-side Consumer-side to consumer.
Store Store
S—
[Connector] [Connector] Cache
f i
Proxy 01611911.. Proxy
obj N o N obj
v obj + obj
/4 v Channel
\ /
| /4 N\
Producer } -------- T ----- >L Consumer
Proxy \
/ [ 1
(1) Producer puts object in | °bJ | (4) Consumer uses Proxy

(3) Producer sends

Store and gets back Proxy. S :
roxy to consumer.

like a normal object.

% E{EHUI\IHSXIES ProxyStore | 19 g[obug labs



http://progress_bar_id

Connectors

Protocol Storage Intra-Site Inter-Site Persistence

i : File Syst Disk

e Comprehensive mediated methods il = Y v
(prOducer/Consumer may be Redis/KeyDB Hybrid J/ v

temporally decoupled) S | e v

UCX Memory v/

e Connector = Python Protocol —_ S— y
e MultiConnector: Policy-based Globus Disk v v
routing between instances DAOS Disk* v v
P2P Endpoint Hybrid v 4 J/

TCHEHUI‘IUSXIES ProxyStore | 20 glObUS labs
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Where do we use ProxyStore?

Colnena Thinker

Multi-Site mE

ool #parst " :
Workflows “==-s~9" -1

Federated

Learning

Real-time
Processing

N >
\\ ProxyStore ProxyStore [ o |
Edge bevices
3 1024 o z @ 73 e ®
5 F15& s | s - Configuration Proxied Time (ms) Improvement
c £ 4 e *- —x -
@ 512 4 10 2 £ 50 S i — Globus Compute baseline — 3411 4+ 389
= -@- Baseline 5 5 x/__*_,_/—*—’— ------- Globus Compute Limit
3 256 - %~ ProxyStore | 5 2 G 2.5 —@- Cloud Transfer FileStore Inputs 2318 + 130 32.1%
2 845 |l Ideal = 2 —%— EndpointStore Inputs/Outputs 2160 & 46 36.6%
< w
T T T T T T T T 0 0.0 T T T T ' T " —r 20,49
128 256 512 1024 128 256 512 1024 0 10 20 30 40 50 EndpointStore I im’)C‘;tst s _)2232;6);3]87 igjé
Allocated CPU Nodes Allocated CPU Nodes Model Size (# Hidden Blocks) nputs/uiputs il
_ Polaris Login - Polaris Compute Chameleon Node - Chameleon Node Endpoint A Endpoint B
L2 4 = X w 1 L "¢] | | P/ < ....-...................... .
E 300 /X-x—x’x\ 8 Sx ‘:") 10" 4 _@— Cloud Transfer —%— MargoStore —#— UCXStore
© 200 1 X=X, + 100 A € i —&— DataSpaces —+— RedisStore —#— ZMQStore
S 0090 X 5 = ] P
P ‘® £ % x, . -+ Globus Compute Limit
] -, 8 ] 1 :
2 100 4 —L g 501 i = e € e
S E Baseline ®-® ° % / o 10° o Host 1 Cloud/
3 60 1% —x— ProxySt =3 ~x Q E Workflow
£ 50 roxystore H x/ El ] ) Producer
= 0 ¥ T T T T T T T T T T T T T T T T T T T @__
AN SR SRS IR R NN 10°10'10210°1010°10°10710810° 10°10'10210°10%10°10°10710810°

Workers Workers

Reduce Scheduler Overhead

Input Size (bytes) Input Size (bytes)

RDMA in FaaS Systems

-+ Apparent Data Path

--» Data Requests — True Data Path

P2P Networking

THE UNIVERSITY OF

& CHICAGO

ProxyStore | 21
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P2P Endpoints: Easy* Multi-Site Workflows

Endpoint A
—
Object

Host 1

Producer

Endpoint B

—
Object
Store

®:y®
Host 2
Consumer
oy |

-+ Apparent Data Path --» Data Requests — True Data Path

Moving data between sites
through the cloud is impractical!

Cloud/
Workflow

Engine
® g

ProxyStore Endpoints: Move proxies through the cloud and
data peer-to-peer with UDP hole punching

4 \
¢ Federated FaaS

\
1 L

( \ 4 N\ ( \ N\ Websockets REST

— —_ — —_— oflo_ ofle ——.

