
Academy: Empowering Scientific Workflows
with Federated Agents
Greg Pauloski, Yadu Babuji, Ryan Chard, Alok Kamatar, Mansi Sakarvadia,
Kyle Chard, Ian Foster

JLESC: AI for Science Breakout

14 May 2025

Agentic Workflows

Experimental Facilities Data StorageCompute

Agentic
Infrastructure

● Agentic middleware
● Use federated resources
● Simple agent abstractions

2

Academy

http://progress_bar_id

Agentic Middleware
Software layer that transparently manages the lifecycle,

communication, and coordination of autonomous agents
across distributed computing environments.

3

http://progress_bar_id

Agentic Middleware: Scope & Challenges

4

Low Level
Challenges

High Level
Challenges

Deployment

Protocols

LLM APIs

Multi-agent
Conversations

LangChain, AutoGen,
Pydantic AI, etc.Academy Cool Science?

Tool CallingMobility

Fault
Tolerance

Data
Movement

http://progress_bar_id

Agentic Middleware: Using Research Infrastructure

Centralized
● Agents co-located (workstation, cloud)
● Research infrastructure available via

APIs (REST, SDKs, …)
● Use infrastructure via tool calling

++ Rapidly growing library ecosystem
-- Limited APIs for infrastructure

5

Decentralized
● Agents distributed across infrastructure
● Agents interact asynchronously
● Use infrastructure directly (actuate a

robot, submit job, …)

++ Data locality, perf., loose coupling
-- Deployment complexity

LangChain, AutoGen,
Pydantic AI, etc.

Academy

http://progress_bar_id

Agentic Middleware: Agent Behaviors

6

High Autonomy

Low Autonomy

High
Interactivity

Low
Interactivity

Other defining aspects:
● Persistent vs ephemeral
● General vs narrow purpose
● Embodiment

Long-running agentic science
apps will incorporate many kinds
of agent behaviors.

Academy primitives support the
creation diverse agent types.

LLM Agents

Service AgentsMonitor Agents

Optimizer Agents

http://progress_bar_id

How does Academy support the expression of
diverse agent behaviors and deployment across

distributed/federated resources?

7

http://progress_bar_id

Client

Handle

Handle

Control

Actions
Agent

State

Agent

Control

Actions

State

HandlesHandles

Exchange (Data Plane)
Mailbox Mailbox Mailbox

Launcher(s) (Control Plane)

8

Focus 1: Program diverse
agents and interactions

Focus 2: Deploy agents
on federated resources

Focus 3: Coordinate
async agent messaging

https://academy.proxystore.dev/latest/concepts/

http://progress_bar_id
https://academy.proxystore.dev/latest/concepts/

Communication & Execution

Exchange
➔ Asynchronous communication through mailboxes
➔ Every agent/client in system has a unique mailbox
➔ Local & distributed implementations
➔ Optimized for low-latency
➔ Hybrid communication model
➔ Prefer direct communication between agents when

possible; fall back to indirect communication via
object store

➔ Pass-by-reference with ProxyStore for large data

Launcher
➔ Not required but enables

remote execution of agents
➔ Returns handle to launched

agent
➔ Local threads or processes
➔ Distributed with Parsl
➔ Federated with Globus

Compute

9

http://progress_bar_id

Writing Apps in Academy

10

http://progress_bar_id

import time, threading

from academy.behavior import Behavior, action, loop

class Example(Behavior):

 def __init__(self) -> None:

 self.count = 0 # State stored as attributes

 @action

 def square(self, value: float) -> float:

 return value**2

 @loop

 def count(self, shutdown: threading.Event) -> None:

 while not shutdown.is_set():

 self.count += 1

 time.sleep(1)

Agents defined
by a behavior

Clients & other
agents can

request actions

Instance of a
behavior is state

Control loops for
autonomous

behavior

11

https://academy.proxystore.dev/latest/get-started/

http://progress_bar_id
https://academy.proxystore.dev/latest/get-started/

from academy.exchange.hybrid import HybridExchange

...

from academy.manager import Manager

gce = GlobusComputeExecutor('<UUID>')

with Manager(

 exchange=HybridExchange('localhost', 6379),

 launcher=ExecutorLauncher(gce),

) as manager:

 behavior = Example() # From the prior slide

 handle = manager.launch(behavior)

 future = handle.square(2)

 assert future.result() == 4

 handle.shutdown() # Or via the manager

 manager.shutdown(handle.agent_id, blocking=True)

Single interface
for managing
your agents

Interact with
agents via

handles

Pass handles to
other agents

12

https://academy.proxystore.dev/latest/get-started/

Launch agents via
Globus Compute

Launch agent
and get handle

http://progress_bar_id
https://academy.proxystore.dev/latest/get-started/

Use Case: MOF Discovery

Metal Organic Frameworks (MOF)

➔ Composed of organic molecules (ligands) and
inorganic metals (nodes)

➔ The sponges of materials science!
➔ Porous structures that adsorb and store gases
➔ Topologies can be optimized for targeted gas

storage → Carbon Capture

Intractable search space of ligand,
node, & geometry combinationsHow to efficiently discover MOFs with

desirable properties for target applications?

13

http://progress_bar_id

MOFA: Online learning + GenAI + Simulation

Embodied
Agents*

AI Agent

Knowledge Agent

Computational
Agents

Yan et al., “MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow” (Under Review)

14

https://arxiv.org/abs/2501.10651
http://progress_bar_id

MOFA through Autonomous Agents

Training
Dataset

Generator

Assembler EstimatorDatabase

Validator Optimizer

Chameleon
Cloud

CPUs Storage CPUs

Ligands

MOF
Candidates

Stable
MOFs

Optimized
MOFs

CO2
Capacities

Lattice
Strain

Legend

Agent

Resources

Data Flow

Agents executed remotely via Globus Compute

15

http://progress_bar_id

Why is this agentic model better?
➔ Placement: Move agents to

resources
➔ Separation of concerns: Resource

acquisition and scaling based on
local workload

➔ Loose coupling: Swap agents or
integrate new agents (e.g., SDL)

➔ Shared agents: Multiple
workflows can share agents
(microservice-like)

First batches of ligands

MOF buffer fills and Assembler scales down

Validator scales out to start processing MOFs

Optimizer scales out after first validated MOFs

Estimate CO2 of optimized MOFs

Assembler and Estimator auto-scale

Batch job walltime expires

MOFA Agents Trace

16

http://progress_bar_id

Reach out if you are interested:
jgpauloski@uchicago.edu

Learn more/stay up to date:
● arxiv.org/abs/2505.05428
● github.com/proxystore/academy
● academy.proxystore.dev

17Summary |

Questions?

J. Gregory
Pauloski

Yadu
Babuji

Ryan
Chard

Alok
Kamatar

Mansi
Sakarvadia

Kyle
Chard

Ian
Foster

⭐ Academy on GitHub!

https://arxiv.org/abs/2505.05428
http://github.com/proxystore/academy
https://academy.proxystore.dev
http://progress_bar_id

