
Accelerating Communications in Federated Applications 
with Transparent Object Proxies

Greg Pauloski*

Valerie Hayot-Sasson*, Logan Ward^, Nathaniel Hudson*, Charlie Sabino*, Matt Baughman*, Kyle Chard*^, 
and Ian Foster*^

*University of Chicago, ^Argonne National Laboratory

15 November 2023 1



Camera

github.com/proxystore | docs.proxystore.dev | 2

FaaS and Workflow Systems
 Enable programmers specify what tasks to perform 

without regard to where tasks are executed.
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Control and Data Flow

Control Flow

● Path the execution takes in an application
● Determining order of operations, scheduling, 

execution
● Tasks definitions are small

Data Flow

● How data moves through computations
● May accompany the control flow
● Data characteristics vary much more than task 

definitions
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Different problems with different solutions…

Cloud-hosted FaaS / workflow systems are good for control flow but bad for data flow.

✓ Reliability and availability of cloud services
✗ Costs (time/money) increase with data flow due to ingress/egress 
✓ Performance of workflow systems
✗ Restrictions are necessary to sustain “one-size-fits-all” approach
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Managing Data Flow
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Optimization is left to the 
programmer

Data flow code is tightly 
coupled to specific 

deployment

Application is not portable 
nor generalizable

Need a mechanism to decouple data flow 
management from application design.
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ProxyStore
 A framework which abstracts the management and 

routing of data between processes in distributed and 
federated Python applications.
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Goals

● Enable developers to focus on logical data flow rather than physical details 
of where data reside and how data are communicated. 

● Dynamically select different data movement methods, depending on what 
data are moved, where data are moved, or when data are moved

● Transparently provide pass-by-reference semantics and just-in-time object 
resolution to consumers.
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ProxyStore: Proxies + Object Stores

● Elegant pass-by-reference in distributed Python apps
● Mechanism for transparently decoupling control and data flow
● Abstract any (via plugins) object communication/storage
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Store + Connector

● Store: high-level interface, used to 
create proxies

● Connector: low-level interface to 
mediated communication channel

Proxy + Factory

● Pass-by-reference
● Just-in-time, self-resolution

Concepts
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Proxy Objects
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import numpy as np

from proxystore.proxy import Proxy

x = np.array([1, 2, 3])

# Proxy(Callable[[], T]) -> Proxy[T]

p = Proxy(lambda: x)

# A proxy is an instance of its wrapped object

assert isinstance(p, Proxy)

assert isinstance(p, np.ndarray)

# The proxy can do everything the numpy array can

assert np.array_equal(p, [1, 2, 3])

assert np.sum(p) == 6

y = x + p

assert np.array_equal(y, [2, 4, 6])

● Transparently wrap target objects

● Acts like a wide-area reference

● Initialized with a factory

● Just-in-time resolution
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from proxystore.connectors.redis import RedisConnector

from proxystore.store import Store

my_object = MyData(...)

with Store(

    name='my-store',

    connector=RedisConnector(‘localhost’, 6379),

    # other optional parameters

) as store:

    p = store.proxy(my_object)

from proxystore.proxy import Proxy

def my_function(x: MyData) -> ...:

    # Resolve of x deferred until use

    assert isinstance(x, MyData)  

    # More computation...

assert isinstance(p, Proxy)

my_function(p)

Why lazy resolution with proxies?
● Performance (pass-by-reference, async resolve, skip unused objects)
● Avoid writing shims/wrapper functions
● Partial resolution of large objects with nested proxies
● Access control (only resolve data where permitted)
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Consumer-sideProducer-side
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Producer Consumer

Channel
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Proxy
obj(1) Producer puts object in 

Store and gets back Proxy. (3) Producer sends 
Proxy to consumer.

(2) Store gives object to 
Connector and generates a 
Proxy with metadata/Factory.

(4) Consumer uses Proxy 
like a normal object.

