
Convolutional Neural Network Training with
Distributed K-FAC

J. Gregory Pauloski*, Zhao Zhang †, Lei Huang †, Weijia Xu †, Ian T. Foster *‡

*University of Chicago
†Texas Advanced Computing Center

‡Argonne National Laboratory

Large Batch Training

Large batch deep learning training is essential as:

• model parameter counts increase,

• dataset sizes increase,

• overall training times increase.

2

Large batch training can be difficult:

• Converge to sharp minima leading to poor generalization.

• Requires additional tricks to maintain generalization. E.g. LR scaling
and warmup, LARS, batch size warmup, etc.

Observations

Large batch training is a good candidate for second-order
optimization.

1. Large batches are more representative of the dataset’s distribution.
• Enables second-order update decoupling.

2. Gradient noise limits the maximum effective batch size and
increases over the course of training (McCandlish, 2018).

• Second-order methods optimize noise-independent terms better (Martens, 2014).

3. Second-order methods have higher computation-to-communication
ratios.

• Enables greater benefits from layer-wise distribution schemes.
3

Second-Order Optimization

• Second-order methods incorporates
the curvature of the parameter space.

• Makes more per-iteration progress
optimizing the objective function than
first-order methods.

• Examples: Gauss-Newton, (L)BFGS, K-
FAC

• Expensive to compute!

4

https://www.diva-portal.org/smash/get/diva2:1437676/FULLTEXT01.pdf

Kronecker-Factored Approximate Curvature

• K-FAC is an efficient approximation of the Fisher Information Matrix
(FIM) (Martens+, 2015).
• The FIM is equivalent to the Generalized Gauss-Newton (GGN) matrix, an

approximation of the Hessian.

• Generalizes better with large batches and converges in fewer
iterations than SGD (Ba+, 2017).

• Scales to extremely large batch sizes, e.g. 131k for ImageNet training
(Osawa+, 2019).

5

Kronecker-Factored Approximate Curvature

SGD: 𝜔(𝑘+1) = 𝜔(𝑘) −
𝛼 𝑘

𝑛
σ𝑖=1
𝑛 ∇𝐿𝑖(𝜔

(𝑘))

K-FAC: 𝜔(𝑘+1) = 𝜔(𝑘) −
𝛼 𝑘 ෠𝐹−1(𝜔 𝑘)

𝑛
σ𝑖=1
𝑛 ∇𝐿𝑖(𝜔

𝑘)

𝜔(𝑘) = weight at iteration k

𝛼 𝑘 = learning rate at iteration k

𝑛 = minibatch size

∇𝐿𝑖(𝜔
𝑘) = gradient of the loss function 𝐿𝑖 for the 𝑖𝑡ℎ example with respect to 𝜔(𝑘)

෠𝐹−1 = Inverse Fisher Information Matrix approximation, acts as a gradient preconditioner

6

Kronecker Product

Kronecker Product: ⊗

𝐴⊗𝐵 =
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵

7

𝐴 𝐵 𝐴⊗𝐵⊗ =

𝑚 × 𝑛 𝑝 × 𝑞

𝑚𝑝 × 𝑛𝑞

1 2
3 4

⊗
5 6
7
9

8
0

=

1 × 5 1 × 6 2 × 5 2 × 6
1 × 7 1 × 8 2 × 7 2 × 8
1 × 9 1 × 0 2 × 9 2 × 0
3 × 5 3 × 6 4 × 5 4 × 6
3 × 7 3 × 8 4 × 7 4 × 8
3 × 9 3 × 0 4 × 9 4 × 0

Kronecker-Factored Approximate Curvature

• K-FAC approximates the FIM as a block
diagonal matrix.

𝐹 ≅ ෠𝐹 = 𝑑𝑖𝑎𝑔 ෡𝐹1, … , ෡𝐹𝑖 , … ,෢𝐹𝐿

෠𝐹−1 = 𝑑𝑖𝑎𝑔 ෡𝐹1
−1
, … , ෡𝐹𝑖

−1
, … ,෢𝐹𝐿

−1

• ෡𝐹𝑖 is a Kronecker product of the activations of
the (𝑖 − 1)𝑡ℎ-layer and the gradient w.r.t
output of 𝑖𝑡ℎ-layer.

෡𝐹𝑖 = 𝑎𝑖−1𝑎𝑖−1
𝑇 ⊗𝑔𝑖𝑔𝑖

𝑇 = 𝐴𝑖−1 ⊗𝐺𝑖
8

Kronecker-Factored Approximate Curvature

Kronecker Product Properties:

𝐴⊗ 𝐵 −1 = 𝐴−1 ⊗𝐵−1

𝐴⊗ 𝐵 റ𝑐 = 𝐵𝑇 റ𝑐𝐴

9

KFAC update step for layer 𝑖:

𝜔𝑖
𝑘+1

= 𝜔𝑖
𝑘
− 𝛼 𝑘 ෠𝐹𝑖

−1 ∇𝐿𝑖(𝜔𝑖
𝑘
)

where*:

෠𝐹𝑖
−1 ∇𝐿𝑖 𝜔𝑖

𝑘
= (𝐴𝑖−1 ⊗𝐺𝑖)

−1∇𝐿𝑖(𝜔𝑖
𝑘
)

෠𝐹𝑖
−1 ∇𝐿𝑖 𝜔𝑖

𝑘
= (𝐴𝑖−1

−1 ⊗𝐺𝑖
−1)∇𝐿𝑖(𝜔𝑖

𝑘
)

෠𝐹𝑖
−1 ∇𝐿𝑖 𝜔𝑖

𝑘
= 𝐺𝑖

−1∇𝐿𝑖(𝜔𝑖
𝑘
) 𝐴𝑖−1

−1

Preconditioned Gradient

*Note: In practice, (෡𝐹𝑖 + 𝛾𝐼)−1∇𝐿𝑖 𝜔𝑖
𝑘

is

computed to prevent ill-conditioned matrix
inversion. 𝛾 is a damping constant.

