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CameraHPC and Machine Learning

Training with large batch sizes (e.g., 100K to 1M) is key 
to machine learning training on HPC.

++ Used to scale out to more nodes.

-- Leads to worse generalization performance.

How can we better enable large batch training on HPC?
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CameraSecond-Order Optimization

A good candidate for large batch, distributed training!
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1. Larger batches are more representative of the dataset’s distribution.

→ infrequent second-order information updates

2. Gradient noise limits batch size and increases throughout training (McCandlish, 2018).

→ second-order methods optimize noise-independent terms better (Martens, 2014)

3. Higher computation-to-communication ratio in second-order methods.

→ enables more advanced distribution schemes



CameraKronecker-Factored Approximate Curvature

● Second-order methods incorporate the curvature of the parameter space.
++ More progress optimizing the objective function per-iteration
-- Expensive to compute!
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● K-FAC efficiently approximates the Fisher Information Matrix (FIM) for preconditioning 
the gradients (Martens+, 2015).

● Generalizes better with large batch sizes and converges in fewer iterations than 
first-order methods (Ba+, 2017)
○ Scales to extremely large batch sizes, e.g., 131k for ImageNet training (Osawa+, 2019)



CameraGoals

● Investigate the tradeoffs between memory and communication in distributed 
second-order optimization.

● Design a K-FAC distribution scheme that can adapt the ratio of memory and 
communication.

● Implemented as a gradient preconditioner than can be used in place with 
existing optimizers.

● First to show K-FAC provides speedups in wide variety of applications and 
hardware environments. 
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CameraKronecker Product
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m ✕ n         p ✕ q                            mp ✕ nq



CameraEfficient F Approximation

Step 1: Approximate the FIM as a block diagonal matrix*

Step 2: Decompose each block as the Kronecker Product 
of the activations of the previous layer with the gradient 
w.r.t. the output of the current layer

*Recall inverse of block diagonal matrix is composed of the inverses of 
each block
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CameraEfficient Gradient Preconditioning
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Step 3: Apply properties of Kronecker Product to weight update equation

Properties:

Weight Update:

Preconditioned 
Gradient

*Alternatively, gradient preconditioning can be performed with eigen decompositions of the factors.



CameraDistributed K-FAC
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Osawa et al.
(CVPR 2019)

● Synchronous, data-parallel scheme in 
Chainer

● Layer-wise distribution scheme for 
matrix inversion/preconditioning

● 75% validation accuracy for 
ResNet-50/ImageNet in 978 iterations 
w/ 131k batch size

● Later work converges to 76% on 
ResNet-50/ImageNet in 2 minutes on 
2048 V100 GPUs

● Lower memory footprint

Pauloski et al.
(SC 2020)

● Synchronous, data-parallel scheme in 
PyTorch/Horovod

● Decoupled matrix inversion from 
preconditioning

● Used eigen decomposition 
preconditioning method

● K-FAC converges 18--25% faster than 
SGD across scales

● Less communication

Ba, Grosse, and Martens
(ICLR 2017)

● TensorFlow Parameter Server

● Scaled to 8 GPUs on a single node
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Performed infrequently (e.g., every t=100 iterations)

Hybrid-Parallel K-FAC
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A1, G1A1, G1A1, G1

Model Parallel K-FAC Stage
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COMM-OPT
Pauloski et al. (SC20)

MEM-OPT
Osawa et al. (CVPR 2019)

++ Communication every t iterations

-- Higher memory usage due to caching

++ Lower memory usage

-- Communication required every iteration
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CameraAn Adaptable K-FAC Framework

Given more available memory, such as moving from a 16GB V100 to a 40GB A100, 
should you?

a) increase the batch size, or
b) use more memory for K-FAC (i.e., MEM-OPT ➡ COMM-OPT)?

What if you need more fine-grained control of K-FAC memory usage?