(5) Object resolution 
happens transparently 
to consumer.
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Protocol Storage Intra-Site Inter-Site Persistence

File Disk ✓ ✓

Redis/KeyDB Hybrid ✓ ✓

Margo Memory ✓

UCX Memory ✓

ZMQ Memory ✓

Globus Disk ✓ ✓

DAOS Disk* ✓ ✓

P2P Endpoint Hybrid ✓ ✓ ✓

Connectors

● Many mediated methods supported

● Connector = Python Protocol

● MultiConnector: Policy-based 

routing between instances
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Examples
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Intra-Site Communication with RDMA
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UCX-Py

Goal: Data-intensive workflows on HPC clusters

Idea: Leverage/aggregate local node storage

● Each node runs a storage server process
● Storage servers communicate via RDMA
● Elastic—storage processes spawned as proxies are 

propagated between nodes
● Downstream code unaware RDMA is being used

Polaris @ ALCF
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Intra-Site Communication with RDMA

RDMA with Federated Functions as a Service
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docs.proxystore.dev/main/guides/globus-compute
github.com/proxystore/benchmarks

Client Compute

Apparent Data Path True Data Path

RDMA

https://docs.proxystore.dev/main/guides/globus-compute
https://github.com/proxystore/benchmarks
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P2P Endpoints: Easy* Multi-Site Workflows
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* Easy = no SSH tunnels/firewall restrictions, one-time setup, no cloud storage costs

Cloud/
Workflow 
Engine

ComputeCompute

Federated
FaaS
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Endpoint A

WebRTC
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$ proxystore-endpoint configure example --relay-server wss://relay.proxystore.dev

$ proxystore-endpoint start example    # Runs as a daemon process

docs.proxystore.dev/main/guides/endpoints

P2P Endpoints: UDP Hole-Punching
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https://docs.proxystore.dev/main/guides/endpoints/
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P2P Endpoints: Benchmarks
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System A System B

Proc. A Proc. B

System A System B

Proc. A Proc. BEP EP

SSH
Tunnel

UDP
Hole-Punch

O(n2) SSH Tunnels (n systems)

O(n) ProxyStore P2P Endpoints (n systems)

Redis + SSH

P2P Endpoints

How to access shared 
data between multiple 

computing sites?
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P2P Endpoints: Benchmarks
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github.com/proxystore/benchmarks

Increasing 
Distance

=
Better P2P 

Performance

~10 M

~40 KM

~1700 KM

https://github.com/proxystore/benchmarks


Camera

github.com/proxystore | docs.proxystore.dev | 

Reducing Overheads in Science Applications
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Federated Learning Real-time Science
Multi-site Workflows

Aggregator

Edge 
Devices

Colmena Thinker

Theta ClusterRemote GPUs

PS

PS
PS



Camera

github.com/proxystore | docs.proxystore.dev | 

Multi-site Active Learning
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Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Ryan Chard, Yadu Babuji, Ganesh Sivaraman, Sutanay Choudhury, Kyle Chard, Rajeev Thakur, and Ian Foster. Cloud services enable 
efficient AI-guided simulation workflows across heterogeneous resources. In Heterogeneity in Computing Workshop at IPDPS. IEEE Computer Society, 2023.

1024 Theta KNL Nodes
● Simulation Tasks

20 GPU Workstation
● Training Tasks
● Inference Tasks

Workstation/Head Node
● Submit work
● Process results

Science Goal: Use quantum chemistry simulations and surrogate ML models to efficiently 
identify electrolytes with high ionization potentials in a candidate set.
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Multi-site Active Learning
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Systems Goal: Reduce task communication overheads in workflow system to increase 
system utilization and task throughput.

MultiConnector Configuration
● Simulation: Redis
● Training: ProxyStore P2P Endpoints
● Inference: Globus Transfer / ProxyStore 

P2P Endpoints

Takeaways
● Reduce overheads
● Re-used data only communicated once
● Orchestrator can choose ideal communication method
● No changes to task code needed
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Questions?
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Contact:
jgpauloski@uchicago.edu
github.com/proxystore/proxystore/issues

Publications:
docs.proxystore.dev/main/publications
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$ pip install proxystore[all]

$ pip install proxystore-ex
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