

KAISA: An Adaptive Second-Order Optimizer Framework for Deep Neural Networks

J. G. Pauloski ¹, Q. Huang ², L. Huang ³, S. Venkataraman ⁴, K. Chard ^{1,5}, I. T. Foster ^{1,5}, Z. Zhang ³

¹ University of Chicago
 ² University of Texas at Austin
 ³ Texas Advanced Computing Center
 ⁴ University of Wisconsin, Madison
 ⁵ Argonne National Laboratory

HPC and Machine Learning

Training with **large batch sizes** (e.g., 100K to 1M) is key to machine learning training on HPC.

- ++ Used to **scale out** to more nodes.
- -- Leads to worse generalization performance.

How can we better enable large batch training on HPC?

Second-Order Optimization

A good candidate for large batch, distributed training!

1. Larger batches are more representative of the dataset's distribution.

 \rightarrow infrequent second-order information updates

- 2. Gradient noise limits batch size and increases throughout training (McCandlish, 2018). \rightarrow second-order methods optimize noise-independent terms better (Martens, 2014)
- 3. Higher computation-to-communication ratio in second-order methods.
 - \rightarrow enables more advanced distribution schemes

Kronecker-Factored Approximate Curvature

- Second-order methods incorporate the curvature of the parameter space.
 - ++ More progress optimizing the objective function per-iteration
 - -- Expensive to compute!
- K-FAC **efficiently approximates** the Fisher Information Matrix (FIM) for preconditioning the gradients (Martens+, 2015).

SGD:
$$w^{(k+1)} = w^{(k)} - \frac{\alpha^{(k)}}{n} \sum_{i=1}^{n} \nabla L_i(w^{(k)})$$
 K-FAC: $w^{(k+1)} = w^{(k)} - \frac{\alpha^{(k)} F^{-1}(w^{(k)})}{n} \sum_{i=1}^{n} \nabla L_i(w^{(k)})$

- Generalizes better with **large batch sizes** and **converges in fewer iterations** than first-order methods (Ba+, 2017)
 - Scales to extremely large batch sizes, e.g., 131k for ImageNet training (Osawa+, 2019)

Goals

- Investigate the **tradeoffs between memory and communication** in distributed second-order optimization.
- Design a K-FAC distribution scheme that can **adapt the ratio of memory and communication**.
- Implemented as a gradient preconditioner than can be **used in place with** existing optimizers.
- First to show **K-FAC provides speedups** in wide variety of applications and hardware environments.

Kronecker Product

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 0 \end{bmatrix} = \begin{bmatrix} 1 \times 5 & 1 \times 6 & 2 \times 5 & 2 \times 6 \\ 1 \times 7 & 1 \times 8 & 2 \times 9 & 2 \times 0 \\ 3 \times 5 & 3 \times 6 & 4 \times 5 & 4 \times 6 \\ 3 \times 7 & 3 \times 8 & 4 \times 7 & 4 \times 8 \\ 3 \times 9 & 3 \times 0 & 4 \times 9 & 4 \times 0 \end{bmatrix}$$
$$m \times n \otimes p \times q \longrightarrow mp \times nq$$

Efficient *F* Approximation

Step 1: Approximate the FIM as a block diagonal matrix*

$$\hat{F} = \text{diag}(\hat{F}_1, ..., \hat{F}_i, ..., \hat{F}_L)$$

Step 2: Decompose each block as the Kronecker Product of the activations of the previous layer with the gradient w.r.t. the output of the current layer

$$\hat{F}_i = a_{i-1}a_{i-1}^\top \otimes g_i g_i^\top = A_{i-1} \otimes G_i$$

*Recall inverse of block diagonal matrix is composed of the inverses of each block

Efficient Gradient Preconditioning

Step 3: Apply properties of Kronecker Product to weight update equation

Properties:
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 $(A \otimes B)\vec{c} = B^{\top}\vec{c}A$
Weight Update: $w_i^{(k+1)} = w_i^{(k)} - \alpha^{(k)}\hat{F}_i^{-1}\nabla L_i(w_i^{(k)})$
 $\widehat{F}_i^{-1}\nabla L_i\left(\omega_i^{(k)}\right) = G_i^{-1}\nabla L_i(\omega_i^{(k)})A_{i-1}^{-1}$ \longleftarrow Preconditioned Gradient

*Alternatively, gradient preconditioning can be performed with eigen decompositions of the factors.

