Scalable Deep Neural Network Training with Distributed K-FAC

Greg Pauloski 23 March 2022

Committee: Kyle Chard, Ian Foster, Zhao Zhang

Outline

- 1. Challenges in large scale deep learning training
- 2. Optimization methods: first-order vs. second-order
- 3. Prior work in distributed K-FAC
- 4. Communication optimized distributed K-FAC [SC '20, TPDS '22]
- 5. KAISA: generalizing distributed second-order optimization [SC '21]
- 6. Implementation
- 7. Evaluation

Large Scale Training

Faster ⇒ Data Parallelism

Larger Models
Model Parallelism

Can we keep scaling the batch size to use more processors?

ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP AND SHARP MINIMA

Nitish Shirish Keskar* Northwestern University Evanston, IL 60208 keskar.nitish@u.northwestern.edu

Jorge Nocedal Northwestern University Evanston, IL 60208 j-nocedal@northwestern.edu

Ping Tak Peter Tang Intel Corporation Santa Clara, CA 95054 peter.tang@intel.com

THE UNIVERSITY OF

Dheevatsa Mudigere Intel Corporation Bangalore, India dheevatsa.mudigere@intel.com

Mikhail Smelyanskiy Intel Corporation Santa Clara, CA 95054 mikhail.smelyanskiy@intel.com

HPC and Machine Learning

Large batch sizes (e.g., 100K to 1M)...

- ++ Used to **scale out** to more nodes.
- -- Leads to **worse generalization** performance and **higher communication** costs.

How can we better enable large batch training on HPC (generalization performance and scaling)?

Previous Efforts

Generalization Gap

- Learning Rate Warmup
- Learning Rate Scaling
- Batch Size Warmup
- Layer-wise Adaptive Learning Rate (LARS/LAMB)
- Distributed Batch Normalization
- . . . and many more

Better Scaling

- Gradient Compression
- Lower Precision (FP16)
- Network Topology Aware Operations
- Layer Pipelining/Hybrid-Parallelism
- Asynchronous SGD
- Custom Fused Kernels
- Gradient Checkpointing
- . . . and many more

First-Order Optimization

SGD:
$$w_{k+1} = w_k - \alpha \nabla L(w_k)$$

Second-Order Optimization

Newton: $w_{k+1} = w_k - \alpha H^{-1} \nabla L(w_k)$ Precondition

Hessian has O(n²) elements Inversion is O(n³) operations

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Second-Order Optimization

A good candidate for large batch, distributed training!

1. Larger batches are more representative of the dataset's distribution.

 \rightarrow infrequent second-order information updates

- 2. Gradient noise limits batch size and increases throughout training (McCandlish, 2018). \rightarrow second-order methods optimize noise-independent terms better (Martens, 2014)
- 3. Higher computation-to-communication ratio in second-order methods.

 \rightarrow enables more advanced distribution schemes

Kronecker-Factored Approximate Curvature

- Second-order methods incorporate the curvature of the parameter space.
 - ++ More progress optimizing the objective function per-iteration
 - -- Expensive to compute!
- K-FAC **efficiently approximates** the Fisher Information Matrix (FIM) for preconditioning the gradients (Martens+, 2015).

SGD:
$$w^{(k+1)} = w^{(k)} - \frac{\alpha^{(k)}}{n} \sum_{i=1}^{n} \nabla L_i(w^{(k)})$$
 K-FAC: $w^{(k+1)} = w^{(k)} - \frac{\alpha^{(k)} F^{-1}(w^{(k)})}{n} \sum_{i=1}^{n} \nabla L_i(w^{(k)})$

- Generalizes better with **large batch sizes** and **converges in fewer iterations** than first-order methods (Ba+, 2017)
 - Scales to extremely large batch sizes, e.g., 131k for ImageNet training (Osawa+, 2019)

Kronecker Product

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 0 \end{bmatrix} = \begin{bmatrix} 1 \times 5 & 1 \times 6 & 2 \times 5 & 2 \times 6 \\ 1 \times 7 & 1 \times 8 & 2 \times 7 & 2 \times 8 \\ 1 \times 9 & 1 \times 0 & 2 \times 9 & 2 \times 0 \\ 3 \times 5 & 3 \times 6 & 4 \times 5 & 4 \times 6 \\ 3 \times 7 & 3 \times 8 & 4 \times 7 & 4 \times 8 \\ 3 \times 9 & 3 \times 0 & 4 \times 9 & 4 \times 0 \end{bmatrix}$$
$$m \times n \otimes p \times q \longrightarrow mp \times nq \qquad 2 \times 2 \otimes 3 \times 2 \longrightarrow 6 \times 4$$

