
Accelerating Communications in Federated Applications
with Transparent Object Proxies

Greg Pauloski*

Valerie Hayot-Sasson*, Logan Ward^, Nathaniel Hudson*, Charlie Sabino*, Matt Baughman*, Kyle Chard*^,
and Ian Foster*^

*University of Chicago, ^Argonne National Laboratory

15 November 2023 1

Camera

github.com/proxystore | docs.proxystore.dev | 2

FaaS and Workflow Systems
 Enable programmers specify what tasks to perform

without regard to where tasks are executed.

Camera

github.com/proxystore | docs.proxystore.dev |

Control and Data Flow

Control Flow

● Path the execution takes in an application
● Determining order of operations, scheduling,

execution
● Tasks definitions are small

Data Flow

● How data moves through computations
● May accompany the control flow
● Data characteristics vary much more than task

definitions

3

Different problems with different solutions…

Cloud-hosted FaaS / workflow systems are good for control flow but bad for data flow.

✓ Reliability and availability of cloud services
✗ Costs (time/money) increase with data flow due to ingress/egress
✓ Performance of workflow systems
✗ Restrictions are necessary to sustain “one-size-fits-all” approach

Camera

github.com/proxystore | docs.proxystore.dev |

Managing Data Flow

4

Optimization is left to the
programmer

Data flow code is tightly
coupled to specific

deployment

Application is not portable
nor generalizable

Need a mechanism to decouple data flow
management from application design.

Camera

github.com/proxystore | docs.proxystore.dev |

ProxyStore
 A framework which abstracts the management and

routing of data between processes in distributed and
federated Python applications.

6

Camera

github.com/proxystore | docs.proxystore.dev |

Goals

● Enable developers to focus on logical data flow rather than physical details
of where data reside and how data are communicated.

● Dynamically select different data movement methods, depending on what
data are moved, where data are moved, or when data are moved

● Transparently provide pass-by-reference semantics and just-in-time object
resolution to consumers.

7

Camera

github.com/proxystore | docs.proxystore.dev | 8

Apparent Data Path

Object
Store

obj

True Data Path

Proxy
obj

Consumer
obj

Producer

Cloud /
Workflow
Engine

obj
ProxyStore

ProxyStore: Proxies + Object Stores

● Elegant pass-by-reference in distributed Python apps
● Mechanism for transparently decoupling control and data flow
● Abstract any (via plugins) object communication/storage

Camera

github.com/proxystore | docs.proxystore.dev |

Store + Connector

● Store: high-level interface, used to
create proxies

● Connector: low-level interface to
mediated communication channel

Proxy + Factory

● Pass-by-reference
● Just-in-time, self-resolution

Concepts

9

Camera

github.com/proxystore | docs.proxystore.dev |

Proxy Objects

10

import numpy as np

from proxystore.proxy import Proxy

x = np.array([1, 2, 3])

Proxy(Callable[[], T]) -> Proxy[T]

p = Proxy(lambda: x)

A proxy is an instance of its wrapped object

assert isinstance(p, Proxy)

assert isinstance(p, np.ndarray)

The proxy can do everything the numpy array can

assert np.array_equal(p, [1, 2, 3])

assert np.sum(p) == 6

y = x + p

assert np.array_equal(y, [2, 4, 6])

● Transparently wrap target objects

● Acts like a wide-area reference

● Initialized with a factory

● Just-in-time resolution

Camera

github.com/proxystore | docs.proxystore.dev | 11

from proxystore.connectors.redis import RedisConnector

from proxystore.store import Store

my_object = MyData(...)

with Store(

 name='my-store',

 connector=RedisConnector(‘localhost’, 6379),

 # other optional parameters

) as store:

 p = store.proxy(my_object)

from proxystore.proxy import Proxy

def my_function(x: MyData) -> ...:

 # Resolve of x deferred until use

 assert isinstance(x, MyData)

 # More computation...

assert isinstance(p, Proxy)

my_function(p)

Why lazy resolution with proxies?
● Performance (pass-by-reference, async resolve, skip unused objects)
● Avoid writing shims/wrapper functions
● Partial resolution of large objects with nested proxies
● Access control (only resolve data where permitted)

Camera

github.com/proxystore | docs.proxystore.dev |

Consumer-sideProducer-side

12

Producer Consumer

Channel

Proxy
obj

Store

obj

Connector Cache

Store

ConnectorCache

01011011.. Proxy
obj

obj

Proxy
obj(1) Producer puts object in

Store and gets back Proxy. (3) Producer sends
Proxy to consumer.

(2) Store gives object to
Connector and generates a
Proxy with metadata/Factory.

(4) Consumer uses Proxy
like a normal object.

(5) Object resolution
happens transparently
to consumer.