Distributed K-FAC

Ba, Grosse, and Martens

(ICLR 2017)

- TensorFlow Parameter Server
- Scaled to 8 GPUs on a single node

Osawa et al.

(CVPR 2019)

- Synchronous, data-parallel scheme in Chainer
- Layer-wise distribution scheme for matrix inversion/preconditioning
- 75% validation accuracy for ResNet-50/ImageNet in 978 iterations w/ 131k batch size
- Later work converges to 76% on ResNet-50/ImageNet in 2 minutes on 2048 V100 GPUs
- Lower memory footprint

Pauloski et al.

(SC 2020)

- Synchronous, data-parallel scheme in PyTorch/Horovod
- Decoupled matrix inversion from preconditioning
- Used eigen decomposition preconditioning method
- K-FAC converges 18--25% faster than SGD across scales
- Less communication

Hybrid-Parallel K-FAC

CAG

NATIONAL LABORATORY

Model Parallel K-FAC Stage

MEM-OPT

Osawa et al. (CVPR 2019)

Pauloski et al. (SC20)

++ Lower memory usage

THE UNIVERSITY OF

-- Communication required every iteration

WISCONSIN

- ++ Communication every *t* iterations
- -- Higher memory usage due to caching

An Adaptable K-FAC Framework

Given more available memory, such as moving from a 16GB V100 to a 40GB A100, should you?

- a) increase the batch size, or
- b) use more memory for K-FAC (i.e., MEM-OPT ➡ COMM-OPT)?

What if you need more fine-grained control of K-FAC memory usage?

KAISA: a **K**-FAC-enabled, **A**daptable, **I**mproved, and **S**c**A**lable distributed, second-order optimizer framework

Goals

- Adaptable K-FAC distribution scheme that generalizes existing work
- Implemented as a preconditioner
 easily plugged into existing scripts
- Show KAISA provides speedups across a greater variety of applications
- Investigate tradeoffs between memory footprint and communication

```
model = DistributedDataParallel(model)
optimizer = optim.SGD(model.parameters(), ...)
preconditioner = KFAC(model, grad_worker_frac=0.5)
for data, target in train_loader:
    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)
    loss.backward()
preconditioner.step()
optimizer.step()
```

Listing 1: Example K-FAC usage.

Distribution of Work

Worker Types for a Layer (*N* workers)

Gradient Worker	Eigen Decomp Worker	Gradient Receivers	
Compute preconditioned gradient with eigen decompositions	Compute eigen decompositions (one of the gradient workers)	Receives preconditioned gradients from a gradient worker	
m per laver	1 or 2 per layer	N - m per layer	

Gradient Worker Fraction (grad_worker_frac) = m / N

MEM-OPT: grad_worker_frac = 1/N COMM-OPT: grad_worker_frac = 1

Gradient Worker Fraction

MEM-OPT

grad_worker_frac = 1/8

HYBRID-OPT

grad_worker_frac = 1/2

COMM-OPT

grad_worker_frac = 1

📘 : eigen decomposition worker

: preconditioned gradient communication group (every iterations)

I: eigen decomposition communication group (every *t* iteration)