Efficient *F* Approximation

Step 1: Approximate the FIM as a block diagonal matrix*

$$\hat{F} = \text{diag}(\hat{F}_1, ..., \hat{F}_i, ..., \hat{F}_L)$$

Step 2: Decompose each block as the Kronecker Product of the activations of the previous layer with the gradient w.r.t. the output of the current layer

$$\hat{F}_i = a_{i-1}a_{i-1}^\top \otimes g_i g_i^\top = A_{i-1} \otimes G_i$$

*Recall inverse of block diagonal matrix is composed of the inverses of each block

Efficient Gradient Preconditioning

Step 3: Apply properties of Kronecker Product to weight update equation

Properties: $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ $(A \otimes B)\vec{c} = B^{\top}\vec{c}A$ Weight Update: $w_i^{(k+1)} = w_i^{(k)} - \alpha^{(k)} \hat{F}_i^{-1} \nabla L_i(w_i^{(k)})$ $\hat{F}_{i}^{-1}\nabla L_{i}(w_{i}^{(k)}) = (A_{i-1} \otimes G_{i})^{-1}\nabla L_{i}(w_{i}^{(k)})$ $= (A_{i-1}^{-1} \otimes G_i^{-1}) \nabla L_i(w_i^{(k)})$ $=G_{i}^{-1}\nabla L_{i}(w_{i}^{(k)})A_{i-1}^{-1}$ Preconditioned Gradient

Computing Inverses

... can be difficult

Tikhonov Regularization: $(\hat{F}_i + \gamma I)^{-1} = (A_{i-1} + \gamma I)^{-1} \otimes (G_i + \gamma I)^{-1}$

Use Eigen Decompositions:

$$V_1 = Q_G^\top \nabla L(w_i^{(k)}) Q_A$$

$$V_2 = V_1 / (v_G v_A^\top + \gamma)$$

$$(\hat{F}_i + \gamma I)^{-1} \nabla L(w_i^{(k)}) = Q_G V_2 Q_A^\top$$

Batch Size	256	512	1024
SGD	92.77%	92.58%	92.69%
K-FAC with Inverse	92.58%	92.36%	91.71%
K-FAC with Eigen-decomp.	92.76%	92.90%	92.92%

Data Parallel Training with K-FAC

THE UNIVERSITY OF

HICAGO

Data Parallel Training with K-FAC

Data Parallel Training with K-FAC

Model Parallel K-FAC Stage

Can we make the communication frequency a function of the second-order computation frequency?

Model Parallel K-FAC Stage

globus

MEM-OPT vs COMM-OPT

THE UNIVERSITY OF

ICAGO

Communication Operation Interval					
	Gradients	Factors	Preconditioned Gradients	Inverses/Eigen Decomps	
	Allreduce	Allreduce	Broadcast/Allgather	Broadcast/Allgather	
MEM-OPT	1	t	1	N/A	
СОММ-ОРТ	1	t	N/A	t	

Communication vs Memory

KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks

J. Gregory Pauloski University of Chicago

Shivaram Venkataraman University of Wisconsin, Madison Qi Huang University of Texas at Austin Lei Huang Texas Advanced Computing Center

Kyle Chard University of Chicago Argonne National Laboratory Ian Foster University of Chicago Argonne National Laboratory

Zhao Zhang Texas Advanced Computing Center

Distribution of Work

Worker Types for a Layer (*N* workers)

Second-Order Worker	Gradient Worker	Gradient Receivers
Compute second-order information (one of the gradient workers)	Compute preconditioned gradient with second-order information	Receives preconditioned gradients from a gradient worker
1 per layer	m per layer	N - m per layer