𝐴−1 and 𝐺−1

are symmetric.

Large-Batch Distributed K-FAC

Ba, Grosse, and Martens (2017)
• TensorFlow Parameter Server
• Reports 2x training time improvements over SGD for ResNet-50 training on

ImageNet with 4 GPUs.
• Baseline SGD implementation only achieved ~70% validation accuracy.

Osawa et al. (2019)
• Synchronous, data-parallel scheme in Chainer
• Layer-wise distribution scheme. Worse scaling when n_workers > n_layers as

workers are left idle.
• 75% validation accuracy for ResNet-50 training on ImageNet with 131k batch

size in 978 iterations.
• However, SGD still achieves better validation accuracy is less time.

10

Goals

Distributed K-FAC optimization strategy that:

1. Maintains validation accuracy comparable to SGD at large batch
sizes.

2. Converges in faster time and fewer iterations than SGD.

3. Open source and easy to incorporate into existing training scripts.

11

Design: Matrix Inversion

• K-FAC update step requires computing 𝐴−1 and 𝐺−1 for every layer to compute
the preconditioned gradient.

• Preconditioned gradient can alternatively be computed using an eigen-
decomposition of 𝐴 and 𝐺.

• 𝑄𝐴, 𝑣𝐴: eigenvectors and eigenvalues of 𝐴.

• 𝑄𝐺 , 𝑣𝐺: eigenvectors and eigenvalues of 𝐺.

• Empirically, a more stable approximation for the FIM.

12

𝑉1 = 𝑄𝐺
𝑇 ∇𝐿𝑖 𝜔𝑖

𝑘
𝑄𝐴

𝑉2 = 𝑉1/(𝑣𝐺𝑣𝐴
𝑇 + 𝛾)

(෡𝐹𝑖 + 𝛾𝐼)−1∇𝐿𝑖 𝜔𝑖
𝑘

= 𝑄𝐺𝑉2𝑄𝐴
𝑇

Design: Parallelism

Idea: Assign each factor 𝐴𝑖 and 𝐺𝑖 to a different worker to be eigen
decomposed then broadcast the results to all workers for gradient
preconditioning.

Standard data parallel training. I.e. each worker maintains a local copy
of the model and computes the forward and backward pass for a local
mini-batch then the gradients are reduced across workers.

Before the SGD optimization step: distribute and compute the factors,
broadcast the results to all workers, and precondition the gradients in-
place.

13

14

Step 1:
• Compute forward/backward

pass for local batch.
• Compute 𝐴 and 𝐺 for local

batch.

Step 2:
• Each worker eigen

decomposes the factors it
was assigned.

Step 3:
• Each worker computes the

preconditioned gradient for
all layers.

reduce() broadcast()

Design: Communication Optimizations

• Communication in three places:

a) Average gradients (∇𝐿𝑖(𝜔𝑖
𝑘
))

b) Average Kronecker factors (𝐴i, 𝐺𝑖)

c) Broadcast eigen decompositions (𝑄𝐴𝑖 , 𝑄𝐺𝑖 , 𝑣𝐴𝑖 , 𝑣𝐺𝑖)

• A common second-order optimization strategy is to only update the
second-order information every n-iterations.

• Thus, in non-KFAC update steps, we reuse the eigen decompositions
from previous iterations and avoid the communication in (b) and (c).

15

Design: Communication Optimizations

Tradeoffs:

• Eigendecompositions become stale over time.

• KFAC update steps require more communication (factors +
eigendecompositions).

• Non-KFAC update steps require only communicating the gradients,
the same amount of communication as SGD.

• Communication decreases and update interval increases.

• Less communication than previous distributed K-FAC methods.

16

Implementation

• K-FAC modifies gradients in-
place after the backward pass
and before the optimization
step.

• Allows for compatibility with
any PyTorch optimizer or
preconditioner (e.g. SGD,
Adam, LARS, LAMB, etc.).

• Linear and Conv2D layers.
• Horovod and

torch.distributed data-parallel
training backends.

17

Horovod Example Usage

https://github.com/gpauloski/kfac_pytorch

Correctness: Cifar10 + ResNet-32

18

Validation Accuracy

GPUs 1 2 4 8

SGD 92.76% 92.77% 92.58% 92.69%

K-FAC 92.93% 92.76% 92.90% 92.92%

Performance: K-FAC Update Interval

19

20

Performance: Scaling

• KFAC-lw: layer-wise distribution
scheme by Osawa et al. (2019)

• KFAC-opt: this work

Limitations

Performance degrades as model
complexity and worker counts
increase.

• E.g. super-linear increase in factor
computation time as model parameters
increase.

Large imbalance in factor sizes
• Speedup limited by slowest worker
• ResNet-50: largest factor ~5000x5000,

smallest factor 128x128
• ResNet-50, 16->64 GPUS:

• Faster worker: 6.61x speedup
• Slowest worker: 1.55x speedup

21

Relative Factor Computation Speedup

Conclusions

• We introduce an open source, distributed K-FAC preconditioner that
is correct, efficient, and scalable.

• Converges to the 75.9% MLPerf ResNet-50 ImageNet baseline 18-25%
faster than SGD.

22

Questions?

Feel free to contact me: jgpauloski@uchicago.edu

23

