
Camera

KAISA: An Adaptive Second-Order
Optimizer Framework for Deep
Neural Networks
J. G. Pauloski 1, Q. Huang 2, L. Huang 3, S. Venkataraman 4,
K. Chard 1,5, I. T. Foster 1,5, Z. Zhang 3

1 University of Chicago
2 University of Texas at Austin
3 Texas Advanced Computing Center
4 University of Wisconsin, Madison
5 Argonne National Laboratory

CameraHPC and Machine Learning

Training with large batch sizes (e.g., 100K to 1M) is key
to machine learning training on HPC.

++ Used to scale out to more nodes.

-- Leads to worse generalization performance.

How can we better enable large batch training on HPC?

2

CameraSecond-Order Optimization

A good candidate for large batch, distributed training!

3

1. Larger batches are more representative of the dataset’s distribution.

→ infrequent second-order information updates

2. Gradient noise limits batch size and increases throughout training (McCandlish, 2018).

→ second-order methods optimize noise-independent terms better (Martens, 2014)

3. Higher computation-to-communication ratio in second-order methods.

→ enables more advanced distribution schemes

CameraKronecker-Factored Approximate Curvature

● Second-order methods incorporate the curvature of the parameter space.
++ More progress optimizing the objective function per-iteration
-- Expensive to compute!

4

● K-FAC efficiently approximates the Fisher Information Matrix (FIM) for preconditioning
the gradients (Martens+, 2015).

● Generalizes better with large batch sizes and converges in fewer iterations than
first-order methods (Ba+, 2017)
○ Scales to extremely large batch sizes, e.g., 131k for ImageNet training (Osawa+, 2019)

CameraGoals

● Investigate the tradeoffs between memory and communication in distributed
second-order optimization.

● Design a K-FAC distribution scheme that can adapt the ratio of memory and
communication.

● Implemented as a gradient preconditioner than can be used in place with
existing optimizers.

● First to show K-FAC provides speedups in wide variety of applications and
hardware environments.

5

CameraKronecker Product

6

m ✕ n p ✕ q mp ✕ nq

CameraEfficient F Approximation

Step 1: Approximate the FIM as a block diagonal matrix*

Step 2: Decompose each block as the Kronecker Product
of the activations of the previous layer with the gradient
w.r.t. the output of the current layer

*Recall inverse of block diagonal matrix is composed of the inverses of
each block

7

CameraEfficient Gradient Preconditioning

8

Step 3: Apply properties of Kronecker Product to weight update equation

Properties:

Weight Update:

Preconditioned
Gradient

*Alternatively, gradient preconditioning can be performed with eigen decompositions of the factors.

CameraDistributed K-FAC

9

Osawa et al.
(CVPR 2019)

● Synchronous, data-parallel scheme in
Chainer

● Layer-wise distribution scheme for
matrix inversion/preconditioning

● 75% validation accuracy for
ResNet-50/ImageNet in 978 iterations
w/ 131k batch size

● Later work converges to 76% on
ResNet-50/ImageNet in 2 minutes on
2048 V100 GPUs

● Lower memory footprint

Pauloski et al.
(SC 2020)

● Synchronous, data-parallel scheme in
PyTorch/Horovod

● Decoupled matrix inversion from
preconditioning

● Used eigen decomposition
preconditioning method

● K-FAC converges 18--25% faster than
SGD across scales

● Less communication

Ba, Grosse, and Martens
(ICLR 2017)

● TensorFlow Parameter Server

● Scaled to 8 GPUs on a single node

Camera

Performed infrequently (e.g., every t=100 iterations)

Hybrid-Parallel K-FAC

10

Camera

A1, G1A1, G1A1, G1

Model Parallel K-FAC Stage

11

COMM-OPT
Pauloski et al. (SC20)

MEM-OPT
Osawa et al. (CVPR 2019)

++ Communication every t iterations

-- Higher memory usage due to caching

++ Lower memory usage

-- Communication required every iteration

A1, G1

Worker 1

Worker 2

Worker 3

𝒢1

𝒢2

𝒢3

Worker 1

Worker 2

Worker 3

A1

Worker 1

Worker 2

Worker 3

QA1
Worker 1

Worker 2

Worker 3

QG1

QA2

G1

CameraAn Adaptable K-FAC Framework

Given more available memory, such as moving from a 16GB V100 to a 40GB A100,
should you?

a) increase the batch size, or
b) use more memory for K-FAC (i.e., MEM-OPT ➡ COMM-OPT)?

What if you need more fine-grained control of K-FAC memory usage?

