S sC24

Atlanta, hpc
GA |creates.

Accelerating Python Applications
with Dask and ProxyStore

J. Gregory Pauloski,*" Klaudiusz Rydzy,* Valerie Hayot-Sasson,
T lan Foster,"" and Kyle Chard'

*University of Chicago, TArgonne National Laboratory, ILoyola University Chicago
18 November 2024 — Atlanta, Georgia

E{EHUI}ISXIES globus labs

Python Apps for Exascale Systems

Target Apps: Active Learning Workflows Aurora at ALCF
e Dynamic task-based workflows ’
e Limited optimizations based on DAG
e Diverse data structures and patterns

Requirements:

e Compute Fabiric:

o Deploy workers distributed across cluster
o Easy-to-use, performant, portable, etc.

e Data Fabiric:

10K Nodes / 1M Cores / 60K GPUs
o Leverage hardware features (e.g., DAOS, RDMA) 20 PB Memorv / 230 PB Storage
o Easy-to-use, performant, portable, etc. y 9

@) THE UNIVERSITY OF

CHICAGO globus @ labs

http://progress_bar_id

Can we scale science apps using
Dask and ProxyStore?

E{HUI}&XE}O globus labs

http://progress_bar_id

7 dask

Get started

Big Pandas

Parallel Python * —
Fast and Easy
Easy Parallel Python that does what you need _

What you can do with Dask

Parallel For Loops Big Arrays Production ETL ML

http://progress_bar_id

Dask Distributed

Fork 1.7k : Star 12.1k

A lightweight library for distributed computing in Python.

e Low latency: Each task suffers about 1ms of overhead. A small computation and
network roundtrip can complete in less than 10ms.

» Peer-to-peer data sharing: Workers communicate with each other to share data.
This removes central bottlenecks for data transfer.

e Complex Scheduling: Supports complex workflows (not just map/filter/reduce)
which are necessary for sophisticated algorithms used in nd-arrays, machine
learning, image processing, and statistics.

¢ Pure Python: Built in Python using well-known technologies. This eases
installation, improves efficiency (for Python users), and simplifies debugging.

e Data Locality: Scheduling algorithms cleverly execute computations where data
lives. This minimizes network traffic and improves efficiency.

e Familiar APIs: Compatible with the concurrent.futures APl in the Python standard
library. Compatible with dask API for parallel algorithms

e Easy Setup: As a Pure Python package distributed is pip installable and easy to

set up on your own cluster.

from dask.distributed import Client

client = Client()

def

def

A
B

total = client.submit(sum, B)
total.result()

square(x):
return x ** 2

neg(x):
return -x

client.map(square, range(10))
client.map(neg, A)

THE UNIVERSITY OF

CHICAGO

globus @ labs

http://progress_bar_id

N ProxyStore

Accelerating Communications in Federated Applications with
Transparent Object Proxies

H i i t-Sasson ogan War .I
Data flow management library for iGgpaa | Empe _tpee SC23 Paper.

Nathaniel Hudson Charlie Sabino Matt Baughman

Ian Foster

distributed Python workflows

University of Chicago
Argonne National Laboratory

University of Chicago
Argonne National Laboratory

ABSTRACT

Advances in networks, accelerators, and cloud services encourage (" Producer)
Y rox tra nsparen t ecouples proggammers o reconsder where Lo compate-—such aswhen ot ey
networks make it cost-effective to compute on remote accelerators -

[Proxystore |

Consuner

| dReC23

Figure 1: ProxyStore decouples the communication of object Denver,CO| | am hpe
progra i data from control flow transparently to the application. Data
flow from data flow by extending the pass-by-reference model to 1 exs receive lightweight proxies that act like the true

distributed applications. We deseribe ProxyStore, a system that (PSSR I B MU PO CEL R B CE 8 L

e Best of both pass-by-reference et by odat i et L)
and pass-by-value

despite added latency. Workflow and cloud-hosted serverless com-
puting frameworks can manage multi-step computations spanning .
federated collections of cloud, high-performance computing (HPC), Apparent Data Path
and edge systems, but passing data among computational steps
via cloud storage can incur high costs. Here, we overcome this
obstacle with a new programming paradigm that decouples control