Camera

github.com/proxystore | docs.proxystore.dev | 13

Protocol Storage Intra-Site Inter-Site Persistence

File Disk ✓ ✓

Redis/KeyDB Hybrid ✓ ✓

Margo Memory ✓

UCX Memory ✓

ZMQ Memory ✓

Globus Disk ✓ ✓

DAOS Disk* ✓ ✓

P2P Endpoint Hybrid ✓ ✓ ✓

Connectors

● Many mediated methods supported

● Connector = Python Protocol

● MultiConnector: Policy-based

routing between instances

Camera

github.com/proxystore | docs.proxystore.dev |

Examples

14

Camera

github.com/proxystore | docs.proxystore.dev |

Intra-Site Communication with RDMA

15

UCX-Py

Goal: Data-intensive workflows on HPC clusters

Idea: Leverage/aggregate local node storage

● Each node runs a storage server process
● Storage servers communicate via RDMA
● Elastic—storage processes spawned as proxies are

propagated between nodes
● Downstream code unaware RDMA is being used

Polaris @ ALCF

Camera

github.com/proxystore | docs.proxystore.dev |

Intra-Site Communication with RDMA

RDMA with Federated Functions as a Service

16

docs.proxystore.dev/main/guides/globus-compute
github.com/proxystore/benchmarks

Client Compute

Apparent Data Path True Data Path

RDMA

https://docs.proxystore.dev/main/guides/globus-compute
https://github.com/proxystore/benchmarks

Camera

github.com/proxystore | docs.proxystore.dev |

P2P Endpoints: Easy* Multi-Site Workflows

17

N
A
T

N
A
T

1

Apparent Data
Path

True Data
Path

Data
Requests

Object
Store

Endpoint A

obj

Host 1
Producer

3

Object
Store

Endpoint B

obj

Host 2
Consumer

6

2

5

4

* Easy = no SSH tunnels/firewall restrictions, one-time setup, no cloud storage costs

Cloud/
Workflow
Engine

ComputeCompute

Federated
FaaS

Camera

github.com/proxystore | docs.proxystore.dev |

Endpoint A

WebRTC

18

$ proxystore-endpoint configure example --relay-server wss://relay.proxystore.dev

$ proxystore-endpoint start example # Runs as a daemon process

docs.proxystore.dev/main/guides/endpoints

P2P Endpoints: UDP Hole-Punching

 Internet

NAT

Relay Server
Websockets

Client

REST

Client

Client

Client
1

Object
Store

NAT

Client

REST

Client

Client

ClientEndpoint B

WebRTC

Object
Store

234

5

https://docs.proxystore.dev/main/guides/endpoints/

Camera

github.com/proxystore | docs.proxystore.dev |

P2P Endpoints: Benchmarks

19

System A System B

Proc. A Proc. B

System A System B

Proc. A Proc. BEP EP

SSH
Tunnel

UDP
Hole-Punch

O(n2) SSH Tunnels (n systems)

O(n) ProxyStore P2P Endpoints (n systems)

Redis + SSH

P2P Endpoints

How to access shared
data between multiple

computing sites?

Camera

github.com/proxystore | docs.proxystore.dev |

P2P Endpoints: Benchmarks

20

github.com/proxystore/benchmarks

Increasing
Distance

=
Better P2P

Performance

~10 M

~40 KM

~1700 KM

https://github.com/proxystore/benchmarks

Camera

github.com/proxystore | docs.proxystore.dev |

Reducing Overheads in Science Applications

21

Federated Learning Real-time Science
Multi-site Workflows

Aggregator

Edge
Devices

Colmena Thinker

Theta ClusterRemote GPUs

PS

PS
PS

Camera

github.com/proxystore | docs.proxystore.dev |

Multi-site Active Learning

22

Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Ryan Chard, Yadu Babuji, Ganesh Sivaraman, Sutanay Choudhury, Kyle Chard, Rajeev Thakur, and Ian Foster. Cloud services enable
efficient AI-guided simulation workflows across heterogeneous resources. In Heterogeneity in Computing Workshop at IPDPS. IEEE Computer Society, 2023.

1024 Theta KNL Nodes
● Simulation Tasks

20 GPU Workstation
● Training Tasks
● Inference Tasks

Workstation/Head Node
● Submit work
● Process results

Science Goal: Use quantum chemistry simulations and surrogate ML models to efficiently
identify electrolytes with high ionization potentials in a candidate set.

Camera

github.com/proxystore | docs.proxystore.dev |

Multi-site Active Learning

23

Systems Goal: Reduce task communication overheads in workflow system to increase
system utilization and task throughput.

MultiConnector Configuration
● Simulation: Redis
● Training: ProxyStore P2P Endpoints
● Inference: Globus Transfer / ProxyStore

P2P Endpoints

Takeaways
● Reduce overheads
● Re-used data only communicated once
● Orchestrator can choose ideal communication method
● No changes to task code needed

Camera

github.com/proxystore | docs.proxystore.dev |

Questions?

24

Contact:
jgpauloski@uchicago.edu
github.com/proxystore/proxystore/issues

Publications:
docs.proxystore.dev/main/publications

Acknowledgements:
Apparent Data Path

Object
Store

obj

True Data Path

Proxy

obj

Consumer
obj

Producer

Cloud /
Workflow
Engine

obj

ProxyStore

$ pip install proxystore[all]

$ pip install proxystore-ex

Funding
● Department of Energy (DOE)

Contract DE-AC02-06CH11357
● ExaWorks project and ExaLearn

Co-design Center of the Exascale
Computing Project (17-SC-20-SC)

● NSF Grant 2004894

Compute
● Argonne Leadership Computing

Facility
● Texas Advanced Computing Center
● National Energy Research Scientific

Computing Center
● University of Chicago Research

Computing Center
● Chameleon Cloud

mailto:jgpauloski@uchicago.edu

