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1. Challenges in large scale deep learning training
2. Optimization methods: first-order vs. second-order
3. Prior work in distributed K-FAC
4. Communication optimized distributed K-FAC    [SC ‘20, TPDS ‘22]
5. KAISA: generalizing distributed second-order optimization    [SC ‘21]
6. Implementation
7. Evaluation
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CameraLarge Scale Training

Faster ➡ Data Parallelism
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Larger Models ➡ Model Parallelism

Can we keep scaling the batch size to 
use more processors?
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CameraHPC and Machine Learning

Large batch sizes (e.g., 100K to 1M)...

++ Used to scale out to more nodes.

-- Leads to worse generalization performance and 
higher communication costs.
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How can we better enable large batch training on 
HPC (generalization performance and scaling)?



CameraPrevious Efforts

Generalization Gap

● Learning Rate Warmup
● Learning Rate Scaling
● Batch Size Warmup
● Layer-wise Adaptive Learning Rate 

(LARS/LAMB)
● Distributed Batch Normalization
● . . . and many more
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Better Scaling

● Gradient Compression
● Lower Precision (FP16)
● Network Topology Aware Operations
● Layer Pipelining/Hybrid-Parallelism
● Asynchronous SGD
● Custom Fused Kernels
● Gradient Checkpointing
● . . . and many more
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http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

First-Order Optimization Second-Order Optimization

Hessian has O(n2) elements
Inversion is O(n3) operations

Precondition



CameraSecond-Order Optimization

A good candidate for large batch, distributed training!
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1. Larger batches are more representative of the dataset’s distribution.

→ infrequent second-order information updates

2. Gradient noise limits batch size and increases throughout training (McCandlish, 2018).

→ second-order methods optimize noise-independent terms better (Martens, 2014)

3. Higher computation-to-communication ratio in second-order methods.

→ enables more advanced distribution schemes



CameraKronecker-Factored Approximate Curvature

● Second-order methods incorporate the curvature of the parameter space.
++ More progress optimizing the objective function per-iteration
-- Expensive to compute!
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● K-FAC efficiently approximates the Fisher Information Matrix (FIM) for preconditioning 
the gradients (Martens+, 2015).

● Generalizes better with large batch sizes and converges in fewer iterations than 
first-order methods (Ba+, 2017)
○ Scales to extremely large batch sizes, e.g., 131k for ImageNet training (Osawa+, 2019)



CameraKronecker Product
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m ✕ n         p ✕ q               mp ✕ nq 2 ✕ 2         3 ✕ 2                                6 ✕ 4



CameraEfficient F Approximation

Step 1: Approximate the FIM as a block diagonal matrix*

Step 2: Decompose each block as the Kronecker Product 
of the activations of the previous layer with the gradient 
w.r.t. the output of the current layer

*Recall inverse of block diagonal matrix is composed of the inverses of 
each block
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CameraEfficient Gradient Preconditioning
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Step 3: Apply properties of Kronecker Product to weight update equation

Properties:

Weight Update:

Preconditioned 
Gradient
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. . . can be difficult

Tikhonov Regularization:

Use Eigen Decompositions:

Computing Inverses
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CameraData Parallel Training with K-FAC
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1. Every iteration:
Compute Factors

2. Every t iterations:
Compute Second-Order 
Information

3. Every iteration: 
Precondition Gradients



CameraData Parallel Training with K-FAC
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Redundant expensive 
second-order computations



CameraData Parallel Training with K-FAC
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A1, G1A1, G1A1, G1

Model Parallel K-FAC Stage
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MEM-OPT
Osawa et al. (CVPR 2019)

++ Lower memory usage

-- Communication required every iteration

Layer 1
Worker 1

Worker 2

Worker 3

𝒢1

𝒢2

𝒢3

Worker 1

Worker 2

Worker 3

eig(A0,G1)

eig(A1,G2)

eig(A2,G3)

Can we make the communication frequency a function of the 
second-order computation frequency?



