
TaPS: A Performance Evaluation Suite
for Task-based Execution Frameworks
J. Gregory Pauloski,∗† Valerie Hayot-Sasson,∗† Maxime Gonthier,∗† Nathaniel
Hudson,∗† Haochen Pan,∗ Sicheng Zhou,∗ Ian Foster,∗† and Kyle Chard∗

∗University of Chicago, †Argonne National Laboratory
19 September 2024 — Osaka, Japan

2

Enabling eScience Applications

Better Benchmarking

TaPS: Task Performance Suite

Evaluation Exploration

Better Benchmarking

TaPS: Task Performance Suite

Evaluation Exploration

Enabling eScience Applications |

http://progress_bar_id

3

“The underlying premise behind eScience is that
computational methods and data-driven approaches
can contribute to scientific discovery on a par with, or
even superior to, traditional experimental methods”

Enabling eScience Applications |

http://progress_bar_id

4

eScience Paradigms (non-exhaustive)

Papers featured in eScience 2021—2023

Machine Learning

Data-Driven/Provenance

Distributed/High-Perf. Computing

Computational Workflows

Enabling eScience Applications |

http://progress_bar_id

5

Modern eScience Applications are Task-centric

Applications are composed as a set of discrete
tasks designed to automate computational

processes to achieve a scientific goal

Challenges [2]

● Coupling AI/ML/Quantum
● Cloud and HPC Integration
● Data Flow/Provenance
● Standards/Interoperability
● Performance
● and many more!

Benefits
● Heterogeneous Resources
● Software Modularity
● Monitoring
● Performance
● Reproducibility
● and many more!

[1] “Scientific Workflows: Moving Across Paradigms” (https://dl.acm.org/doi/10.1145/3012429)
[2] Workflows Community Summit (https://arxiv.org/abs/2304.00019)

Applications [1]

● Bioinformatics
● Cosmology
● High Energy Physics
● Materials Science
● Molecular Dynamics
● and many more!

Enabling eScience Applications |

https://dl.acm.org/doi/10.1145/3012429
https://arxiv.org/abs/2304.00019
http://progress_bar_id

How do we build and execute
task-based eScience applications?

6Enabling eScience Applications |

http://progress_bar_id

Task Execution Frameworks
Manage the execution of tasks in parallel across

arbitrary hardware.

7Enabling eScience Applications |

http://progress_bar_id

Task Execution Frameworks

8

Workflow Management Systems
Define, manage, and execute workflows represented by a directed acyclic

graph (DAG) of tasks

Concurrent Executors
On-demand asynchronous

execution of tasks

Explicit
DAG defined via configuration file

or domain specific language

Implicit
Task dependencies derived through

dynamic evaluation of a procedural script

Enabling eScience Applications |

http://progress_bar_id

TaPS: Task Performance Suite

Evaluation Exploration

9

Better Benchmarking

Enabling eScience Applications

Better Benchmarking |

http://progress_bar_id

10

The Status Quo

Ad Hoc Benchmarks

● Extensions of framework-specific
examples or demos

● One-off/custom evaluation scripts for
a publication

● Forks of real science applications

Problems

● Code is framework-specific
● Ad-hoc scripts subject to code rot
● Porting applications can be onerous
● Subtle errors in ported applications can

lead to inaccurate comparisons

Prior work focused on simulations and synthetic workloads

Better Benchmarking |

http://progress_bar_id

We lack a standardized set of real
applications/workloads for benchmarking

task executors.

11Better Benchmarking |

http://progress_bar_id

Drawing Inspiration from Other Fields

12

AI/ML FaaSSystems

Goals of a Good Benchmark

● Objective metrics
● Facilitate meaningful comparison
● Transparency and reproducibility

● Common ground
● Democratize research
● Accelerate advancements

Better Benchmarking |

http://progress_bar_id

TaPS: Task Performance Suite

Evaluation Exploration

13

Better Benchmarking

Enabling eScience Applications

TaPS: Task Performance Suite |

http://progress_bar_id

TaPS: Task Performance Suite
A standardized framework for evaluating

task execution frameworks with real and synthetic
science applications

14TaPS: Task Performance Suite |

http://progress_bar_id

➔ Audience

➔ Architecture

➔ Applications

➔ Framework

➔ Plugin System

➔ Using TaPS

15

TaPS: Task Performance Suite

TaPS: Task Performance Suite |

http://progress_bar_id

Audience

Systems Software Developers & Application Builders

Anyone with questions like:
➔ How do I evaluate my:

◆ distributed execution framework?
◆ data management system?
◆ modifications to existing systems?

➔ What are the performance characteristics of prior work?
➔ Which task executor performs best for similar workloads to mine?