Gradient Worker Fraction (grad_worker_frac) = m / N

MEM-OPT: grad_worker_frac = 1/N COMM-OPT: grad_worker_frac = 1

Gradient Worker Fraction

MEM-OPT

grad_worker_frac = 1/8

grad_worker_frac = 1/2

HYBRID-OPT

COMM-OPT

grad_worker_frac = 1

- : second-order (gradient worker)
- 0

'HE UNIVERSITY OF

- : gradient worker
- : gradient receiver

- : preconditioned gradient communication group (every iteration)
- I : second-order information communication group
- every *t* iterations)

Gradient Worker Fraction

KAISA: Design Goals

- PyTorch gradient preconditioner
- K-FAC for second-order method
- Adaptable distribution scheme
- Understand the memory and communication **tradeoffs** in distributed second-order optimization
- Show KAISA is **faster** than default optimizers

```
model = DistributedDataParallel(model)
optimizer = optim.SGD(model.parameters(), ...)
preconditioner = KFAC(model, grad_worker_frac=0.5)
for data, target in train_loader:
    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)
    loss.backward()
    preconditioner.step()
    optimizer.step()
```

Listing 1: Example K-FAC usage.

https://github.com/gpauloski/kfac_pytorch

KAISA: Features

- Inverse or Eigen decomposition (default) K-FAC preconditioning
 - Linear and Conv2D layers
- Data Parallel Training Frameworks: PyTorch, DeepSpeed, NVIDIA Apex
- Adaptable distribution scheme (gradient worker fraction)
- Mixed Precision Training
- Gradient Accumulation
- Other Minor Optimizations:
 - Symmetry aware communication and communication bucketing
 - Preconditioning precomputation

Evaluation: Convergence

Evaluation: Time-to-Convergence w/ Fixed Batch Size

Арр	Default Optimizer	Baseline	# GPUs	Global Batch Size	Precision	KAISA Time-to-Convergence Improvement
ResNet-50	SGD	75.9% Val. Acc.	8 A100	2048	FP16	24.3%
Mask R-CNN	SGD	0.377 bbox mAP 0.342 segm mAP	64 V100	64	FP32	18.1%
U-Net	ADAM	91.0% Val. DSC	4 A100	64	FP32	25.4%
BERT-Large (Phase 2)	LAMB	90.8% SQuAD v1.1 F1	8 A100	65,636	FP16	36.3%

Evaluation: Time-to-Convergence w/ Fixed Memory Budget

Арр	Optimizer	GPUs	Grad. Worker Frac.	Local Batch Size	Time-to-Convergence (minutes)
ResNet-50	SGD	64 V100		128	123 (DNC)
	KAISA		1/64	80	96
	KAISA		1/2	80	83
BERT-Large (Phase 2)	LAMB			12	2918
	KAISA	8 A100	1/2	8	1703
	KAISA		1	8	1704

* Use max possible local batch size for each experiment and measure time-to-convergence.

Evaluation: Memory vs. Communication

Figure 6.3: Average iteration time and K-FAC memory overhead across *grad-worker-frac* values on 64 V100 GPUs. Dotted lines are the baseline iteration times without K-FAC.

Evaluation: Memory vs. Communication

Evaluation: Scaling

- 27-29% faster than SGD with ResNet-50
- 41-44% faster than LAMB for BERT-Large
- MEM-OPT has constant speedup
- HYBRID/COMM-OPT improve with scale
- HYBRID-OPT **best balance** of memory usage and scaling with BERT-Large

Takeaways

Second-order optimization is **viable** for distributed training

- Converges to **same target** metrics as first-order methods
- Converges in **less wall time** with minimal configuration

Second-order optimization enables more creative hybrid-parallel schemes

KAISA's provides a framework for distributed training with **future second-order methods**

Questions?

jgpauloski@uchicago.edu

github.com/gpauloski/kfac_pytorch

J. Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T. Foster. 2020. <u>Convolutional Neural Network Training with Distributed K-FAC</u>. International Conference for High Performance Computing, Networking, Storage and Analysis (SC '20).

J. Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster, and Zhao Zhang. 2021. <u>KAISA: An Adaptive Second-order Optimizer</u> <u>Framework for Deep Neural Networks</u>. International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21).

J. Gregory Pauloski, Lei Huang, Weijia Xu, Kyle Chard, Ian T. Foster, and Zhao Zhang. 2022. <u>Deep Neural Network Training with Distributed K-FAC</u>. To appear in Transactions on Parallel and Distributed Systems (TPDS).