KAISA: a K-FAC-enabled, Adaptable, Improved, and ScAlable distributed, 
second-order optimizer framework
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CameraGoals

● Adaptable K-FAC distribution scheme 
that generalizes existing work

● Implemented as a preconditioner 
easily plugged into existing scripts

● Show KAISA provides speedups 
across a greater variety of 
applications

● Investigate tradeoffs between 
memory footprint and 
communication
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Camera

Gradient Worker Fraction (grad_worker_frac) = m / N

MEM-OPT: grad_worker_frac = 1/N
COMM-OPT: grad_worker_frac = 1

Distribution of Work

Worker Types for a Layer (N workers)
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Compute eigen 
decompositions (one of 

the gradient workers)

Eigen Decomp Worker

Compute preconditioned 
gradient with eigen 

decompositions

Gradient Worker

Receives preconditioned 
gradients from a gradient 

worker

Gradient Receivers

m per layer 1 or 2 per layer N - m per layer



CameraGradient Worker Fraction
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: eigen decomposition worker

: preconditioned gradient communication group (every iterations)

: eigen decomposition communication group (every t iteration)
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CameraGradient Worker Fraction
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CameraAdditional KAISA Improvements

● Greedy factor distribution: assign most “expensive” factor to worker with 
lowest current load.
○ Compute time: approximate eigen decomposition time as O(n3).
○ Memory usage: O(n2).

● Half-precision storage and computation for factors.
● Preconditioned Gradient Precomputation (up to 53% faster preconditioning)
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CameraEvaluation: Setup

Hardware
● GPU Subsystem of Frontera at TACC: 112 nodes with 4xV100 GPUs
● GPU Subsystem of Theta at Argonne National Lab: 24 DGXA100 nodes 

(8xA100 40GB GPUs)

Applications
● Classification: ResNet-{18,50,101,152} with ImageNet
● Segmentation: Mask R-CNN with COCO 2014 and U-Net with MRI tumor 

dataset
● Language Modeling: BERT-Large with English Wikipedia+Toronto 

BooksCorpus
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CameraEvaluation: Fixed Batch Size
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App Default 
Optimizer Baseline # GPUs

Global 
Batch 
Size

Precision
KAISA 

Time-to-Convergence 
Improvement

ResNet-50 SGD 75.9% Val. Acc. 8 A100 2048 FP16 24.3%

Mask 
R-CNN SGD 0.377 bbox mAP

0.342 segm mAP 64 V100 64 FP32 18.1%

U-Net ADAM 91.0% Val. DSC 4 A100 64 FP32 25.4%

BERT-Large 
(Phase 2) LAMB 90.8% SQuAD 

v1.1 F1 8 A100 65,636 FP16 36.3%



CameraEvaluation: Fixed Memory Budget
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App Optimizer GPUs Grad. Worker 
Frac.

Local Batch 
Size

Time-to-Convergence 
(minutes)

ResNet-50

SGD

64 V100

-- 128 123 (DNC)

KAISA 1/64 80 96

KAISA 1/2 80 83

BERT-Large 
(Phase 2)

LAMB

8 A100

-- 12 2918

KAISA 1/2 8 1703

KAISA 1 8 1704

* Use max possible local batch size for each experiment and measure time-to-convergence.



CameraEvaluation: Memory vs. Communication
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App K-FAC Memory 
Overhead

Seconds between 
calls to KFAC.step() 

K-FAC Bandwidth 
Requirements

ResNet-50 600 MB --- 1.8 GB 0.2 seconds High

Mask R-CNN 100 MB --- 200 MB 0.33 seconds Low

BERT-Large
(Phase 2) 1.3 GB --- 3.8 GB 120 seconds Low

High communication applications have strong memory/communication tradeoffs.

Low communication applications are not as affected by communication reductions 
with larger grad_worker_frac values.

KAISA is still faster than baseline optimizers for all grad_worker_frac.



CameraEvaluation: Scaling

KAISA variant speedups over SGD with a high 
communication (ResNet-50) and low 
communication (BERT-Large) application.

Observations:
● 27-29% faster than SGD with ResNet-50
● 41-44% faster than LAMB for BERT-Large
● MEM-OPT has constant speedup
● HYBRID/COMM-OPT improve with scale
● HYBRID-OPT best balance of memory usage and 

scaling with BERT-Large

22



CameraKAISA Summary

We have presented KAISA: a K-FAC-enabled, Adaptable, Improved, and ScAlable 
distributed, second-order optimizer framework.
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● KAISA can adapt its distribution scheme to fit model and hardware characteristics.
● We study and characterize the tradeoff between caching and communication in 

distributed second-order training.
● First to show KAISA converges faster in fixed-batch size and fixed-memory budget 

environments for Mask R-CNN, U-Net, and BERT-Large.
● In high communication applications, extra memory can be used to reduce 

communication and improve training times.
● Show optimal scaling KAISA configuration for scaling up to 128 A100 GPUs.



CameraQuestions

Try out KAISA at

https://github.com/gpauloski/kfac_pytorch

Contact me at jgpauloski@uchicago.edu
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https://github.com/gpauloski/kfac_pytorch