Accelerating Communications in Federated Applications
with Transparent Object Proxies

e Use any mediate communication
method via plugins

Greg Pauloski*

Valerie Hayot-Sasson*, Logan Ward”, Nathaniel Hudson*, Charlie Sabino*, Matt Baughman*, Kyle Chard*»,
and lan Foster*/

*University of Chicago, *Argonne National Laboratory

e “Make boring code easy”

THE UNIVERSITY OF

) CHICAGO

globus @ labs

http://progress_bar_id

Proxy Objects

from proxystore.connectors import RedisConnector

What is a proxy (in this context)? from proxystore.store import Store
e Self-contained wide-area reference to a from proxystore.proxy import Proxy
target object

1
v

. L. def foo(x: Bar)
e Transparently resolve target just-in-time

when first used assert isinstance(x, Bar)
What are the benefits?
e Performance (pass-by-reference, async with Store('demo', RedisConnector(...)) as store:
resolve, skip unused objects) x = Bar(...)

p = store.proxy(x)
assert isinstance(p, Proxy)
foo(p)

e Reduce code complexity
Partial resolution of complex objects
e Access control

E{EHUI}ISXIES globus labs

http://progress_bar_id

Why use ProxyStore with Dask?

e Better data transfer mechanisms

o Storage: KeyDB, Redis, Lustre
o Transfer: Grid FTP, TCP, RDMA, WebRTC

e Use Dask anti-patterns without fear!
o Large objects in task graphs: avoid
scheduler and MessagePack overheads
o Frequent calls to future.result(): common in
active learning apps

@] THE UNIVERSITY OF

& CHICAGO

r

Client

def foo(data): ...

client.submit(foo, data)

.

J

Vs

Client

~

def foo(data): ...

proxy = store.proxy(data)
client.submit(foo, proxy)

Task Graph

{‘op’: ‘compute’
‘function’:

‘args’: [datal}

‘foo’,

—

Data embedded directly
in task graph

Task Graph

{‘op’: ‘compute’
‘function’:

‘args’: [proxy]}

‘foo’,

—>

.

Proxied data gets passed by reference in task graph

data

Scheduler | Worker

Dask

Dask & ProxyStore

Scheduler - Worker

data

ProxyStore

globus @ labs

http://progress_bar_id

Engineering Challenges

Integration Model — Today’s Demo P
Code Quality — MyPy plugin for type-checking duck-typed proxies SHERBELTS
Compatibility — Rabbit hole on proxies, Dask hashing, and Python descriptors
Serialization — See poster at end on serialization optimization in ProxyStore

DAOS Support — Evaluation TBD due to Aurora/DAOS unavailability

| THE UNIVERSITY OF glObUS l.a bS

% CHICAGO

http://progress_bar_id

Integration Model

R ™ N
m Custom Dask Client StoreExecutor

e Fine-grain control over e Automatically proxy task e ProxyStore wrapper for
what is proxied inputs/outputs according any concurrent futures
. to user spec Executor (incl. Dask)
e Okay for simple apps e Automatically proxy task

e Easy for existing Dask

e Bad for complex apps aDDS inputs/outputs
PP e Better memory
e Limited access to management .
ProxyStore features e Not always compatible

with existing Dask apps)

CHICAGO globus @ labs

http://progress_bar_id

Demo
https://doi.org/10.5281/zenodo.13328934

E{EHUI}ISXIEE)F globus labs

https://doi.org/10.5281/zenodo.13328934
http://progress_bar_id

Eval: Client/Wor

v 7 [] —~ 60 A

E 103] ~®- Baseline x| 2 x

(0] q e K

£ j —%— ProxyStore £ 40 A /

= 1 ; £ ot

o 2 o (]

