
Accelerating Communications in
High-Performance Scientific Workflows
J. Gregory Pauloski
Advised by Kyle Chard and Ian Foster
University of Chicago & Argonne National Laboratory
21 November 2024 — Atlanta, Georgia

A Shift in Scientific Programs…

Monolithic
Programs

Composition of Loosely
Coupled Components

Scientists want to utilize compute in more places.

Why?

➔ Faster & more reliable networks
➔ Specialized accelerators
➔ Data locality
➔ Performance requirements
➔ Compute availability & costs
➔ Better cloud management

2Introduction |

http://progress_bar_id

Modern Science Applications are Task-centric

Applications are composed as a set of discrete
tasks designed to automate computational

processes to achieve a scientific goal

Challenges [2]

● Coupling AI/ML/Quantum
● Cloud and HPC Integration
● Data Flow/Provenance
● Standards/Interoperability
● Performance
● and many more!

Benefits
● Heterogeneous Resources
● Software Modularity
● Monitoring
● Performance
● Reproducibility
● and many more!

[1] “Scientific Workflows: Moving Across Paradigms” (https://dl.acm.org/doi/10.1145/3012429)
[2] Workflows Community Summit (https://arxiv.org/abs/2304.00019)

Applications [1]

● Bioinformatics
● Cosmology
● High Energy Physics
● Materials Science
● Molecular Dynamics
● and many more!

3Introduction |

https://dl.acm.org/doi/10.1145/3012429
https://arxiv.org/abs/2304.00019
http://progress_bar_id

Federating Scientific Workflows

Distribute computational tasks across federated devices? Possible.
➔ Globus Compute distributed FaaS Model

Manage intermediate data between tasks? Limited.
➔ Interoperability between distributed/parallel frameworks is challenging
➔ Cloud object storage is reliable/available but expensive for data-intensive apps
➔ P2P CDNs are good for edge devices but bad for clusters

Manage communication between independent components? Limited.
➔ Easy in cloud-native apps (microservice architectures)
➔ Hard in federated apps (requires ad-hoc solutions)

4Introduction |

http://progress_bar_id

Communication in Federated Science Workflows

New programming techniques enable and accelerate task-oriented
science applications executed across the computing continuum.

P1 What are the limitations in existing distributed computing framework?

P2 How to represent and efficiently move objects in federated applications?

P3 How to design high-level data flow patterns?

P4 How to build and deploy stateful agents across federated systems?

eScience ‘24 (Best Paper)

SC ‘23 & HPPSS ‘24

Under Review

Better, easier, & faster science! MLHPC ‘21, IJHPCA ‘22, HCW ‘23, IJHPCA ‘24
& Others Under Review/In Progress

5Introduction |

In Progress

http://progress_bar_id

Task Performance Suite

Proxy Patterns

Federated Agents

ProxyStore

Proxy Patterns

Federated Agents

ProxyStore

Task Performance Suite

6Task Performance Suite |

http://progress_bar_id

Task Execution Frameworks
Manage the execution of tasks in parallel across arbitrary hardware.

Workflow Management Systems
Define, manage, and execute workflows represented by a directed acyclic

graph (DAG) of tasks

Concurrent Executors
On-demand asynchronous

execution of tasks

Explicit
DAG defined via configuration file

or domain specific language

Implicit
Task dependencies derived through

dynamic evaluation of a procedural script

7Task Performance Suite |

http://progress_bar_id

The Status Quo

Ad Hoc Benchmarks

● Framework-specific examples/demos
● Custom, single-use evaluation scripts

for a publication
● Forks of real science applications

Problems

● Code is framework-specific
● Ad-hoc scripts subject to code rot
● Porting applications can be onerous
● Subtle errors in ported applications can

lead to inaccurate comparisons

Prior work focused on simulations and synthetic workloads

8Task Performance Suite |

http://progress_bar_id

TaPS — Goals

➔ Provide reference/standard
applications for
benchmarking workloads

➔ Benchmark task executors &
data management systems

➔ Robust and reproducible
configuration system

➔ Guide future research

9Task Performance Suite |

Type Name Domain Task / Data Type(s)

Real

cholesky Linear Algebra Python / In-memory
docking Drug Discovery Executable, Python / File
fedlearn Machine Learning Python / In-memory
mapreduce Text Analysis Python / File, In-memory
moldesign Molecular Design Python / In-memory
montage Astronomy Executable / File

Synthetic
synthetic — Python / In-Memory
failures — Depends on base app

http://progress_bar_id

Task Performance Suite

Proxy Patterns

Federated Agents

ProxyStore

Proxy Patterns

Federated Agents

ProxyStore

10ProxyStore |

http://progress_bar_id

Data flow management library for
distributed Python workflows
● Represent and efficiently move

objects in federated applications

● Proxy transparently decouples
control and data flow

● Best of both pass-by-reference
and pass-by-value

● Use any mediated communication
method via plugins

11ProxyStore |

http://progress_bar_id

from proxystore.connectors import RedisConnector

from proxystore.store import Store

from proxystore.proxy import Proxy

def foo(x: Bar) -> ...:

 # Resolve of x deferred until use

 assert isinstance(x, Bar)

 # More computation...

with Store('demo', RedisConnector(...)) as store:

 x = Bar(...)

 p = store.proxy(x) # Anything can be proxied

 assert isinstance(p, Proxy)

 foo(p) # Proxies can be passed-by-ref anywhere

Proxy Objects

What is a proxy (in this context)?
● Self-contained wide-area reference to a

target object
● Transparently resolve target just-in-time

when first used

What are the benefits?
● Performance (pass-by-reference, async

resolve, skip unused objects)
● Reduce code complexity
● Partial resolution of complex objects
● Access control