— — i o ~——

- — - — - — - — Object

=== » === i

=== === N Client

Compute Compute $ proxystore-endpoint configure demo --relay wss://relay.proxystore.dev
A J (& J

$ proxystore-endpoint start demo

* Easy = no SSH tunnels, one-time setup, no cloud fees docs.proxystore.dev/main/guides/endpoints/

THE UNIVERSITY OF

CHICAGO ProxyStore | 22 g[obug labs
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Multi-site Active Learning

Science Goal: Use quantum chemistry simulations and surrogate ML models to efficiently
identify electrolytes with high ionization potentials in a candidate set.

1
I
1
1
1
1
I
1

‘| QCc-Scorer | | QC-Recorder
~

Task“'_'_’t‘ ------------------ o ¥ T t—

Server

___________________________________________________________

= = € =

il PO 1-T < DU *E ::Q
[oofoo] ==

20 GPU Workstation Workstation/Head Node 1024 Theta KNL Nodes

e Training Tasks e Submit work e Simulation Tasks

e Inference Tasks e Process results

Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Ryan Chard, Yadu Babuji, Ganesh Sivaraman, Sutanay Choudhury, Kyle Chard, Rajeev Thakur, and lan Foster. Cloud services enable
efficient Al-guided simulation workflows across heterogeneous resources. In Heterogeneity in Computing Workshop at IPDPS. IEEE Computer Society, 2023.

: TCHEHUI\IHSXIES ProxyStore | 23 g[obug labs
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Multi-site Active Learning

Systems Goal: Reduce task communication overheads in workflow system to increase

system utilization and task throughput.

5 1024 o —x—x— | %
R @0 c /.LBaseIine: Pars| manages all
& Srr=—r— /-/1-0’%/ intermediate data (transfer via
5 256 1 ) —%— ProxyStorek 5 = manually created SSH
g wde” |l Ideal \og; channels)
| 1;8 2;6 512 1o|24 1;8 2;6 512 1o|24 ’ \AL

Allocated CPU Nodes Allocated CPU Nodes I:rg;;%i;:;;}i})':vl;eltc;iionneCtor

Takeaways e Training: P2P Endpoints
e Reduce overheads in task scheduler e Inference: Globus Transfer/
Reduce communication of re-used data P2P Endpoints

Optimize communication method per data type
No changes to task code needed

@] THE UNIVERSITY OF

@ CHICAGO ProxyStore | 24
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<@ Task Performance Suite

N ProxyStore

'2 Proxy Patterns

@ Federated Agents

:@@-| THE UNIVERSITY OF
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Yet...

Object proxy is a low-level paradigm:
- A great building block within Prowy Tymes
larger frameworks
- Has known limitations Abstral:::rtci):x

H - 2 High Level Stream Stream
What are higher-level proxy patterns Inforfanes | | STOTE Drodusar ot
-> Accelerate development of more
. . . . Low Level . .
sophisticated applications Interfaces | Connectors

-=> Address limitations

Lazy Transparent Object Proxy

TCHEHU?SXIEE)F Proxy Patterns | 26 glObUS labs
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1. ProxyFutures

Futures in {Dask, Parsl, Ray, ...} ProxyFutures
-> Control & data synchronization - Explicit & Implicit Usage
tightly coupled (no optimization)  => Data synchronization only (good)
-> Transfer mechanism fixed -> Any transfer mechanism
-> Not usable outside framework -> Framework-agnostic
Sequential Task A Task B Task C Task D
Pipelined w/ Task A Task C
ProxyFutures Task B Task D
AN Time >
Startup overhead or Compute using data
unrelated computations from parent task started

TCHEHUI‘IHSXIES Proxy Patterns | 27 glObUS labs
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1. ProxyFutures

36% reduction

in makespan!

4 )
= N
o
£ = Stage 2 across 5 stages

' ! ! ! ' mmmm Stage 3 & lex dat
N [ [ [ [ [ [ [ [ [ | Stage 4 complex data
k= I dependencies
3 | R I B e R R I 1 mmmm Stage 5
8 El ’

I | I I |

0 200 400 600 800 1000
Runtime (s)

1000 Genomes executed using Globus Compute (no task
data dependency support) on Chameleon Cloud

TCHEHU?SXIEE)F Proxy Patterns | 28 g[QbuS labs
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2. ProxyStream