-= 10° 4 REPR 3 2 20 -

= 3 P

o 1, . S

3 101 . *"'""l‘/ E 01 x—x

m 10 = T T T T T T T T T T
10kB 100kB 1MB 10 MB 100 MB 10kB 100kB 1MB 10 MB 100 MB

Payload Size Payload Size

w

g 300 Xxx X, S [~x

0 X = 4

200 X=x 100

ég /4..‘..4..4..4.’ % E%

E X ®. g X~x—x”" %

2 100 1 /¢ P > 50 1 =X

=) 1/~ ~@®- Baseline ® o x

> % ~

o 60 9% —x— ProxyStor e *

2 837 oxyStore £ . k/

,— T T T T T T T T T T ! T T T T T T T T T T
N X R0 D DA N X R L0 D D WO

N Y QSN N Y @S
Workers * Workers

Client

def foo(data): ...

client.submit(foo, data)

&

Client

def foo(data): ...

proxy = store.proxy(data)
client.submit(foo, proxy)

N—1 MB Input & Output

THE UNIVERSITY OF

&

ker Transfer Overheads

Task Graph

{'op’: ‘compute’,

Benchmark
Configs in TaPS

‘function’: ‘foo’,

‘args’: [data]} >

Scheduler

Worker

|

Data embedded directly
in task graph

Task Graph

{'op’: ‘compute’,

Dask

Dask & ProxyStore

‘function’: ‘foo’,
‘args’: [proxy]}

>

Proxied data gets passed by reference in task graph

Scheduler

Worker

B

data
ProxyStore

ata

& CHICAGO

globus @ labs

http://progress_bar_id

Questions?

N ProxyStore

Contact:

Related activities at SC24! J. Gregory Pauloski
jgpauloski@uchicago.edu

Turbocharging Dask Apps: Accelerating Short Paper on ArXiv

Data Flow with ProxyStore HaliiEs
docs.proxystore.dev
e Presenter — Klaudiusz Rydzy github.com/proxystore
e SRC Poster — Tu 5-7 PM in B302 github.com/proxystore/hppss24-demo

Accelerating Communications in

. . .. Acknowledgements:
High-Performance Scientific Workflows

e Argonne National Laboratory under U.S.

e Presenter — Greg Pauloski Department of Energy Contract
e Doctoral Poster — Tu 5—-7 PM in B302 DE-AC02-0§CH1 135 |
e Doctoral Showcase — Th 11-11:15 AM in B306 e National Science Foundation under

Grant 2004894 and Grant 2209919

® CHICAGO globus @ labs

https://docs.proxystore.dev
http://github.com/proxystore
http://github.com/proxystore/hppss24-demo
http://progress_bar_id

Integration Model: Manual

m A from dask.distributed import Client
from proxystore.ex.connectors.daos import DAOSConnector

from proxystore.store import Store

e Fine-grain control over what is

proxied , ,
client = Client()

e Okay for simple apps connector = DAOSConnector(pool=..., container=...)
e Bad for complex apps with Store('example', connector) as store:
proxy = store.proxy([1, 2, 3])
future = client.submit(sum, proxy)
assert future.result() ==

i E{EHUI}ISXIES glObUS labs

Integration Model: Dask Client

~
Custom Dask Client from proxystore.ex.plugins.distributed import Client

from proxystore.ex.connectors.daos import DAOSConnector

e Automatically proxy task from proxystore.store import Store
inputs/outputs according to
user spec connector = DAOSConnector(pool=..., container=...)

e Easy for existing Dask apps with Store('example', connector) as store:

e Limited access to ProxyStore client = Client(ps_store=store, ps_threshold=1000)
features future = client.submit(sum, [1, 2, 3])
assert future.result() ==

@] THE UNIVERSITY OF

CHICAGO globus @ labs

Integration Model: StoreExecutor

N\ from dask.distributed import Client
from proxystore.ex.connectors.daos import DAOSConnector
from proxystore.store import Store
e ProxyStore wrapper for any from proxystore.store.executor import StoreExecutor
concurrent futures Executor
(incl. Dask) client = Client()
e Automatically proxy task connector = DAOSConnector(pool=..., container=...)
inputs/outputs store = Store('example', connector)
e Better memory management
e Not always compatible with with StoreExecutor(client, store, ...) as executor:
existing Dask apps future = executor.submit(sum, [1, 2, 3])
_) assert future.result() == 6

& TCHEHUI\IIIEEXIEE)F glObUS labs