16TaPS: Task Performance Suite |

http://progress_bar_id

Architecture

17

https://taps.proxystore.dev/latest/api/

Use provided Engine
Plugins or your own

Executor Filter +
Transformer

Record
Logger

Da
sk

G
lo

bu
s

Co
m

pu
te

Ta
sk

Vi
ne

Pa
rs

l

Fi
le

Pr
ox

yS
to

re

Ra
y

JS
O

N

. .
 .

. .
 .

Pl
ug

in
s

Engine: Glue that
integrate Apps with

Engine Plugins

Engine

Fr
am

ew
or

k

Use reference Apps
or add your own AppConfig

Application Benchmark

AppAp
pl

ic
at

io
n

TaPS: Task Performance Suite |

https://taps.proxystore.dev/latest/api/
http://progress_bar_id

Applications

18

https://taps.proxystore.dev/latest/apps/

➔ Six Real Apps

➔ Two Synthetic

➔ Diverse Patterns

➔ Diverse Domains

➔ Configurable

➔ Per-App Guides

Type Name Domain Task Type(s) Data Type(s)

Real

cholesky Linear Algebra Python In-memory
docking Drug Discovery Executable, Python File
fedlearn Machine Learning Python In-memory
mapreduce Text Analysis Python File, In-memory
moldesign Molecular Design Python In-memory
montage Astronomy Executable File

Synthetic
synthetic — Python In-memory
failures — Depends on base app Depends on base app

TaPS: Task Performance Suite |

https://taps.proxystore.dev/latest/apps/
http://progress_bar_id

How to design an interface expressive
enough to build these applications but
simple enough to unify task executors?

19TaPS: Task Performance Suite |

http://progress_bar_id

Task Execution Frameworks

20

Workflow Management Systems
Define, manage, and execute workflows represented by a directed acyclic

graph (DAG) of tasks

Concurrent Executors
On-demand asynchronous

execution of pure tasks

Explicit
DAG defined via configuration file

or domain specific language

Implicit
Task dependencies derived through

dynamic evaluation of a procedural script

✓

✓

✗

Why are explicit WMSs not Supported?

● Static DAGs not expressive enough for dynamic/procedural applications
● DSLs are tightly coupled/unique to WMS
● Possible but requires complex per-DSL parsing and code generation

TaPS: Task Performance Suite |

http://progress_bar_id

Engine

Interface between Apps and Plugins
➔ Apps submit tasks to Engine and gets back a

TaskFuture
➔ TaskFuture can be an argument for other

tasks (implicit data flow dependency)
➔ Engine invokes plugins (e.g., submit task to

Executor)

21

class Engine:
 def __init__(
 self,
 executor: Executor,
 filter: Filter | None = None,
 transformer: Transformer | None = None,
 logger: RecordLogger | None = None,
) -> None: ...

 def submit(
 self,
 function: Callable[P, T],
 *args: P.args,
 **kwargs: P.kwargs,
) -> TaskFuture[T]: ...

 def map(
 self,
 function: Callable[P, T],
 *iterables: Iterable[P.args],
 ...
) -> Iterator[T]: ...

 def shutdown(self, ...) -> None: ...

def as_completed(...) -> Generator[TaskFuture[T]]: ...

def wait(...) -> tuple[DoneTasks, NotDoneTasks]: ...

Plugins

Used by
Apps

Protocol: concurrent.futures Executor
➔ Closest to “standard” in Python ecosystem
➔ Easy to port existing apps using an Executor
➔ Protocol extended to require implicit data flow

dependencies via futures

TaPS: Task Performance Suite |

http://progress_bar_id

Engine Plugins — Task Execution

Purpose: Asynchronously execute functions

Implementations:
● ThreadPool
● ProcessPool
● Dask
● Globus Compute
● Parsl
● Ray
● TaskVine

Future Extensions:
● Cloud FaaS
● New Executors

22

*Requires support for implicit data via
futures. Wrapper provided for
implementations that lack this feature.

class Executor:
 def submit(
 self,
 function: Callable[P, T],
 *args: P.args,
 **kwargs: P.kwargs,
) -> Future[T]: ...

 def map(
 self,
 function: Callable[P, T],
 *iterables: Iterable[P.args],
 ...
) -> Iterator[T]: ...

 def shutdown(self, ...) -> None: ...

Interface: Executor*

TaPS: Task Performance Suite |

http://progress_bar_id

Engine Plugins — Data Management

Purpose: Manage task data by filtering and
transforming data into/resolve data from
intermediate representations

Implementations:
● Shared File Systems
● ProxyStore (DAOS, Globus Transfer, Margo, Redis, UCX,

ZMQ, …)

Future Extensions:
● Cloud Storage

23

class Filter:
 def __call__(self, obj: Any) -> bool:
 ...

class Transformer(Generic[IdentifierT]):
 def is_identifier(self, obj: T) -> bool:
 ...

 def transform(self, obj: T) -> IdentifierT:
 ...

 def resolve(self, id_: IdentifierT) -> Any:
 ...

