
Establishing a High-Performance and Productive
Ecosystem for Distributed Execution of Python
Functions Using Globus Compute
Rachana Ananthakrishnan,1 Yadu Babuji,1 Josh Bryan,1 Kyle Chard,12 Ryan
Chard,2 Ben Clifford,3 Ian Foster,12 Lev Gorenstein,1 Kevin Hunter Kesling,1
Chris Janidlo,1 Daniel Katz,4 Reid Mello,1 J. Gregory Pauloski,12 Lei
Wang1

1University of Chicago, 2Argonne National Laboratory, 3Hawaga, 4University of Illinois Urbana-Champaign
22 November 2024 — Atlanta, Georgia

Globus is …
a non-profit service developed

and operated by

2

Our mission is to…
increase the efficiency and

effectiveness of researchers engaged
in data-driven science and scholarship

through sustainable software

3

Some context…

4

General Purpose Computing is morphing…

“…the economic cycle that has led to the
usage of a common computing platform,
underpinned by rapidly improving universal
processors, is giving way to a fragmentary
cycle, where economics push users
toward divergent computing platforms
driven by special purpose processors.”

5

“The Decline of Computers as a General Purpose Technology”,
Thompson, N. & Spanuth, S., Communications of the ACM, March 2021

Our data management legacy is morphing…

• From fast, reliable, data transfer …
• … to secure data sharing …
• … and data management automation at scale
• But research flows inevitably include computation

Deliver the same “fire-and-forget” capabilities for
computation as we do for data management

6

In the traditional model of remote computing…

• Figure out authentication (across multiple domains)
• Establish and maintain the right network connections (e.g., SSH)
• Interact with resources (configure for job scheduler, wait in queues,

scale nodes)
• Configure execution environments
• Detect, understand, and recover from various failures
• …

Researchers need to overcome the same obstacles every time they
move to a new resource

7

What is Globus Compute?

• FaaS for any compute
resource

• Programmatic access to
compute resources

• “Fire and forget” reliable
execution

• Consistent user interface
across diverse execution
systems

8

What is Globus Compute?

9

• Compute service — Highly available cloud-hosted
service for managed function execution

• Compute endpoint — Abstracts access to compute
resources, from edge device to supercomputer

• Compute SDK — Python interface for interacting with
the service

What does it look like to a researcher?

10

A B

You request a function be
executed on endpoints A and B

1

2 Globus Compute manages
the reliable and secure

execution on these endpoints

3 Globus Compute returns results or
stores them until requested

Globus
Compute
Service

A compute
resource

Another
compute
resource

Globus
Compute
Service

Turn any resource into a FaaS endpoint

• Python pip installable agent
• Elastic resource provisioning

from local, cluster, or cloud
system (via Parsl)

• Parallel execution using local
fork or via common schedulers
– Slurm, PBS, LSF, Cobalt, K8s

11

$ pip install globus-compute-endpoint
$ globus-compute-endpoint configure my-endpoint

Created profile for endpoint named <my-endpoint>

 Configuration file: /home/greg/.globus_compute/my-endpoint/config.yaml

Use the `start` subcommand to run it:

 $ globus-compute-endpoint start my-endpoint

12

Configuring a Globus Compute Endpoint

$ globus-compute-endpoint start my-endpoint
Starting endpoint; registered ID: 54460200-b652-4f43-a918-02882fa6114a

Configuring a Globus Compute Endpoint

13

engine:
 max_workers_per_node: 1
 type: GlobusComputeEngine
 provider:
 type: LocalProvider
 init_blocks: 1
 max_blocks: 1
 min_blocks: 0