12ProxyStore |

http://progress_bar_id

Protocol Storage Intra-Site Inter-Site Persistence
File System Disk ✓ ✓

Redis/KeyDB Hybrid ✓ ✓

Margo Memory ✓

UCX Memory ✓

ZMQ Memory ✓

Globus Disk ✓ ✓

DAOS Disk* ✓ ✓

P2P Endpoint Hybrid ✓ ✓ ✓

Connectors

● Many mediated methods supported
(mediated methods because
producer/consumer may be
temporally decoupled)

● Connector = Python Protocol

● MultiConnector: Policy-based
routing between instances

13ProxyStore |

http://progress_bar_id

Multi-site Active Learning

Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Ryan Chard, Yadu Babuji, Ganesh Sivaraman, Sutanay Choudhury, Kyle Chard, Rajeev Thakur, and Ian Foster. Cloud services enable
efficient AI-guided simulation workflows across heterogeneous resources. In Heterogeneity in Computing Workshop at IPDPS. IEEE Computer Society, 2023.

1024 Theta KNL Nodes
● Simulation Tasks

20 GPU Workstation
● Training Tasks
● Inference Tasks

Workstation/Head Node
● Submit work
● Process results

Science Goal: Use quantum chemistry simulations and surrogate ML models to efficiently
identify electrolytes with high ionization potentials in a candidate set.

14ProxyStore |

http://progress_bar_id

Multi-site Active Learning
Systems Goal: Reduce task communication overheads in workflow system to increase
system utilization and task throughput.

Takeaways
● Reduce overheads
● Re-used data only communicated once
● Orchestrator can choose ideal communication method
● No changes to task code needed

Baseline: Parsl manages all
intermediate data (transfer via
manually created SSH
channels)

ProxyStore: MultiConnector
● Simulation: Redis
● Training: P2P Endpoints
● Inference: Globus Transfer/

P2P Endpoints

15ProxyStore |

http://progress_bar_id

Task Performance Suite

Proxy Patterns

Federated Agents

ProxyStore

Proxy Patterns

Federated Agents

ProxyStore

16Proxy Patterns |

http://progress_bar_id

Yet…

Object proxy is a low-level paradigm:
➔ A great building block within

larger frameworks
➔ Has known limitations

What are higher-level proxy patterns?
➔ Accelerate development of more

sophisticated applications
➔ Address limitations

Connectors Publisher Subscriber

Store Stream
Producer

Stream
Consumer

Lazy Transparent Object Proxy

Future OwnedProxy, Ref/MutProxy

Low Level
Interfaces

High Level
Interfaces

Proxy
Abstraction

Advanced
Proxy Types

17Proxy Patterns |

http://progress_bar_id

Future

Proxy

Store

Producer

Consumer

write

read

ProxyFutures
➔ Create a proxy before

the target exists
➔ Inject data flow

dependencies into
compute tasks

StoreBroker

Producer

Consumer

datametadata

Proxy

ProxyStream
➔ High-throughput &

low-latency streams
➔ Decouple event &

metadata notification
from bulk-data transfer

Store

OwnedProxy

RefProxy

RefMutProxy

Proxy Ownership
➔ Automatically manage

proxy lifetimes
➔ Borrow proxies safely

(immutable or mutable)
at runtime

18Proxy Patterns |

http://progress_bar_id

Task Performance Suite

Proxy Patterns

Federated Agents

ProxyStore

Proxy Patterns

Federated Agents*

ProxyStore

* Exciting name pending…

19Federated Agents |

http://progress_bar_id

Scaling Distributed Science Apps

20

Scale & Complexity

At some point, a single application
no longer makes sense

20Federated Agents |

http://progress_bar_id

Agent Architectures for Science

What is an Agent?
➔ Entity with an internal state, set of

actions it can perform, and a
control loop that determines what
actions to perform

➔ Agents can use message passing
to invoke actions on each other

Why use agents for science?
➔ Turn components into

independent services
(microservice-like)

➔ Agents operate autonomously but
still cooperatively

➔ More natural expression of
multi-stage computational
science processes

21Federated Agents |

http://progress_bar_id

Federated Agents — Goals

➔ Middleware with minimal set of features necessary to build any kind of agents
(embodied, cooperative, AI, etc.)

➔ Mechanisms for federated execution
◆ Globus Compute Launcher
◆ ProxyStore peer-to-peer communication methods
◆ AMQP (Hybrid-cloud w/ RabbitMQ) and DHT (Full P2P w/ Kademlia) Exchanges

➔ Support research in self-driving lab, AI-in-the-loop workflows, federated
learning, etc.

22Federated Agents |

http://progress_bar_id

Impact

Translating open-source software into new science

23Summary |

http://progress_bar_id

Accelerating Communications in
High-Performance Scientific
Workflows

➔ TaPS: Support research in distributed/parallel
execution

➔ ProxyStore: Better object references for
federated environments

➔ Proxy Patterns: Better data flow patterns with
object proxies

➔ Federated Agents: Build science agents for
autonomous discovery

Better, easier, & faster science!

Questions?

Contact:
Greg Pauloski
jgpauloski@uchicago.edu

Reference:
github.com/proxystore
gregpauloski.com

Acknowledgements:
● Argonne National Laboratory under U.S.

Department of Energy Contract
DE-AC02-06CH11357

● National Science Foundation under Grant
2004894 and Grant 2209919

● ExaLearn Co-design Center of the Exascale
Computing Project (17-SC-20-SC)

eScience ‘24 (Best Paper)

SC ‘23 & HPPSS ‘24

Under Review

MLHPC ‘21, IJHPCA ‘22, HCW ‘23, IJHPCA ‘24
& Others In Review/Progress

In Progress

24Summary |

github.com/proxystore

http://progress_bar_id