Interface: Filter and
Transformer

TaPS: Task Performance Suite |

http://progress_bar_id

Engine Plugins — Task Logging

Purpose: Record task execution traces

Implementations:
● JSON

Future Extensions:
● Databases
● WfTrace format

24

Record: TypeAlias = Dict[str, Any]

class RecordLogger:
 def log(self, record: Record) -> None:
 ...

Interface: RecordLogger

TaPS: Task Performance Suite |

http://progress_bar_id

Adding an Engine Plugin

25

https://taps.proxystore.dev/latest/guides/executor/

import globus_compute_sdk
from concurrent.futures import Executor
from pydantic import Field
from taps.executor import ExecutorConfig
from taps.executor.utils import FutureDependencyExecutor
from taps.plugins import register

@register('executor')
class GlobusComputeConfig(ExecutorConfig):
 """Globus Compute Executor plugin configuration."""

 name: Literal['globus'] = Field('globus', description='Name.')
 endpoint: str = Field(description='Endpoint UUID.')
 batch_size: int = Field(128, description='Batch size.')

 def get_executor(self) -> Executor:
"""Initialize an executor from the config."""

 executor = globus_compute_sdk.Executor(
 self.endpoint,
 batch_size=self.batch_size,
)
 return FutureDependencyExecutor(executor)

➔ Config types for each plugin

➔ Contains all user-controllable
parameters (optional defaults)

➔ @register(<type>) decorator
◆ Registers plugin type with TaPS
◆ Plugin name and parameters exposed in CLI

choices / config file parser
◆ Parameter validation auto-generated from

fields

➔ get_<type>() used by TaPS
Utility for adding implicit data flow support to any executor

TaPS: Task Performance Suite |

https://taps.proxystore.dev/latest/guides/executor/
http://progress_bar_id

Adding an Application

26

https://taps.proxystore.dev/latest/guides/apps/

from typing import Literal
from pydantic import Field
from taps.apps import App, AppConfig
from taps.plugins import register

@register('app')
class CholeskyConfig(AppConfig):
 """Cholesky application configuration."""

 name: Literal['cholesky'] = Field('cholesky', ...)
 matrix_size: int = Field(description='Matrix size.')
 block_size: int = Field(description=Block/tile size.')

 def get_app(self) -> App:
 """Create an application instance from the config."""
 from taps.apps.cholesky import CholeskyApp

 return CholeskyApp(
 matrix_size=self.matrix_size,
 block_size=self.block_size,
)

Config import pathlib
from taps.engine import Engine

class CholeskyApp:
 """Cholesky decomposition application."""

 def __init__(self, matrix_size: int, block_size: int) -> None:
 self.matrix_size = matrix_size
 self.block_size = block_size

 def close(self) -> None:
 """Clean up and close the application."""
 pass

 def run(self, engine: Engine, run_dir: pathlib.Path) -> None:
 """Run the application."""
 future = engine.submit(func, *args, **kwargs)
 future.result()

App

Application logic goes inside run()
and interfaces with Engine

TaPS: Task Performance Suite |

https://taps.proxystore.dev/latest/guides/apps/
http://progress_bar_id

Using TaPS

27

https://taps.proxystore.dev/latest/guides/config/

$ python -m taps.run \
 --app cholesky --app.matrix-size 10000 --app.block-size 1000 \
 --engine.executor dask --engine.executor.workers 16 \
 --engine.transformer proxystore {transformer options} \
 --engine.filter object-size {filter options} \
 ...

[Output Truncated]
RUN (taps.run) :: Runtime directory: runs/cholesky-dask-2024-09-19-12-00-00
APP (taps.apps.cholesky) :: Generated input matrix: (10000, 10000)
APP (taps.apps.cholesky) :: Block size: 1000
APP (taps.apps.cholesky) :: Output matrix: (10000, 10000)
RUN (taps.run) :: Finished app (name=cholesky, runtime=13.18s)

Execute benchmarks with CLI or programmatically via API

+ runs
 ├─ cholesky-dask-2024-09-19-11-00-00
 └─ cholesky-dask-2024-09-19-12-00-00
 ├─ config.toml
 ├─ log.txt
 └─ tasks.jsonl

Run directory:
➔ Logs for analysis
➔ Config for

reproducibility
➔ Application outputs

[app]
name = "cholesky"
matrix_size = 10000
block_size = 1000

[engine.executor]
name = "dask"
workers = 16

[engine.filter]
name = "object-size"
min_size: 1000

[engine.transformer]
name = "proxystore"
cache_size = 16
extract_target = true
populate_target = true
...