…/my-endpoint/config.yaml

engine:
 type: GlobusComputeEngine
 max_workers_per_node: 4
 available_accelerators: 4

 provider:
 type: PBSProProvider

 launcher:
 type: MpiExecLauncher
 bind_cmd: --cpu-bind
 overrides: --depth=64 --ppn 1

 account: {{ YOUR_POLARIS_ACCOUNT }}
 queue: debug-scaling
 cpus_per_node: 32
 select_options: ngpus=4
 scheduler_options: "#PBS -l filesystems=home:grand:eagle"
 walltime: 01:00:00
 nodes_per_block: 1
 init_blocks: 0
 min_blocks: 0
 max_blocks: 2

1 Worker/GPU

PBS Batch Job

1 Manager/Node

PBS Job Params

Executing workloads with Globus Compute

• Invoke Python functions as tasks
– Select endpoint
– Define (optionally register) function
– Execute task with input arguments

• Globus Compute stores tasks in
the cloud

• Endpoints fetch waiting tasks
(when online), run the task, and
return the results (or errors)

• Results stored in the cloud; users
retrieve results asynchronously

14
https://jupyter.demo.globus.org/hub/user-redirect/lab/tree/globus-jupyter-notebooks/Compute_Introduction.ipynb

Discovering &
monitoring
endpoints

15

A fast growing user base

Biggest users in one of
three categories:
• Remote (bag-of-tasks)

execution
• Research automation
• Platform for building other

services >35M tasks, >1M functions, >12K endpoints

16

17

This paper is about…
eliminating barriers of use through new

features in Globus Compute

Four existing challenges

1. Executing shell commands
2. Invoking MPI codes
3. Multi-user Endpoints
4. Out-of-band data transfer

18

Shell Commands

Globus Compute is used for more than just Python…
• Users often write functions that call other languages,

scripts, and binaries
• Easier to integrate into scripts than invoking

commands over SSH

19

Shell Commands

ShellFunction
• Better abstraction for

command execution
• Per-task sandboxing
• Per-task walltime limits
• Captures stdout, stderr,

& return code

20

from globus_compute_sdk import Executor
from globus_compute_sdk import ShellFunction

Command is formatted with kwargs when invoked
sf = ShellFunction("echo '{message}'")

with Executor(endpoint_id="...") as ex:
 for msg in ["hello", "hola", "bonjour"]:
 future = ex.submit(sf, message=msg)
 shell_result = future.result()
 print(shell_result.stdout)

sf = ShellFunction("sleep 2", walltime=1)
future = executor.submit(sf)
print(future.returncode) # Returns 124

Invoking MPI Codes

21

Shell commands but harder…

Easy Hard

Batch Job

MPI App

Batch Job

MPI App

MPI App

MPI App

Batch Job

MPI App

MPI
App

MPI
App

Want to support
heterogenous MPI

app shapes in
single batch job

Invoking MPI Codes

22

MPIFunction
• Extends ShellFunction

(output & sandboxing)
• Resource specification

(nodes & ranks per node)
• Uses MPI launcher to

execute MPI apps
• Uses GlobusMPIEngine

from globus_compute_sdk import MPIFunction

func = MPIFunction("hostname")

for n in range(1, 2):
 print(f'Ranks per node{n}')
 executor.resource_specification = {
 "num_nodes": 2,
 "ranks_per_node": n,
 }
 future = executor.submit(func)
 mpi_result = future.result()
 print(mpi_result.stdout)

Ranks per node: 1
exp-14-08
exp-14-20
Ranks per node: 2
exp-14-08
exp-14-20
exp-14-08
exp-14-20

Invoking MPI Codes

23

GlobusMPIEngine
• MPI-aware version of

default GlobusEngine
• Dynamically partition

batch job based on
user-defined task
requirements

Configuration for a Slurm based HPC system
display_name: SlurmHPC
engine:
 type: GlobusMPIEngine
 mpi_launcher: srun

 provider:
 type: SlurmProvider

 launcher:
 type: SimpleLauncher

 # Specify # of nodes per batch job that
 # will be shared by multiple MPIFunctions
 nodes_per_block: 4

Multi-User Endpoints

Single-user endpoints…
• Accessible only by user that created them
• Static configuration: reconfiguration requires restart
• Users run many endpoints on a single resource
• Difficult for administrators to provide support