Gradient Worker Fraction

Additional KAISA Improvements

- Greedy factor distribution: assign most "expensive" factor to worker with lowest current load.
 - Compute time: approximate eigen decomposition time as $O(n^3)$.
 - Memory usage: $O(n^2)$.
- Half-precision storage and computation for factors.
- Preconditioned Gradient Precomputation (up to 53% faster preconditioning)

$$V_1 = Q_G^{\top} \nabla L_i(w_i^{(k)}) Q_A$$
$$V_2 = V_1 / (v_G v_A^{\top} + \gamma)$$
$$(\hat{F}_i + \gamma I)^{-1} \nabla L_i(w_i^{(k)}) = Q_G V_2 Q_A^{\top}$$

Evaluation: Setup

Hardware

- GPU Subsystem of Frontera at TACC: 112 nodes with 4xV100 GPUs
- GPU Subsystem of Theta at Argonne National Lab: 24 DGXA100 nodes (8xA100 40GB GPUs)

Applications

- *Classification*: **ResNet**-{18,50,101,152} with ImageNet
- Segmentation: Mask R-CNN with COCO 2014 and U-Net with MRI tumor dataset
- Language Modeling: **BERT-Large** with English Wikipedia+Toronto BooksCorpus

Evaluation: Fixed Batch Size

Арр	Default Optimizer	Baseline	# GPUs	Global Batch Size	Precision	KAISA Time-to-Convergence Improvement
ResNet-50	SGD	75.9% Val. Acc.	8 A100	2048	FP16	24.3%
Mask R-CNN	SGD	0.377 bbox mAP 0.342 segm mAP	64 V100	64	FP32	18.1%
U-Net	ADAM	91.0% Val. DSC	4 A100	64	FP32	25.4%
BERT-Large (Phase 2)	LAMB	90.8% SQuAD v1.1 F1	8 A100	65,636	FP16	36.3%

Evaluation: Fixed Memory Budget

Арр	Optimizer	GPUs	Grad. Worker Frac.	Local Batch Size	Time-to-Convergence (minutes)
ResNet-50	SGD	64 V100		128	123 (DNC)
	KAISA		1/64	80	96
	KAISA		1/2	80	83
	LAMB			12	2918
BERT-Large (Phase 2)	KAISA	8 A100	1/2	8	1703
	KAISA		1	8	1704

* Use max possible local batch size for each experiment and measure time-to-convergence.

Evaluation: Memory vs. Communication

E UNIVERSITY OF

WISCON

Арр	K-FAC Memory Overhead	Seconds between calls to KFAC.step()	K-FAC Bandwidth Requirements
ResNet-50	600 MB 1.8 GB	0.2 seconds	High
Mask R-CNN	100 MB 200 MB	0.33 seconds	Low
BERT-Large (Phase 2)	1.3 GB 3.8 GB	120 seconds	Low

High communication applications have strong memory/communication tradeoffs.

Low communication applications are **not as affected** by communication reductions with larger *grad_worker_frac* values.

KAISA is still **faster than baseline optimizers** for all *grad_worker_frac*.

Evaluation: Scaling

KAISA variant **speedups over SGD** with a **high communication** (ResNet-50) and **low communication** (BERT-Large) application.

Observations:

- 27-29% faster than SGD with ResNet-50
- 41-44% faster than LAMB for BERT-Large
- MEM-OPT has constant speedup
- HYBRID/COMM-OPT improve with scale
- HYBRID-OPT **best balance** of memory usage and scaling with BERT-Large

KAISA Summary

We have presented **KAISA**: a **K**-FAC-enabled, **A**daptable, **I**mproved, and **S**c**A**lable distributed, second-order optimizer framework.

- KAISA can adapt its distribution scheme to fit model and hardware characteristics.
- We study and characterize the tradeoff between caching and communication in distributed second-order training.
- First to show KAISA converges faster in fixed-batch size and fixed-memory budget environments for Mask R-CNN, U-Net, and BERT-Large.
- In high communication applications, extra memory can be used to reduce communication and improve training times.
- Show optimal scaling KAISA configuration for scaling up to 128 A100 GPUs.

Questions

Try out KAISA at

https://github.com/gpauloski/kfac_pytorch

Contact me at jgpauloski@uchicago.edu

