
Accelerating Python Applications
with Dask and ProxyStore
J. Gregory Pauloski,∗† Klaudiusz Rydzy,‡ Valerie Hayot-Sasson,
∗† Ian Foster,∗† and Kyle Chard∗†

∗University of Chicago, †Argonne National Laboratory, ‡Loyola University Chicago

18 November 2024 — Atlanta, Georgia

Python Apps for Exascale Systems

Target Apps: Active Learning Workflows
● Dynamic task-based workflows
● Limited optimizations based on DAG
● Diverse data structures and patterns

2

10K Nodes / 1M Cores / 60K GPUs
20 PB Memory / 230 PB Storage

Aurora at ALCF

Requirements:
● Compute Fabric:

○ Deploy workers distributed across cluster
○ Easy-to-use, performant, portable, etc.

● Data Fabric:
○ Leverage hardware features (e.g., DAOS, RDMA)
○ Easy-to-use, performant, portable, etc.

http://progress_bar_id

Can we scale science apps using
Dask and ProxyStore?

3

http://progress_bar_id

4

http://progress_bar_id

Dask Distributed

A lightweight library for distributed computing in Python.

5

from dask.distributed import Client

client = Client()

def square(x):

 return x ** 2

def neg(x):

 return -x

A = client.map(square, range(10))

B = client.map(neg, A)

total = client.submit(sum, B)

total.result() # -285

http://progress_bar_id

6

SC23 Paper!Data flow management library for
distributed Python workflows

● Proxy transparently decouples
control and data flow

● Best of both pass-by-reference
and pass-by-value

● Use any mediate communication
method via plugins

● “Make boring code easy”

http://progress_bar_id

7

from proxystore.connectors import RedisConnector

from proxystore.store import Store

from proxystore.proxy import Proxy

def foo(x: Bar) -> ...:

 # Resolve of x deferred until use

 assert isinstance(x, Bar)

 # More computation...

with Store('demo', RedisConnector(...)) as store:

 x = Bar(...)

 p = store.proxy(x) # Anything can be proxied

 assert isinstance(p, Proxy)

 foo(p) # Proxies can be passed-by-ref anywhere

Proxy Objects

What is a proxy (in this context)?
● Self-contained wide-area reference to a

target object
● Transparently resolve target just-in-time

when first used

What are the benefits?
● Performance (pass-by-reference, async

resolve, skip unused objects)
● Reduce code complexity
● Partial resolution of complex objects
● Access control

http://progress_bar_id

Why use ProxyStore with Dask?

● Better data transfer mechanisms
○ Storage: KeyDB, Redis, Lustre
○ Transfer: Grid FTP, TCP, RDMA, WebRTC

● Use Dask anti-patterns without fear!
○ Large objects in task graphs: avoid

scheduler and MessagePack overheads
○ Frequent calls to future.result(): common in

active learning apps

8

http://progress_bar_id

Engineering Challenges

Integration Model → Today’s Demo

Code Quality → MyPy plugin for type-checking duck-typed proxies

Compatibility → Rabbit hole on proxies, Dask hashing, and Python descriptors

Serialization → See poster at end on serialization optimization in ProxyStore

DAOS Support → Evaluation TBD due to Aurora/DAOS unavailability

9

Learn more in the
short paper!

http://progress_bar_id

Integration Model

10

Custom Dask Client
● Automatically proxy task

inputs/outputs according
to user spec

● Easy for existing Dask
apps

● Limited access to
ProxyStore features

StoreExecutor
● ProxyStore wrapper for

any concurrent futures
Executor (incl. Dask)

● Automatically proxy task
inputs/outputs

● Better memory
management

● Not always compatible
with existing Dask apps

● Fine-grain control over
what is proxied

● Okay for simple apps

● Bad for complex apps

Manual

http://progress_bar_id

Demo
https://doi.org/10.5281/zenodo.13328934

11

https://doi.org/10.5281/zenodo.13328934
http://progress_bar_id

Eval: Client/Worker Transfer Overheads

12

Benchmark
Configs in TaPS

1 MB Input & Output

http://progress_bar_id

13

Questions?

Contact:
J. Gregory Pauloski
jgpauloski@uchicago.edu

Reference:
docs.proxystore.dev
github.com/proxystore
github.com/proxystore/hppss24-demo

Acknowledgements:
● Argonne National Laboratory under U.S.

Department of Energy Contract
DE-AC02-06CH1135

● National Science Foundation under
Grant 2004894 and Grant 2209919

Short Paper on ArXiv

Related activities at SC24!

Turbocharging Dask Apps: Accelerating
Data Flow with ProxyStore
● Presenter — Klaudiusz Rydzy
● SRC Poster — Tu 5–7 PM in B302

Accelerating Communications in
High-Performance Scientific Workflows
● Presenter — Greg Pauloski
● Doctoral Poster — Tu 5–7 PM in B302
● Doctoral Showcase — Th 11–11:15 AM in B306

https://docs.proxystore.dev
http://github.com/proxystore
http://github.com/proxystore/hppss24-demo
http://progress_bar_id

Integration Model: Manual

14

Manual
● Fine-grain control over what is

proxied

● Okay for simple apps

● Bad for complex apps

from dask.distributed import Client

from proxystore.ex.connectors.daos import DAOSConnector

from proxystore.store import Store

client = Client()

connector = DAOSConnector(pool=..., container=...)

with Store('example', connector) as store:

 proxy = store.proxy([1, 2, 3])

 future = client.submit(sum, proxy)

 assert future.result() == 6

Custom Dask Client
● Automatically proxy task

inputs/outputs according to
user spec

● Easy for existing Dask apps

● Limited access to ProxyStore
features

Integration Model: Dask Client

15

from proxystore.ex.plugins.distributed import Client

from proxystore.ex.connectors.daos import DAOSConnector

from proxystore.store import Store

connector = DAOSConnector(pool=..., container=...)

with Store('example', connector) as store:

 client = Client(ps_store=store, ps_threshold=1000)

 future = client.submit(sum, [1, 2, 3])

 assert future.result() == 6

StoreExecutor
● ProxyStore wrapper for any

concurrent futures Executor
(incl. Dask)

● Automatically proxy task
inputs/outputs

● Better memory management
● Not always compatible with

existing Dask apps

Integration Model: StoreExecutor

16

from dask.distributed import Client

from proxystore.ex.connectors.daos import DAOSConnector

from proxystore.store import Store

from proxystore.store.executor import StoreExecutor

client = Client()

connector = DAOSConnector(pool=..., container=...)

store = Store('example', connector)

with StoreExecutor(client, store, ...) as executor:

 future = executor.submit(sum, [1, 2, 3])

 assert future.result() == 6