CameraModel Parallel K-FAC Stage
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COMM-OPT
Pauloski et al. (SC20)

++ Communication every t iterations

-- Higher memory usage due to caching

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

A1, G1A1, G1A1, G1Layer 1
𝒢1:L

𝒢1:L

𝒢1:L

Caching Second-Order Information

eig(A0,G1)

eig(A1,G2)

eig(A2,G3)

Preconditioning is cheap compared 
to eigen decomposition



CameraMEM-OPT vs COMM-OPT
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(a) ResNet-50 (a) ResNet-101 (a) ResNet-152

Communication Operation Interval

Gradients Factors Preconditioned Gradients Inverses/Eigen Decomps

Allreduce Allreduce Broadcast/Allgather Broadcast/Allgather

MEM-OPT 1 t 1 N/A

COMM-OPT 1 t N/A t



CameraCommunication vs Memory
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Less Memory More Memory
More Communication Less Communication

MEM-OPT COMM-OPT

???
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1 per layer

Gradient Worker Fraction (grad_worker_frac) = m / N

MEM-OPT: grad_worker_frac = 1/N
COMM-OPT: grad_worker_frac = 1

Distribution of Work

Worker Types for a Layer (N workers)
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Compute second-order 
information (one of the 

gradient workers)

Second-Order Worker

Compute preconditioned 
gradient with second-order 

information

Gradient Worker

Receives preconditioned 
gradients from a gradient 

worker

Gradient Receivers

m per layer N - m per layer



CameraGradient Worker Fraction
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0 1 2 3

4 5 6 7

HYBRID-OPT
grad_worker_frac = 1/2

COMM-OPT
grad_worker_frac = 1

MEM-OPT
grad_worker_frac = 1/8

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

: preconditioned gradient communication group 
(every iteration)

: second-order information communication group 
(every t iterations)

1

0

0

: second-order (gradient worker)

: gradient worker

: gradient receiver



CameraGradient Worker Fraction
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0 1 2 3

4 5 6 7

HYBRID-OPT
grad_worker_frac = 1/2

COMM-OPT
grad_worker_frac = 1

MEM-OPT
grad_worker_frac = 1/8

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Less Memory More Memory
More Communication Less Communication



CameraKAISA: Design Goals

● PyTorch gradient preconditioner

● K-FAC for second-order method

● Adaptable distribution scheme

● Understand the memory and communication 
tradeoffs in distributed second-order 
optimization

● Show KAISA is faster than default optimizers 
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https://github.com/gpauloski/kfac_pytorch



CameraKAISA: Features
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● Inverse or Eigen decomposition (default) K-FAC preconditioning

○ Linear and Conv2D layers

● Data Parallel Training Frameworks: PyTorch, DeepSpeed, NVIDIA Apex

● Adaptable distribution scheme (gradient worker fraction)

● Mixed Precision Training

● Gradient Accumulation

● Other Minor Optimizations:

○ Symmetry aware communication and communication bucketing

○ Preconditioning precomputation



CameraEvaluation: Convergence
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CameraEvaluation: Time-to-Convergence w/ Fixed Batch Size
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App Default 
Optimizer Baseline # GPUs

Global 
Batch 
Size

Precision
KAISA 

Time-to-Convergence 
Improvement

ResNet-50 SGD 75.9% Val. Acc. 8 A100 2048 FP16 24.3%

Mask 
R-CNN SGD 0.377 bbox mAP

0.342 segm mAP 64 V100 64 FP32 18.1%

U-Net ADAM 91.0% Val. DSC 4 A100 64 FP32 25.4%

BERT-Large 
(Phase 2) LAMB 90.8% SQuAD 

v1.1 F1 8 A100 65,636 FP16 36.3%



CameraEvaluation: Time-to-Convergence w/ Fixed Memory Budget
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App Optimizer GPUs Grad. Worker 
Frac.

Local Batch 
Size

Time-to-Convergence 
(minutes)

ResNet-50

SGD

64 V100

-- 128 123 (DNC)

KAISA 1/64 80 96

KAISA 1/2 80 83

BERT-Large 
(Phase 2)

LAMB

8 A100

-- 12 2918

KAISA 1/2 8 1703

KAISA 1 8 1704

* Use max possible local batch size for each experiment and measure time-to-convergence.



CameraEvaluation: Memory vs. Communication
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CameraEvaluation: Memory vs. Communication
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CameraEvaluation: Scaling

● 27-29% faster than SGD with ResNet-50
● 41-44% faster than LAMB for BERT-Large
● MEM-OPT has constant speedup
● HYBRID/COMM-OPT improve with scale
● HYBRID-OPT best balance of memory usage 

and scaling with BERT-Large
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(a) ResNet-50

(b) BERT-Large



CameraQuestions?
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Takeaways

Second-order optimization is viable for 
distributed training

● Converges to same target metrics as first-order 
methods

● Converges in less wall time with minimal 
configuration

Second-order optimization enables more 
creative hybrid-parallel schemes

KAISA’s provides a framework for distributed 
training with future second-order methods

jgpauloski@uchicago.edu

github.com/gpauloski/kfac_pytorch
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