[logging]
level = "INFO"
file_level = "INFO"
file_name = "log.txt"

[run]
dir_format = "runs/{name}-{executor}-{timestamp}"

python -m taps.run --config config.toml

TaPS: Task Performance Suite |

https://taps.proxystore.dev/latest/guides/config/
http://progress_bar_id

TaPS: Task Performance Suite

Evaluation Exploration

28

Better Benchmarking

Enabling eScience Applications

Evaluation Exploration |

http://progress_bar_id

Evaluation Exploration Goals

✗ Not to determine which executor is best

✓ Showcase kinds of evaluations TaPS can support

✓ Showcase characteristics of applications and executors

✓ Leave with more questions than answers… keep exploring!

✓ Encourage more discourse on benchmarking in the community

29

https://github.com/proxystore/escience24-taps-analysis

Evaluation Exploration |

https://github.com/proxystore/escience24-taps-analysis
http://progress_bar_id

Application Makespan

30

https://github.com/proxystore/escience24-taps-analysis

No stand-out executor; new
questions to pose.

➔ Why are some combos so much
faster? (Ray in Cholesky, Dask/Parsl
in Moldesign, and Dask in Montage)

➔ Which benefit more from
warm-starts?

➔ How does performance correlate to
average task duration or data flow
volume?

➔ How do they handle resource
contention with nested parallelism
(e.g., OpenMP tasks)

Evaluation Exploration |

*Task data exceeds Globus Compute 10 MB payload limit.

* *

*

https://github.com/proxystore/escience24-taps-analysis
http://progress_bar_id

Scheduler Performance – Scaling Workers

31

https://github.com/proxystore/escience24-taps-analysis

Hardware
● Single CHI@TACC compute-zen-3 node
● 2x AMD EPYC 7763 64-Core CPU
● 256 Logical Cores / 256 GB RAM

Workload

● Synthetic App – Bag of Tasks
● Vary n workers. Submit n initial tasks
● Submit tasks as prior complete
● Record task throughput

➔ ProcessPool (yellow) is high-water mark (no scheduler)
➔ Ray (light blue) has lowest task latency but does not scale well
➔ Dask (pink) and TaskVine (green) plateau between 4–8 workers
➔ Parsl (dark blue) scales best but has higher individual task latency
➔ Globus Compute (orange) does better when batching more tasks

Evaluation Exploration |

https://github.com/proxystore/escience24-taps-analysis
http://progress_bar_id

Scheduler Performance – Data Transfer

32

https://github.com/proxystore/escience24-taps-analysis

Methods
● Baseline: Executor handles

serialization and transfer
● File: Data pickled, written to file, and

replaced with file path
● ProxyStore: Data is proxied, stored in

Redis, and replaced with proxy object

Workload

● Synthetic App – Bag of Tasks
● 32 workers and 32 concurrent tasks
● Vary input/output data size
● Record task round-trip time

Central schedulers enable advanced features but
are a bottleneck for data transfer

No scheduler
Lowest Latency

ObjectRefs enable
pass-by-ref

All data written
to files

Evaluation Exploration |

https://github.com/proxystore/escience24-taps-analysis
http://progress_bar_id

Keep Exploring — Give TaPS a Try!

33

github.com/proxystore/taps taps.proxystore.dev

Want to collaborate? Reach out if you have…
➔ an application that could be a benchmark,
➔ a new execution framework,
➔ a data management system,
➔ and more!

Evaluation Exploration |

https://github.com/proxystore/taps
https://taps.proxystore.dev
http://progress_bar_id

34

Questions?
Contact:
jgpauloski@uchicago.edu
github.com/proxystore/taps/issues

Reference:
https://github.com/proxystore/taps
https://taps.proxystore.dev

Acknowledgements:
● Argonne National Laboratory under U.S.

Department of Energy Contract
DE-AC02-06CH1135

● National Science Foundation under
Grant 2004894 and Grant 2209919

● Chameleon Cloud testbed supported by
the National Science Foundation

A Performance Evaluation Suite for
Task-based Execution Frameworks

TaPS

J. Gregory
Pauloski

Valerie
Hayot-Sasson

Maxime
Gonthier

Nathaniel
Hudson

Haochen
Pan

Sicheng
Zhou

Ian
Foster

Kyle
Chard

github.com/proxystore/taps

GitHub

arxiv.org/abs/2408.07236

Preprint

gregpauloski.com/#presentations

Slides

Wrap-up |

https://github.com/proxystore/taps
https://arxiv.org/abs/2408.07236
https://gregpauloski.com/#presentations
http://progress_bar_id