High-performance stream processing 2] __5?53;;__

. . ] . T Proxy | |
-> Common in scientific computing P = [obj 1]
! — True Path
—=> Data are very |arge (suboptlmal for StreamProducer StreamConsumer _ = Anparentiath
. [Store H Publisher J [Subscriber] [ Store ]
Kafka-like systems) : A —> Event Notifications

-> Quickly (1) decide if data should be

used and (2) dispatch to node in cluster
. , -> ProxyStream decouples metadata from
(e.g., for simulation)
bulk data transfer

-> Send proxies + metadata through
message broker

-> Resolve proxies only when needed via
more performant methods

:@@-| THE UNIVERSITY OF

CHICAGO Proxy Patterns | 29 g[Qbug labs
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2. PrOXyStrea m Performance equal to or

better than state-of-the-art

/ N\
- Stream Item Size: 100 KB Stream Item Size: 1 MB Stream Item Size: 10 MB / Stream Item %?sg: 100 MB
& w0 - i = | /
g 2 ] ] B - | —@— Redis Pub/sub
2= ;i: ] ] .- —— ADIOS?
o 20_ - - — —
g 2 Ideal
8 L T T T T T T T T T T T L T T T T T T T T T T R T 1] T T T T T T T T T T T T T T
21 22 23 24 25 26 27 28 29 210 211 21 22 23 24 25 26 27 28 29 210 21 22 23 24 25 26 27 28 21 22 23 24 25 26 27 28
Workers Workers Workers Workers
Synthetic scaling test DeepDriveM D 32% faster_inference times
s 21% more inferences done
-> Stream process & dispatch ’/
. 3 @ 404 ’
- Random data & simulated 5o Baseiine
% E 204 ProxyStream
compute =

T T
0 50 100
Inference Batch Index

Use ProxyStream for stateful ML inference
workers in pure-functional frameworks

TCHEHUI\IHSXIES Proxy Patterns | 30 g[obug labs
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3. Proxy Ownership

Memory Management with Proxies

-> No reference counting—distributed reference counting in a federated
environment is challenging

=> Freeing a proxy can cause errors in other processes sharing the proxy
(essentially a null-pointer exception)

-> Forgetting to free can cause memory leaks

ProxyStore provides guidance on handling these but it's ultimately up to user

TCHEHUI‘IHSXIES Proxy Patterns | 31 glObUS labs
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3. Proxy Ownership

Rust Ownership/Borrowing Inspired £

- Enforced at Runtime
Map scope of proxies to tasks. Bo
- Child tasks can b f t Qunershid Bules - Ltailss )
| asKs can borrow a proxy from paren 1. Each object in the Store has an i
-> Borrowed proxy is valid for tasks’ lifetime associated OwnedProxy
) 2. There can only be one OwnedProxy
-> Out-of-scope proxies deleted for any object
. . 3. When the OwnedProxy goes out of
-> StoreExecutor for easy integration of scope the object is Solted
ownership with execution frameworks Reference Rules

1. At any given time, an OwnedProxy

. . . may be mutable borrowed once or
Custom Ilfetlmes fOI' more complex scenarios. imr¥1utably borrowed many times

= Code-segment, time-leased, and static lifetimes | 2. AnOwnedProxy and RefMutProxy
are mutable references; a RefProxy

- Extensible—create your own lifetime types is an immutable reference

TCHEHUI‘IHSXIES Proxy Patterns | 32 glObUS labs
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<@ Task Performance Suite

N ProxyStore  Last 2.5 years

'2 Proxy Patterns

S

lél Federated Agents } Since candidacy (~4 months)

@) THE UNIVERSITY OF
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Autonomous discovery “harnesses the power of
robotics, ML, and Al to solve big problems [...]
faster than ever before.”

Credit: ANL, “Science 101: Autonomous Discovery”

CHICAGO Federated Agents | 34 globus @ labs
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Challenge 1. Complexity is a Barrier

g o8 i

~— ~— — ~— —

-
Application Complexity

Middleware & infrastructure is not |
ready for automating discovery

TCHEHUI\IHEEXIES Federated Agents | 35 glObUS labs
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Challenge 2: Humans are a Bottleneck

Humans synthesize knowledge and propose hypotheses N

Inefficient use of

Humans write, debug, and run programs .
9 prog research infrastructure

Humans interpret results to inform new hypotheses

Agents can be the driving entities
-> Persistent, stateful, cooperative > We need to be here
= Intermittent human oversight J

Credit: lan Foster, “Empowering Science with Intelligent Middleware and Embodied Agents”

THE UNIVERSITY OF

CHICAGO Federated Agents | 36 glObUS labs
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Solution: Multi-Agent Systems for Science

v/ Automate closed-loop processes

v Natural expression of scientific resources (compute, instruments,
repositories)

v/ Operate autonomously but still cooperatively

v Execute multi-stage computational science processes

v/ Reduce mundane task responsibilities of scientists

The whole is greater than the sum of its parts.
- Aristotle

TCHEHUI\IHEEXIES Federated Agents | 37 glObUS labs
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How do we build agents?