KAISA: a K-FAC-enabled, Adaptable, Improved, and ScAlable distributed,
second-order optimizer framework

12

CameraGoals

● Adaptable K-FAC distribution scheme
that generalizes existing work

● Implemented as a preconditioner
easily plugged into existing scripts

● Show KAISA provides speedups
across a greater variety of
applications

● Investigate tradeoffs between
memory footprint and
communication

13

Camera

Gradient Worker Fraction (grad_worker_frac) = m / N

MEM-OPT: grad_worker_frac = 1/N
COMM-OPT: grad_worker_frac = 1

Distribution of Work

Worker Types for a Layer (N workers)

14

Compute eigen
decompositions (one of

the gradient workers)

Eigen Decomp Worker

Compute preconditioned
gradient with eigen

decompositions

Gradient Worker

Receives preconditioned
gradients from a gradient

worker

Gradient Receivers

m per layer 1 or 2 per layer N - m per layer

CameraGradient Worker Fraction

15

0 1 2 3

4 5 6 7

HYBRID-OPT
grad_worker_frac = 1/2

COMM-OPT
grad_worker_frac = 1

MEM-OPT
grad_worker_frac = 1/8

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

: eigen decomposition worker

: preconditioned gradient communication group (every iterations)

: eigen decomposition communication group (every t iteration)

1

CameraGradient Worker Fraction

16

0 1 2 3

4 5 6 7

HYBRID-OPT
grad_worker_frac = 1/2

COMM-OPT
grad_worker_frac = 1

MEM-OPT
grad_worker_frac = 1/8

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

Less Memory More Memory
More Communication Less Communication

CameraAdditional KAISA Improvements

● Greedy factor distribution: assign most “expensive” factor to worker with
lowest current load.
○ Compute time: approximate eigen decomposition time as O(n3).
○ Memory usage: O(n2).

● Half-precision storage and computation for factors.
● Preconditioned Gradient Precomputation (up to 53% faster preconditioning)

17

CameraEvaluation: Setup

Hardware
● GPU Subsystem of Frontera at TACC: 112 nodes with 4xV100 GPUs
● GPU Subsystem of Theta at Argonne National Lab: 24 DGXA100 nodes

(8xA100 40GB GPUs)

Applications
● Classification: ResNet-{18,50,101,152} with ImageNet
● Segmentation: Mask R-CNN with COCO 2014 and U-Net with MRI tumor

dataset
● Language Modeling: BERT-Large with English Wikipedia+Toronto

BooksCorpus

18

CameraEvaluation: Fixed Batch Size

19

App Default
Optimizer Baseline # GPUs

Global
Batch
Size

Precision
KAISA

Time-to-Convergence
Improvement

ResNet-50 SGD 75.9% Val. Acc. 8 A100 2048 FP16 24.3%

Mask
R-CNN SGD 0.377 bbox mAP

0.342 segm mAP 64 V100 64 FP32 18.1%

U-Net ADAM 91.0% Val. DSC 4 A100 64 FP32 25.4%

BERT-Large
(Phase 2) LAMB 90.8% SQuAD

v1.1 F1 8 A100 65,636 FP16 36.3%

CameraEvaluation: Fixed Memory Budget

20

App Optimizer GPUs Grad. Worker
Frac.

Local Batch
Size

Time-to-Convergence
(minutes)

ResNet-50

SGD

64 V100

-- 128 123 (DNC)

KAISA 1/64 80 96

KAISA 1/2 80 83

BERT-Large
(Phase 2)

LAMB

8 A100

-- 12 2918

KAISA 1/2 8 1703

KAISA 1 8 1704

* Use max possible local batch size for each experiment and measure time-to-convergence.

CameraEvaluation: Memory vs. Communication

21

App K-FAC Memory
Overhead

Seconds between
calls to KFAC.step()

K-FAC Bandwidth
Requirements

ResNet-50 600 MB --- 1.8 GB 0.2 seconds High

Mask R-CNN 100 MB --- 200 MB 0.33 seconds Low

BERT-Large
(Phase 2) 1.3 GB --- 3.8 GB 120 seconds Low

High communication applications have strong memory/communication tradeoffs.

Low communication applications are not as affected by communication reductions
with larger grad_worker_frac values.

KAISA is still faster than baseline optimizers for all grad_worker_frac.

CameraEvaluation: Scaling

KAISA variant speedups over SGD with a high
communication (ResNet-50) and low
communication (BERT-Large) application.

Observations:
● 27-29% faster than SGD with ResNet-50
● 41-44% faster than LAMB for BERT-Large
● MEM-OPT has constant speedup
● HYBRID/COMM-OPT improve with scale
● HYBRID-OPT best balance of memory usage and

scaling with BERT-Large

22

CameraKAISA Summary

We have presented KAISA: a K-FAC-enabled, Adaptable, Improved, and ScAlable
distributed, second-order optimizer framework.

23

● KAISA can adapt its distribution scheme to fit model and hardware characteristics.
● We study and characterize the tradeoff between caching and communication in

distributed second-order training.
● First to show KAISA converges faster in fixed-batch size and fixed-memory budget

environments for Mask R-CNN, U-Net, and BERT-Large.
● In high communication applications, extra memory can be used to reduce

communication and improve training times.
● Show optimal scaling KAISA configuration for scaling up to 128 A100 GPUs.

CameraQuestions

Try out KAISA at

https://github.com/gpauloski/kfac_pytorch

Contact me at jgpauloski@uchicago.edu

24

https://github.com/gpauloski/kfac_pytorch