24

Multi-User Endpoints

25

Multi-User Endpoints — Admin Perspective

1. Installation
a. Available on pip, RPM, and Deb repositories
b. globus-compute endpoint configure {name} --multi-user

2. Identity Mapping: Globus User to local UID?
a. Default mapping for single domain users
b. Pattern-based mappings
c. Callouts to external scripts/programs (e.g., query database or

LDAP).
3. Template Configuration

26

Multi-User Endpoints — Admin Perspective

27

engine:
 type: GlobusComputeEngine
 nodes_per_block: {{ NODES_PER_BLOCK }}

 provider:
 type: SlurmProvider
 partition: cpu
 account: {{ ACCOUNT_ID }}
 walltime: {{ WALLTIME|default("00:30:00") }}

 launcher:
 type: SrunLauncher

Admin-defined Jinja templates ● User required values
and default values

● Optional property
schema for guiding
users

● Useful to users—define
endpoint parameters
from your code

● Optional permitted
functions list for
admin-created
functions

Multi-User Endpoints — User Perspective

28

1. Find an endpoint UUID: via resource-specific
documentation or Globus Compute web app

2. Run your code:
uep_conf = {
 "NODES_PER_BLOCK": 64
 "ACCOUNT_ID": "314159265",
 "WALLTIME": "00:20:00"
}

with Executor(endpoint_id="<UUID>") as gce:
 gce.user_endpoint_config = uep_conf
 fut = gce.submit(hello_world)
 res = fut.result()

Multi-User Endpoints — Goals

29

1. Lower Barriers of Use: Shift configuration complexities
to administrators

2. Improved Access Control: Administrators have granular
control over user access permissions and resources

3. Efficient Resource Utilization: Optimize endpoint
configurations for common classes of users

4. Improved User Experience: Users no longer need to
manage endpoints

Out-of-band Data Transfer

Globus Compute API has a few limitations:
• Rate limiting (20 requests/10 seconds)
• Task TTL (2 weeks)
• Data Limits (10 MB each for payload and result)
We describe two solutions:
• Globus Transfer
• ProxyStore

30

Out-of-band Data Transfer

32

Python library for distributed
data flow management
● Represent and efficiently move

objects in federated applications
● Object proxy: pass-by-reference

and pass-by-value

Apparent
Data Path

Object
Store

True
Data Path

Proxy
obj

obj
obj

ProxyStore

Globus
Compute
Service

Proxy
obj

Out-of-band Data Transfer

33

Why pass-by-proxy?
• Proxy is self-contained = No

changes to function code
• Avoid 10 MB payload limit

• Use more performant transfer
method (TCP, RDMA, Object
Stores, P2P)

from globus_compute_sdk import Executor
from proxystore.connectors import UCXConnector
from proxystore.store import Store

def foo(value: Bar) -> None:
 assert isinstance(value, Bar)

with Executor(endpoint_id="<UUID>") as gce:
 with Store('demo', UCXConnector(...)) as store:
 value = Bar(...)
 proxy = store.proxy(value)
 gce.submit(foo, proxy)

https://docs.proxystore.dev/main/guides/globus-compute/

Summary

Globus Compute: “Fire & Forget” computations
Reduce barriers of access through:
• Native execution of shell commands
• Integrated MPI support
• Multi-user Endpoints
• Out-of-band data transfer mechanisms

34

Thank you, funders...
U.S. DEPARTMENT OF

ENERGY

35

Any questions?
Docs: https://globus-compute.readthedocs.io/en/latest/
GitHub: https://github.com/globus/globus-compute
Slack: https://funcx.slack.com/

https://globus-compute.readthedocs.io/en/latest/
https://github.com/globus/globus-compute
https://funcx.slack.com/