TCHHUI‘IIéXTGO Federated Agents | 38 glObUS labs
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We are missing the
middleware to build and [

Search database, invoke
code, query LLM, ...

connect our agents!

A computational system/that canlinteract with its
‘environment|and/learn/from those interactions

Data repositories, HPC, Accumulate data, adapt
robotic labs, other agents processes, improve answers

Credit: lan Foster, “Empowering Science with Intelligent Middleware and Embodied Agents”

TCHEHU?SXIEE)F Federated Agents | 39 glObUS labs
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Agentic Workflows

¢ X

Agentic a
Infrastructure

Pilitil
|enEEEEE]

Compute Experimental Facilities Data Storage

TCHEHUI‘IHSXIES Federated Agents | 40 glObUS labs
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Middleware Open Challenges

-> Access & privileges Agentic Discovery: Closing the Loop with

Cooperative Agents

- Agent discovery Sl e L
=> |Asynchronous communication]

lan Foster, Argonne National Laboratory, Lemont, IL, 60439, USA

Abstract—As data-driven methods, artificial intelligence (Al), and aL
9 Fa u It to I e ra n C e workflows accelerate scientific tasks, we see the rate of discovery increasingly
limited by hy iSi ] 1 jecti ing

( hypotheses,
9 Interfa CeS ] Areas we focused on needed to a Publish [=_':D @ Objective
eoe Store and disseminate Store and disseminate
_ results in the form of m results in the form of
knowledge knowledge
l odern r Planning
! Manage trade offs & resources
Vs M gration R
1 1 Discover trends, Gather relevant
i iscover trends, L ather relevan
-> |Persistent stateful execution
\_ interpret results S learn from results

Realizing sy
> Mobility
els, sin Analysis M e —— Knowledge

Exploration ¢

-=> Provenance
Service :Ef’ Prediction
Perform simulations, Generate testable

) p 1 i hypotheses from
m ke eenati = ar
a n y O re b make observations ypothesze current knowledge

FIGURE 2. The scientific method is an iterative process (stages depicted in the central loop). Specialized agents (depicted as
boxes with corresponding stages indicated by color) can carry out the stages autonomously. Agents can also transcend stages
to enable long-term planning, exploration, and safety.

Under review in IEEE Computer

& TCHEHUI\IHSXIEE)F Federated Agents | 41 g[obug labs
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What does the middleware look like?

Dask, Parsl, Pegasus Akka, Dask, Ray Globus Compute, Lambda
++ Task automation ++ Stateful computation ++ Remote execution
++ Distributed task execution ++ Actor-to-actor interaction ++ Fire-and-forget model
N\ J
Y
Academy

e Fire-and-forget. Agents spawned across remote/federated resources
e Autonomy: Agents have agency over their actions and local state/resources
e Cooperative: Agents interact to execute tasks & workflows

Bi-) THE UNIVERSITY OF
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Exchange (Data Plane)

——————————————————————————————————————

52 Mailbox ' 54 Mailbox

___________________

2 Mailbox
V v v
Cllertt AgeIt Agertt ()
0 Actions 7O Actions

& Handle () Control |~ (, Control
@ Handle — @ Handles — {5 Handles
""""""""""""" S state £ state

Launcher(s) (Control Plane)

F] THE UNIVERSITY OF
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Communication & Execution

Exchange Launcher
- Asynchronous communication through mailboxes - Not required but enables
- Every agent/client in system has a unique mailbox remote execution of agents
-> Local & distributed implementations > Returtns handle to launched
agen
-> Optimized for low-latency g
: L -> Local threads or processes
- Hybrid communication model
, o -> Distributed with Parsl

= Prefer direct communication between agents when .

