
Camera

Scalable Deep Neural Network Training with
Distributed K-FAC

Greg Pauloski
23 March 2022

Committee: Kyle Chard, Ian Foster, Zhao Zhang

CameraOutline

1. Challenges in large scale deep learning training
2. Optimization methods: first-order vs. second-order
3. Prior work in distributed K-FAC
4. Communication optimized distributed K-FAC [SC ‘20, TPDS ‘22]
5. KAISA: generalizing distributed second-order optimization [SC ‘21]
6. Implementation
7. Evaluation

2

CameraLarge Scale Training

Faster ➡ Data Parallelism

3

Larger Models ➡ Model Parallelism

Can we keep scaling the batch size to
use more processors?

Camera

4

CameraHPC and Machine Learning

Large batch sizes (e.g., 100K to 1M)...

++ Used to scale out to more nodes.

-- Leads to worse generalization performance and
higher communication costs.

5

How can we better enable large batch training on
HPC (generalization performance and scaling)?

CameraPrevious Efforts

Generalization Gap

● Learning Rate Warmup
● Learning Rate Scaling
● Batch Size Warmup
● Layer-wise Adaptive Learning Rate

(LARS/LAMB)
● Distributed Batch Normalization
● . . . and many more

6

Better Scaling

● Gradient Compression
● Lower Precision (FP16)
● Network Topology Aware Operations
● Layer Pipelining/Hybrid-Parallelism
● Asynchronous SGD
● Custom Fused Kernels
● Gradient Checkpointing
● . . . and many more

Camera

7

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

First-Order Optimization Second-Order Optimization

Hessian has O(n2) elements
Inversion is O(n3) operations

Precondition

CameraSecond-Order Optimization

A good candidate for large batch, distributed training!

8

1. Larger batches are more representative of the dataset’s distribution.

→ infrequent second-order information updates

2. Gradient noise limits batch size and increases throughout training (McCandlish, 2018).

→ second-order methods optimize noise-independent terms better (Martens, 2014)

3. Higher computation-to-communication ratio in second-order methods.

→ enables more advanced distribution schemes

CameraKronecker-Factored Approximate Curvature

● Second-order methods incorporate the curvature of the parameter space.
++ More progress optimizing the objective function per-iteration
-- Expensive to compute!

9

● K-FAC efficiently approximates the Fisher Information Matrix (FIM) for preconditioning
the gradients (Martens+, 2015).

● Generalizes better with large batch sizes and converges in fewer iterations than
first-order methods (Ba+, 2017)
○ Scales to extremely large batch sizes, e.g., 131k for ImageNet training (Osawa+, 2019)

CameraKronecker Product

10

m ✕ n p ✕ q mp ✕ nq 2 ✕ 2 3 ✕ 2 6 ✕ 4

CameraEfficient F Approximation

Step 1: Approximate the FIM as a block diagonal matrix*

Step 2: Decompose each block as the Kronecker Product
of the activations of the previous layer with the gradient
w.r.t. the output of the current layer

*Recall inverse of block diagonal matrix is composed of the inverses of
each block

11

CameraEfficient Gradient Preconditioning

12

Step 3: Apply properties of Kronecker Product to weight update equation

Properties:

Weight Update:

Preconditioned
Gradient

Camera

. . . can be difficult

Tikhonov Regularization:

Use Eigen Decompositions:

Computing Inverses

13

CameraData Parallel Training with K-FAC

14

1. Every iteration:
Compute Factors

2. Every t iterations:
Compute Second-Order
Information

3. Every iteration:
Precondition Gradients

CameraData Parallel Training with K-FAC

15

Redundant expensive
second-order computations

CameraData Parallel Training with K-FAC

16

Camera

A1, G1A1, G1A1, G1

Model Parallel K-FAC Stage

17

MEM-OPT
Osawa et al. (CVPR 2019)

++ Lower memory usage

-- Communication required every iteration

Layer 1
Worker 1

Worker 2

Worker 3

𝒢1

𝒢2

𝒢3

Worker 1

Worker 2

Worker 3

eig(A0,G1)

eig(A1,G2)

eig(A2,G3)

Can we make the communication frequency a function of the
second-order computation frequency?

CameraModel Parallel K-FAC Stage

18

COMM-OPT
Pauloski et al. (SC20)

++ Communication every t iterations

-- Higher memory usage due to caching

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

A1, G1A1, G1A1, G1Layer 1
𝒢1:L

𝒢1:L

𝒢1:L

Caching Second-Order Information

eig(A0,G1)

eig(A1,G2)

eig(A2,G3)

Preconditioning is cheap compared
to eigen decomposition

CameraMEM-OPT vs COMM-OPT

19

(a) ResNet-50 (a) ResNet-101 (a) ResNet-152

Communication Operation Interval

Gradients Factors Preconditioned Gradients Inverses/Eigen Decomps

Allreduce Allreduce Broadcast/Allgather Broadcast/Allgather

MEM-OPT 1 t 1 N/A

COMM-OPT 1 t N/A t

CameraCommunication vs Memory

20

Less Memory More Memory
More Communication Less Communication

MEM-OPT COMM-OPT

???

Camera

1 per layer

Gradient Worker Fraction (grad_worker_frac) = m / N

MEM-OPT: grad_worker_frac = 1/N
COMM-OPT: grad_worker_frac = 1

Distribution of Work

Worker Types for a Layer (N workers)

21

Compute second-order
information (one of the

gradient workers)

Second-Order Worker

Compute preconditioned
gradient with second-order

information

Gradient Worker

Receives preconditioned
gradients from a gradient

worker

Gradient Receivers

m per layer N - m per layer

CameraGradient Worker Fraction

22

0 1 2 3

4 5 6 7

HYBRID-OPT
grad_worker_frac = 1/2

COMM-OPT
grad_worker_frac = 1

MEM-OPT
grad_worker_frac = 1/8

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

: preconditioned gradient communication group
(every iteration)

: second-order information communication group
(every t iterations)

1

0

0

: second-order (gradient worker)

: gradient worker

: gradient receiver

CameraGradient Worker Fraction

23

0 1 2 3

4 5 6 7

HYBRID-OPT
grad_worker_frac = 1/2

COMM-OPT
grad_worker_frac = 1

MEM-OPT
grad_worker_frac = 1/8

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Less Memory More Memory
More Communication Less Communication

CameraKAISA: Design Goals

● PyTorch gradient preconditioner

● K-FAC for second-order method

● Adaptable distribution scheme

● Understand the memory and communication
tradeoffs in distributed second-order
optimization

● Show KAISA is faster than default optimizers

24

https://github.com/gpauloski/kfac_pytorch

CameraKAISA: Features

25

● Inverse or Eigen decomposition (default) K-FAC preconditioning

○ Linear and Conv2D layers

● Data Parallel Training Frameworks: PyTorch, DeepSpeed, NVIDIA Apex

● Adaptable distribution scheme (gradient worker fraction)

● Mixed Precision Training

● Gradient Accumulation

● Other Minor Optimizations:

○ Symmetry aware communication and communication bucketing

○ Preconditioning precomputation

CameraEvaluation: Convergence

26

CameraEvaluation: Time-to-Convergence w/ Fixed Batch Size

27

App Default
Optimizer Baseline # GPUs

Global
Batch
Size

Precision
KAISA

Time-to-Convergence
Improvement

ResNet-50 SGD 75.9% Val. Acc. 8 A100 2048 FP16 24.3%

Mask
R-CNN SGD 0.377 bbox mAP

0.342 segm mAP 64 V100 64 FP32 18.1%

U-Net ADAM 91.0% Val. DSC 4 A100 64 FP32 25.4%

BERT-Large
(Phase 2) LAMB 90.8% SQuAD

v1.1 F1 8 A100 65,636 FP16 36.3%

CameraEvaluation: Time-to-Convergence w/ Fixed Memory Budget

28

App Optimizer GPUs Grad. Worker
Frac.

Local Batch
Size

Time-to-Convergence
(minutes)

ResNet-50

SGD

64 V100

-- 128 123 (DNC)

KAISA 1/64 80 96

KAISA 1/2 80 83

BERT-Large
(Phase 2)

LAMB

8 A100

-- 12 2918

KAISA 1/2 8 1703

KAISA 1 8 1704

* Use max possible local batch size for each experiment and measure time-to-convergence.

CameraEvaluation: Memory vs. Communication

29

CameraEvaluation: Memory vs. Communication

30

CameraEvaluation: Scaling

● 27-29% faster than SGD with ResNet-50
● 41-44% faster than LAMB for BERT-Large
● MEM-OPT has constant speedup
● HYBRID/COMM-OPT improve with scale
● HYBRID-OPT best balance of memory usage

and scaling with BERT-Large

31

(a) ResNet-50

(b) BERT-Large

CameraQuestions?

32

Takeaways

Second-order optimization is viable for
distributed training

● Converges to same target metrics as first-order
methods

● Converges in less wall time with minimal
configuration

Second-order optimization enables more
creative hybrid-parallel schemes

KAISA’s provides a framework for distributed
training with future second-order methods

jgpauloski@uchicago.edu

github.com/gpauloski/kfac_pytorch

J. Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T. Foster. 2020.
Convolutional Neural Network Training with Distributed K-FAC. International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ‘20).

J. Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian
Foster, and Zhao Zhang. 2021. KAISA: An Adaptive Second-order Optimizer
Framework for Deep Neural Networks. International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ‘21).

J. Gregory Pauloski, Lei Huang, Weijia Xu, Kyle Chard, Ian T. Foster, and Zhao
Zhang. 2022. Deep Neural Network Training with Distributed K-FAC. To appear in
Transactions on Parallel and Distributed Systems (TPDS).

mailto:jgpauloski@uchicago.edu
https://github.com/gpauloski/kfac_pytorch