possible; fall back to indirect communication via - Federated with Globus

object store Compute
-> Pass-by-reference with ProxyStore for large data

TCHEHUI‘IHSXIES Federated Agents | 44 glObUS labs



http://progress_bar_id

Agents defined
by a behavior —

Clients & other
agents can —
request actions

import time, threading
from academy.behavior import Behavior, action, loop
T
class Example(Behavior):
def init_ (self) -> None:

Instance of a

self.count = © 41 Dbehavior is state
|_p @action

def square(self, value: float) -> float:
return value**2

@loop

def count(self, shutdown: threading.Event) -> None: Control IOOPS fOf
while not shutdown.is set(): < autonomous

self.count += 1 behavior

time.sleep(1)

THE UNIVERSITY OF
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. . from academy.exchange.thread import ThreadExchange
Smgle Interface from academy.launcher.thread import ThreadLauncher

fOI‘ managing ~— from academy.manager import Manager
your agents T~

with Manager(

exchange=ThreadExchange(), Choose eXChange

launcher=ThreadLauncher(), -— & launcher for
) as manager: environment

behavior = Example()

Interact Wlth |y handle = manager.launch(behavior)

agents via
handles T future = handle.square(2) \ Pass handles to

\asser‘t future.result() == 4 T other agentS

handle.shutdown()
manager.shutdown(handle.agent_id, blocking=True)
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Features (rapid fire)

Any number of actions & control loops
Special purpose control loop decorators
Multi-threaded/non-blocking action execution
Startup and shutdown callbacks

State persistence plugins

Re-execution on failure

Agents can launch other agents
Discovery/lookup based on behavior

Handle mailbox multiplexing )

Any interesting? Ask
about them at the end!

N 230 730 75 7 7 7 2 2
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Comparisons to Actor Systems i meee] S

20 { -@- Academy+ProcessPool =%+ Dask 1 : -@- Academy
g 10 § === Academy+Parsl -9 Ray s x v J ~%- Dask
- B ] ST At ® 5 61 -4 Ray
2 ] 4 4o g e . g 3
= B st s s s g S g ]
LTS & m— Tl — IS I

i t ...... ‘ Slngle node 0.001 g x ............. “ ;
02l e— Lower is better W i, cladai : : Lower is better
1 2 4 8 16 32 52 104 1kB 0 kB 100 kB 1 MB 10 MB 100 MB
Workers Action Payload Size

Low-memory overhead |. . {-e- actemy o comme  n X _
y 2 o0f Y e *WarmStarts «% e || Low-latency messaging
E -4 Ray ‘__‘___)‘(1‘:;_'*,__‘._--_2'/_9___,’«_,
s 1 0T g P i
E X _®
2 o1 X .,0
IR R - X" ./
§ 0.01 g . """" : /0/. uk Liwer is bettéer
_ 4» 3 ,’, , , , i d . . : Worlers pler nole
FaSt Start up 1 2 4 8 16 32 52 104 208 416 832 1664 3328
Workers

Experiments performed on Aurora @ ALCF
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Use Case: MOF Discovery

Metal Organic Frameworks (MOF)

- Composed of organic molecules (ligands) and
inorganic metals (nodes)

-> The sponges of materials science!

-> Porous structures that adsorb and store gases

-> Topologies can be optimized for targeted gas
storage — Carbon Capture

Intractable search space of ligand,

How to efficiently discover MOFs with node, & geometry combinations

desirable properties for target applications?
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MOFA: Online learning + GenAl + Simulation

2 N h x Computational

—a
1 s Ml \ Estimate Optimize Cell I—F_> P ”,' Agents
( y ;II 7:\\.( "; l \ - . A .
- - = 7 Id % )
: - 2 : - P I"I(EEL)j-.rr:ﬁlenr i | Database I‘ gti:t:c?:?e PS4 2Ok
pewe I TLINTIER
Embodied - T o oo | L0
. Knowledge Agent | Queve |
Agents A
1

Genérate 1 Process | L.‘ “““ g I Assemble l
Linkers | ) Linkers M . _Q_u_el_le_ =0 ’ MOFs

L | L 50000 |

Al Agent |34 & N i

Yan et al., “MOFA: Discovering Materials for Carbon Capture with a GenAl- and Simulation-Based Workflow” (Under Review)
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MOFA through Autonomous Agents

2
) T
4—.Capacmes Estimator

co

-l Resources

Lattice Optimized
MOFs

Dataset = Data Flow

Stable

Agents executed remotely via Globus Compute
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1
— . 1 Estimate CO, of optimized MOFs K
Estimator 2 OTOP ——

Optimizer
=== Optimizer scales out after first validated MOFs
Validator =| Validator scales out to start processing MOFs

=| MOF buffer fills and Assembler scales down

MOFA Agents Trace

|

Assembler o e . . q

Generator EES==5 First batches of ligands Why is this agentic model better?
2 anp 4] Generator -> Placement: Move agents to
& e HesEmpler resources
B 150 1 — validator . .
£ 100 4 ==+ Optimizer -> Separation of concerns: Resource
5 Bl ol acquisition and scaling based on
w0

local workload
- Loose coupling: Swap agents or

50 A
1 Y S—

g | :
%‘ 20 1 | Batch job walltime expires < Integrate new agents. (e'g" SDL)
= U -> Shared agents: Multiple
] \
§ 101 e S j Soeceneny Jeste workflows can share agents
e . W sesssssssas Y P — presnnannn, PYTTTITITIIT shassnnannan . . .
2 | :' 1 Ee e e (microservice-like)
0 — - I T s -0 R I P
0 / 2000 4000 6000 8000 10000
| Assembler and Estimator auto-scale | Runtime (s)
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Summary
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I l I I a ‘ t Data Plane [Task pescription (Funcx) |
TJ' Worker ( o ¥ S\

Coordinator Aggregator
Tl T"’ T = Request ’ < Request

\
i

1
.

Result Result

y proxystore/taps
@& Q search © Sl v

@nker Task Server Endpoint Worker )

{Large Inputs/Outputs (Proxystore)‘

Guides  APIReference Contributing Publications

Launcher {WorkerStrateg

A A
l fx submitted jobs ' F l S

Control Plane

& F

Estimate

EgE Aduater, | «—— Optimize Cells «——
(Re)Train
HofLinker

Home Table of contents

TaPS: Task Performance Suite

Overview Citation

Get Started
FQ

Issues (GitHub)

Target
property

Parameters

Reward

Optimal u to
prompt for target

(new) Parameters

Thinker

TaPS is a standardized framework for evaluating task-based execution frameworks and data

Changelog (GitHub)
management systems using a suite a real and synthetic scientific applications,

N proxystore/proxystore
N Proxystore 07.1 - () et

Home Concepts Guides APIReference Contributing Publications

Guided
7 “Queue - Generation
Home Table of contents
Overview Installation B I - 3
. ayesian Optimization
et N — o ey P L i ] e o sample f
u
roxvStore
£AQ
Issues (GitHub)
Changelog (GitHub) Proxystore %
1
— 1
[ 0] e 5 1515101511151 Lcoes W oor o 2wz s |
1
1
1
1
ProxyStore facilitates efficient data flow management in distributed Python applications, [ QC-Scorer | QC-Recorder ML-Recorder | !
such as dynamic task-based workflows or serverless and edge applications. S -

Task

Sener Simulation QMWChem)

Empowering large-scale science through open-source software
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summary

New programming techniques enable and accelerate task-centric
science applications executed across the computing continuum.

P1 | TaPS: Support research in distributed/parallel execution —— eScience 24 (Best Paper)

P2 | ProxyStore: Better object references for federated environments —1 SC 23 & HPPSS 24

P3 | Proxy Patterns: Better data flow patterns with object proxies — TPDS 24

P4 | Federated Agents: Build science agents for autonomous discovery ——— |[EEE Computer* & SC 25*
Better, easier, & faster science! MLHPC 21, IUHPCA 23, HCW ‘23, IJHPCA 24, CCGRID 25

& Others In Review/Progress

*Under Review / In Progress
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Programming the Continuum Questions?
Towards Better Techniques for Developing

Distributed Science Applications Contact:

J. Gregory Pauloski
jgpauloski@uchicago.edu

New programming techniques enable and

github.com/proxystore

accelerate task-centric science applications Reference:

executed across the computing continuum. github.com/proxystore
docs.proxystore.dev

- TaPS taps.proxystore.dev

-> ProxyStore

> Proxy Patterns Acknowledgements:
e Argonne National Laboratory under U.S.
-> Federated Agents Department of Energy Contract
DE-AC02-06CH11357
B . . | e National Science Foundation under Grant
etter, easier, & faster science! 2004894 and Grant 2209919

e Exalearn Co-design Center of the Exascale
Computing Project (17-SC-20-SC)
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